通信原理实验报告一
- 格式:doc
- 大小:416.50 KB
- 文档页数:7
通信原理实验报告实验一数字基带信号实验(AMI/HDB3)一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点2、掌握AMI、HDB3的编码规则3、掌握从HDB3码信号中提取位同步信号的方法4、掌握集中插入帧同步码时分复用信号的帧结构特点5、了解HDB3(AMI)编译码集成电路CD22103二、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码2、用示波器观察从HDB3/AMI码中提取位同步信号的波形3、用示波器观察HDB3、AMI译码输出波形三、基本原理本实验使用数字信源模块(EL-TS-M6)、AMI/HDB3编译码模块(EL-TS-M6)。
图1-1 数字信源方框图图1-2 帧结构四、实验步骤1、熟悉信源模块和HDB3/AMI编译码模块的工作原理。
2、插上模块(EL-TS-M6),打开电源。
用示波器观察数字信源模块上的各种信号波形。
用FS作为示波器的外同步信号,进行下列观察:(1)示波器的两个通道探头分别接NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2)用K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构和NRZ码特点。
3、关闭电源。
将数字信源模块的NRZ-OUT和BS-OUT用导线分别连接到 HDB3/AMI编译码模块的NRZ-IN和BS-IN上,将(AMI)HDB3-OUT和(AMI)HDB3-IN连接。
打开电源,用示波器观察HDB3编译单元的各种波形。
用信源模块的FS信号作为示波器的外同步信号。
(1)示波器的两个探头CH1和CH2分别接NRZ-OUT和(AMI)HDB3-OUT,将信源模块K1、K2、K3的每一位都置1,观察并记录全1码对应的AMI码和HDB3码;再将K1、K2、K3置为全0,观察全0码对应的AMI码和HDB3码。
第1篇一、实验目的1. 理解通信原理的基本概念和原理。
2. 掌握通信系统中的信号传输、调制解调、信道编码和解码等基本技术。
3. 通过实验验证通信原理在实际系统中的应用,提高实际操作能力。
二、实验内容1. 信号传输实验(1)实验目的:验证信号传输过程中的基本特性,如幅度调制、频率调制、相位调制等。
(2)实验原理:通过改变输入信号的幅度、频率和相位,观察输出信号的相应变化,分析调制和解调过程。
(3)实验步骤:① 设计信号传输系统,包括调制器、传输信道和解调器;② 选择合适的调制方式,如AM、FM、PM等;③ 通过实验验证调制和解调过程,分析输出信号的特性;④ 分析实验结果,总结调制和解调过程中的关键因素。
2. 调制解调实验(1)实验目的:研究调制解调技术在通信系统中的应用,掌握调制解调的基本原理和方法。
(2)实验原理:通过实验验证调制解调过程,分析调制解调器的性能指标,如调制指数、解调误差等。
(3)实验步骤:① 设计调制解调系统,包括调制器、解调器和信道;② 选择合适的调制方式和解调方式,如AM、FM、PM、PSK、QAM等;③ 通过实验验证调制解调过程,分析调制解调器的性能指标;④ 分析实验结果,总结调制解调过程中的关键因素。
3. 信道编码和解码实验(1)实验目的:研究信道编码和解码技术在通信系统中的应用,掌握信道编码和解码的基本原理和方法。
(2)实验原理:通过实验验证信道编码和解码过程,分析编码和解码的性能指标,如误码率、信噪比等。
(3)实验步骤:① 设计信道编码和解码系统,包括编码器、信道和解码器;② 选择合适的信道编码方式,如BCH码、RS码等;③ 通过实验验证信道编码和解码过程,分析编码和解码的性能指标;④ 分析实验结果,总结信道编码和解码过程中的关键因素。
4. 通信系统综合实验(1)实验目的:综合运用通信原理中的各种技术,设计一个简单的通信系统,并验证其性能。
(2)实验原理:将上述实验中的技术综合应用于通信系统,验证系统的整体性能。
通信原理实验报告实验一抽样定理实验二 CVSD编译码系统实验实验一抽样定理一、实验目的所谓抽样。
就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),即x(t)*s(t)=x(t)s(t)。
在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。
抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原信号。
这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。
二、功能模块介绍1.DDS 信号源:位于实验箱的左侧(1)它可以提供正弦波、三角波等信号,通过连接P03 测试点至PAM 脉冲调幅模块的32P010 作为脉冲幅度调制器的调制信号x(t)。
抽样脉冲信号则是通过P09 测试点连至PAM 脉冲调幅模块。
(2)按下复合式按键旋钮SS01,可切换不同的信号输出状态,例如D04D03D02D01=0010对应的是输出正弦波,每种LED 状态对应一种信号输出,具体实验板上可见。
(3)旋转复合式按键旋钮SS01,可步进式调节输出信号的频率,顺时针旋转频率每步增加100Hz,逆时针减小100Hz。
(4)调节调幅旋钮W01,可改变P03 输出的各种信号幅度。
2.抽样脉冲形成电路模块它提供有限高度,不同宽度和频率的抽样脉冲序列,可通过P09 测试点连线送到PAM 脉冲调幅模块32P02,作为脉冲幅度调制器的抽样脉冲s(t)。
P09 测试点可用于抽样脉冲的连接和测量。
该模块提供的抽样脉冲频率可通过旋转SS01 进行调节,占空比为50%。
3.PAM 脉冲调幅模块它采用模拟开关CD4066 实现脉冲幅度调制。
抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出。
一、实验名称通信原理实验二、实验目的1. 理解通信原理的基本概念和原理;2. 掌握通信系统中的调制、解调、编码和解码等基本技术;3. 培养实际操作能力和分析问题能力。
三、实验内容1. 调制与解调实验(1)实验目的:验证调幅(AM)和调频(FM)调制与解调的基本原理;(2)实验步骤:1. 准备实验设备:调幅调制器、调频调制器、解调器、示波器、信号发生器等;2. 设置调制器参数,生成AM和FM信号;3. 将调制信号输入解调器,观察解调后的信号波形;4. 分析实验结果,比较AM和FM调制信号的特点;(3)实验结果与分析:通过实验,观察到AM和FM调制信号的特点,验证了调制与解调的基本原理。
2. 编码与解码实验(1)实验目的:验证数字通信系统中的编码与解码技术;(2)实验步骤:1. 准备实验设备:编码器、解码器、示波器、信号发生器等;2. 设置编码器参数,生成数字信号;3. 将数字信号输入解码器,观察解码后的信号波形;4. 分析实验结果,比较编码与解码前后的信号特点;(3)实验结果与分析:通过实验,观察到编码与解码前后信号的特点,验证了数字通信系统中的编码与解码技术。
3. 信道模型实验(1)实验目的:验证信道模型对通信系统性能的影响;(2)实验步骤:1. 准备实验设备:信道模型仿真软件、信号发生器、示波器等;2. 设置信道模型参数,生成模拟信号;3. 将模拟信号输入信道模型,观察信道模型对信号的影响;4. 分析实验结果,比较不同信道模型下的信号传输性能;(3)实验结果与分析:通过实验,观察到不同信道模型对信号传输性能的影响,验证了信道模型在通信系统中的重要性。
4. 通信系统性能分析实验(1)实验目的:分析通信系统的性能指标;(2)实验步骤:1. 准备实验设备:通信系统仿真软件、信号发生器、示波器等;2. 设置通信系统参数,生成模拟信号;3. 仿真通信系统,观察系统性能指标;4. 分析实验结果,比较不同参数设置下的系统性能;(3)实验结果与分析:通过实验,观察到不同参数设置对通信系统性能的影响,验证了通信系统性能分析的重要性。
通信原理实习报告在当今信息高速发展的时代,通信技术的重要性日益凸显。
为了更深入地理解和掌握通信原理的相关知识,我参加了一次通信原理的实习。
通过这次实习,我不仅巩固了课堂上学到的理论知识,还获得了许多宝贵的实践经验。
本次实习的主要内容包括通信系统的基本组成、模拟通信和数字通信的原理、调制解调技术以及信道编码等方面。
我们在实验室中使用了专业的通信实验设备,进行了一系列的实验操作。
在实习的初始阶段,我们对通信系统的基本组成进行了深入的学习。
通信系统通常由信源、发送设备、信道、接收设备和信宿等部分组成。
信源产生需要传输的信息,发送设备对信源输出的信号进行处理和变换,使其适合在信道中传输。
信道是信号传输的媒介,会对信号产生各种干扰和衰减。
接收设备从信道中接收信号,并进行处理和恢复,最终将信息传递给信宿。
在模拟通信方面,我们重点研究了幅度调制(AM)和频率调制(FM)。
通过实验,我们观察到了不同调制深度下 AM 信号的波形变化,以及 FM 信号的频率随调制信号的变化情况。
同时,我们还了解到模拟通信存在着抗干扰能力差、保密性不好等缺点。
相比之下,数字通信具有许多优势。
在数字通信的实验中,我们学习了脉冲编码调制(PCM)和增量调制(ΔM)。
PCM 通过采样、量化和编码将模拟信号转换为数字信号,而ΔM 则是一种简单的差值编码方式。
通过对这两种编码方式的实验,我们深刻理解了数字通信的高效性和可靠性。
调制解调技术是通信系统中的关键环节。
我们对常见的调制方式如振幅键控(ASK)、频移键控(FSK)和相移键控(PSK)进行了实验。
通过观察调制前后的信号频谱,我们直观地感受到了调制的作用和效果。
解调过程则是将调制信号恢复为原始信号,这需要准确的同步和滤波处理。
信道编码是为了提高通信系统的可靠性。
我们学习了纠错编码的基本原理,如汉明码和循环码。
通过编码,可以在接收端检测和纠正传输过程中产生的错误,从而提高通信质量。
在实习过程中,我遇到了不少问题和困难。
第1篇一、实验目的1. 理解通信系统的基本原理和组成。
2. 掌握通信系统中的调制、解调、编码、解码等基本技术。
3. 熟悉实验仪器的使用方法,提高动手能力。
4. 通过实验,验证通信原理理论知识。
二、实验原理通信原理实验主要涉及以下内容:1. 调制与解调:调制是将信息信号转换为适合传输的信号,解调是将接收到的信号还原为原始信息信号。
2. 编码与解码:编码是将信息信号转换为数字信号,解码是将数字信号还原为原始信息信号。
3. 信号传输:信号在传输过程中可能受到噪声干扰,需要采取抗干扰措施。
三、实验仪器与设备1. 实验箱:包括信号发生器、调制解调器、编码解码器等。
2. 信号源:提供调制、解调所需的信号。
3. 传输线路:模拟信号传输过程中的衰减、反射、干扰等现象。
四、实验内容与步骤1. 调制实验(1)设置调制器参数,如调制方式、调制频率等。
(2)将信号源信号输入调制器,观察调制后的信号波形。
(3)调整解调器参数,如解调方式、解调频率等。
(4)将调制信号输入解调器,观察解调后的信号波形。
2. 解调实验(1)设置解调器参数,如解调方式、解调频率等。
(2)将调制信号输入解调器,观察解调后的信号波形。
(3)调整调制器参数,如调制方式、调制频率等。
(4)将解调信号输入调制器,观察调制后的信号波形。
3. 编码与解码实验(1)设置编码器参数,如编码方式、编码长度等。
(2)将信息信号输入编码器,观察编码后的数字信号。
(3)设置解码器参数,如解码方式、解码长度等。
(4)将编码信号输入解码器,观察解码后的信息信号。
4. 信号传输实验(1)设置传输线路参数,如衰减、反射等。
(2)将信号源信号输入传输线路,观察传输过程中的信号变化。
(3)调整传输线路参数,如衰减、反射等。
(4)观察传输线路参数调整对信号传输的影响。
五、实验结果与分析1. 调制实验:调制后的信号波形与原信号波形基本一致,说明调制和解调过程正常。
2. 解调实验:解调后的信号波形与原信号波形基本一致,说明解调过程正常。
通信原理实验报告一实验一信号源实验一、实验目的1、了解通信系统的一般模型及信源在整个通信系统中的作用。
2、掌握信号源模块的使用方法。
二、实验内容1、对应液晶屏显示,观测DDS信源输出波形。
2、观测各路数字信源输出。
3、观测正弦点频信源输出。
4、模拟语音信源耳机接听话筒语音信号。
三、实验仪器1、信号源模块一块2、20M双踪示波器一台四、实验原理信号源模块大致分为DDS信源、数字信源、正弦点频信源和模拟语音信源几部分。
1、DDS信源DDS直接数字频率合成信源输出波形种类、频率、幅度及方波B占空比均可通过“DDS信源按键”调节(具体的操作方法见“实验步骤”),并对应液晶屏显示波形信息。
正弦波输出频率范围为1Hz~200KHz,幅度范围为200mV~4V。
三角波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。
锯齿波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。
方波A输出频率范围为1Hz~50KHz,幅度范围为200mV~4V,占空比50%不变。
方波B输出频率范围为1Hz~20KHz,幅度范围为200mV~4V,占空比以5%步进可调。
输出波形如下图1-1所示。
正弦波:1Hz-200KHz三角波:1Hz-20KHz锯齿波:1Hz-20KHz方波A:1Hz-50KHz(占空比50%)方波B:1Hz-20KHz(占空比0%-100%可调)图1-1 DDS信源信号波形2、数字信源(1)数字时钟信号24.576M:钟振输出时钟信号,频率为24.576MHz。
2048K:类似方波的时钟信号输出点,频率为2048 KHz。
64K:方波时钟信号输出点,频率为64 KHz。
32K:方波时钟信号输出点,频率为32KHz。
8K:方波时钟信号输出点,频率为8KHz。
输出时钟如下图1-2所示。
10t64K 10t32K10t8K图1-2 数字时钟信号波形(2)伪随机序列PN15:N=15位的m序列输出点,码型为1111 0101 1001 000,15位一周期循环。
通信原理实验报告(优秀范文5篇)第一篇:通信原理实验报告通信原理实验报告1、实验名称:2、实验目的:3、实验步骤:(详细记录你的实验过程)例如:(1)安装MATLAB6.5软件;(2)学习简单编程,画图plot(x,y)函数等(3)进行抽样定理验证:首先确定余弦波形,设置其幅度?、频率?和相位?等参数,然后画出该波形;进一步,设置采样频率?。
画出抽样后序列;再改变余弦波形的参数和抽样频率的值,改为。
,当抽样频率?>=余弦波形频率2倍时,怎么样?否则的话,怎么样。
具体程序及图形见附录1(或者直接放在这里,写如下。
)(4)通过DSP软件验证抽样定理该软件主要有什么功能,首先点“抽样”,选取各种参数:a, 矩形波,具体参数,出现图形B,余弦波,具体参数,出现图形然后点击“示例”中的。
具体参数,图形。
4、思考题5、实验心得6、附录1有附录1的话有这项,否则无。
第二篇:通信原理实验报告1,必做题目1.1 无线信道特性分析 1.1.1 实验目的1)了解无线信道各种衰落特性;2)掌握各种描述无线信道特性参数的物理意义;3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。
1.1.2 实验内容1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰落信道,观察信号经过衰落前后的星座图,观察信道特性。
仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0-3-6-9]dB,最大多普勒频移为200Hz。
例如信道设置如下图所示:移动通信系统1.1.3 实验作业1)根据信道参数,计算信道相干带宽和相干时间。
fm=200;t=[0 4e-06 8e-06 1.2e-05];p=[10^0 10^-0.3 10^-0.6 10^-0.9];t2=t.^2;E1=sum(p.*t2)/sum(p);E2=sum(p.*t)/sum(p);rms=sq rt(E1-E2.^2);B=1/(2*pi*rms)T=1/fm2)设置较长的仿真时间(例如10秒),运行链路,在运行过程中,观察并分析瑞利信道输出的信道特征图(观察Impulse Response(IR)、Frequency Response(FR)、IR Waterfall、Doppler Spectrum、Scattering Function)。
实验一基带信号的常见码型变换一、实验目的1.熟悉NRZ,BNRZ,RZ,BRZ,曼彻斯特,CMI,密勒,PST码型变换原理及工作过程。
2.观测数字基带信号的码型变换测量点波形。
二、实验原理在实际的基带传输系统中,传输码的结构应具有以下主要特性:1).相应的基带信号无直流分量,且低频分量少。
2).便于从信号中提取定时信息。
3).信号中高频分量尽量少,以节省传输频带并减少码间串扰。
4).以上特性不受信息源统计特性的影响,即适应信息源的变化。
5).编译码设备要尽可能简单。
1.单极性不归零码(NRZ码)单极性不归零码中,二进制代码“1”用幅度为E的正电平表示,“0”用零电平表示,单极性码中含有直流成分,而且不能直接提取同步信号。
2.双极性不归零码(BNRZ码)二进制代码“1”、“0”分别用幅度相等的正负电平表示,当二进制代码“1”和“0”等概出现时无直流分量。
3.单极性归零码(RZ码)单极性归零码与单极性不归零码的区别是码元宽度小于码元间隔,每个码元脉冲在下一个码元到来之前回到零电平。
单极性码可以直接提取定时信息,仍然含有直流成分。
4.双极性归零码(BRZ码)它是双极性码的归零形式,每个码元脉冲在下一个码元到来之前回到零电平。
5.曼彻斯特码曼彻斯特码又称为数字双相码,它用一个周期的正负对称方波表示“0”,而用其反相波形表示“1”。
编码规则之一是:“0”码用“01”两位码表示,“1”码用“10”两位码表示。
例如:消息代码: 1 1 0 0 1 0 1 1 0…曼彻斯特码:10 10 01 01 10 01 10 10 01…曼彻斯特码只有极性相反的两个电平,因为曼彻斯特码在每个码元中期的中心点都存在电平跳变,所以含有位定时信息,又因为正、负电平各一半,所以无直流分量。
6.CMI码CMI码是传号反转码的简称,与曼彻斯特码类似,也是一种双极性二电平码,其编码规则:“1”码交替的用“11“和”“00”两位码表示;“0”码固定的用“01”两位码表示。
第1篇一、实验目的1. 理解通信系统的基本组成和原理。
2. 掌握模拟通信和数字通信的基本知识。
3. 通过实验,验证通信系统中的调制、解调、编码、解码等基本过程。
二、实验器材1. 通信原理实验平台2. 信号发生器3. 示波器4. 数字信号发生器5. 计算机及实验软件三、实验原理通信原理实验主要涉及模拟通信和数字通信两个方面。
模拟通信是将模拟信号通过调制、传输、解调等过程实现信息传递;数字通信则是将数字信号通过编码、传输、解码等过程实现信息传递。
四、实验内容及步骤1. 模拟通信实验(1)调制实验① 打开通信原理实验平台,连接信号发生器和示波器。
② 设置信号发生器输出正弦波信号,频率为1kHz,幅度为1V。
③ 将信号发生器输出信号接入调制器,选择调幅调制方式。
④ 通过示波器观察调制后的信号波形,记录调制信号的幅度、频率和相位变化。
⑤ 调整调制参数,观察调制效果。
(2)解调实验① 将调制后的信号接入解调器,选择相应的解调方式(如包络检波、同步检波等)。
② 通过示波器观察解调后的信号波形,记录解调信号的幅度、频率和相位变化。
③ 调整解调参数,观察解调效果。
2. 数字通信实验(1)编码实验① 打开数字信号发生器,生成二进制信号序列。
② 将信号序列接入编码器,选择相应的编码方式(如曼彻斯特编码、差分曼彻斯特编码等)。
③ 通过示波器观察编码后的信号波形,记录编码信号的时序和幅度变化。
(2)解码实验① 将编码后的信号接入解码器,选择相应的解码方式。
② 通过示波器观察解码后的信号波形,记录解码信号的时序和幅度变化。
五、实验结果与分析1. 模拟通信实验结果(1)调制实验:调制信号的幅度、频率和相位发生了变化,实现了信息的传递。
(2)解调实验:解调信号的幅度、频率和相位与原始信号基本一致,验证了调制和解调过程的有效性。
2. 数字通信实验结果(1)编码实验:编码后的信号波形符合编码方式的要求,实现了信息的编码。
(2)解码实验:解码后的信号波形与原始信号基本一致,验证了编码和解码过程的有效性。
一、实验名称:通信原理实验二、实验目的:1. 理解并掌握通信原理的基本概念和原理;2. 熟悉通信系统的组成及各部分功能;3. 掌握通信系统性能指标及分析方法;4. 提高动手操作能力及实验报告撰写能力。
三、实验内容:1. 通信系统基本组成及功能;2. 信号调制与解调;3. 信道传输特性;4. 通信系统性能分析。
四、实验器材:1. 通信原理实验箱;2. 双踪示波器;3. 函数信号发生器;4. 数据采集器;5. 计算机及仿真软件。
五、实验步骤:(一)通信系统基本组成及功能1. 观察实验箱中各模块的连接情况,了解通信系统的组成;2. 分析各模块的功能,如放大器、滤波器、调制器、解调器等;3. 在实验箱上操作,观察各模块间的信号传输过程。
(二)信号调制与解调1. 设置实验箱中调制器和解调器的参数,如调制指数、载波频率等;2. 输入调制信号,观察调制器输出信号的变化;3. 将调制信号输入解调器,观察解调器输出信号的变化;4. 分析调制与解调过程,验证调制和解调的正确性。
(三)信道传输特性1. 设置实验箱中信道模块的参数,如衰减、相位延迟等;2. 输入信号,观察信道模块输出信号的变化;3. 分析信道传输特性,如衰减、相位延迟等对信号的影响;4. 通过实验验证信道传输特性对通信系统性能的影响。
(四)通信系统性能分析1. 设置实验箱中通信系统参数,如信号功率、信噪比等;2. 分析通信系统性能指标,如误码率、比特误码率等;3. 通过实验验证通信系统性能指标与系统参数的关系。
六、实验结果与分析:(一)通信系统基本组成及功能实验结果表明,通信系统由发送端、信道和接收端组成。
发送端将信号调制后发送,信道对信号进行传输,接收端对接收到的信号进行解调,从而恢复出原始信号。
(二)信号调制与解调实验结果表明,调制器能够将调制信号转换为适合信道传输的信号,解调器能够将接收到的信号恢复为原始信号。
(三)信道传输特性实验结果表明,信道传输特性对信号的影响较大,如衰减、相位延迟等会降低信号质量,影响通信系统性能。
第1篇一、实验背景通信技术是信息时代的重要技术之一,它涉及信号的传输、处理和接收等多个环节。
随着科技的不断发展,通信技术日新月异,通信系统的性能和可靠性要求越来越高。
为了满足这些要求,通信原理的研究显得尤为重要。
通信原理实验是通信专业学生的重要实践环节,通过实验,学生可以加深对通信基本概念、原理和方法的理解,提高实际操作能力。
同时,实验还能培养学生严谨的科研态度和团队合作精神。
二、实验目的本实验报告旨在通过以下实验项目,实现以下目的:1. 熟悉通信系统的基本组成和各部分功能。
2. 掌握通信系统中的基本信号处理方法,如调制、解调、滤波等。
3. 理解通信系统的性能指标,如信噪比、误码率等。
4. 掌握通信系统的仿真和实验方法,提高实际操作能力。
5. 培养学生的创新意识和团队合作精神。
三、实验意义1. 提高学生的专业素养:通过实验,学生可以深入了解通信原理,为今后从事通信相关工作奠定坚实基础。
2. 培养学生的实践能力:实验过程中,学生需要动手操作,这有助于提高学生的动手能力和实际操作能力。
3. 培养学生的创新意识:实验过程中,学生需要不断尝试和探索,这有助于培养学生的创新意识和解决问题的能力。
4. 培养学生的团队合作精神:实验通常需要多人合作完成,这有助于培养学生的团队合作精神和沟通能力。
5. 推动通信技术的发展:通过实验,学生可以了解通信领域的最新技术和发展趋势,为我国通信技术的发展贡献力量。
总之,本实验报告旨在通过通信原理实验,使学生全面掌握通信系统的基本原理、方法和性能指标,提高学生的实际操作能力和创新能力,为我国通信事业的发展培养一批高素质人才。
第2篇一、实验目的1. 理解并掌握通信系统的基本组成和基本工作原理;2. 熟悉通信系统中的各种调制和解调技术;3. 学会使用MATLAB等工具进行通信系统仿真;4. 提高动手能力、分析问题和解决问题的能力。
二、实验意义1. 通信原理实验是通信专业学生的重要实践环节,有助于加深对理论知识的理解;2. 通过实验,学生可以熟悉通信系统设计的基本流程,为后续课程学习和工程实践打下基础;3. 实验过程中,学生需要运用所学知识解决实际问题,提高自己的综合素质。
第1篇一、实验目的本次实验旨在通过一系列的通信原理实验,使学生深入理解并掌握通信系统的基本概念、原理和关键技术。
通过实验操作,培养学生动手能力、分析问题和解决问题的能力,同时增强对通信理论知识的实际应用能力。
二、实验内容1. 信号与系统基础实验- 信号波形观察与分析- 信号的时域与频域分析- 系统的时域与频域响应2. 模拟通信原理实验- 模拟调制与解调实验(如AM、FM、PM)- 信道特性分析- 噪声对通信系统的影响3. 数字通信原理实验- 数字调制与解调实验(如2ASK、2FSK、2PSK、QAM)- 数字基带传输与复用- 数字信号处理技术4. 现代通信技术实验- TCP/IP协议栈原理与实现- 无线通信技术(如Wi-Fi、蓝牙)- 物联网通信技术(如ZigBee)5. 通信系统设计实验- 基于MATLAB的通信系统仿真- 通信系统性能分析与优化三、实验步骤1. 实验准备- 熟悉实验原理和实验设备- 编写实验报告提纲- 准备实验数据和分析工具2. 实验操作- 按照实验步骤进行操作,记录实验数据 - 分析实验现象,总结实验规律- 对实验结果进行误差分析3. 实验报告撰写- 实验目的与背景- 实验原理与步骤- 实验结果与分析- 实验结论与讨论- 实验心得与体会四、实验报告格式1. 封面- 实验报告题目- 学生姓名、学号、班级- 指导教师姓名、职称- 实验日期2. 目录- 实验报告各部分标题及页码3. 正文- 实验目的与背景- 实验原理与步骤- 实验结果与分析- 实验结论与讨论- 实验心得与体会4. 参考文献- 列出实验过程中参考的书籍、论文、网络资源等五、实验报告撰写要求1. 实验报告内容完整、结构清晰、逻辑严谨2. 实验原理阐述准确,实验步骤描述详细3. 实验数据真实可靠,分析结论具有说服力4. 实验报告格式规范,语言表达流畅六、实验报告评价标准1. 实验原理掌握程度2. 实验操作熟练程度3. 实验数据分析能力4. 实验报告撰写质量5. 实验心得体会通过本次通信原理实验,学生将能够全面了解通信系统的基本原理和关键技术,提高实际应用能力,为今后从事通信领域的工作打下坚实基础。
一、实验目的1. 理解通信系统的基本组成和工作原理。
2. 掌握信号调制与解调的基本方法。
3. 熟悉MATLAB在通信系统仿真中的应用。
4. 分析通信系统性能,评估信号传输质量。
二、实验原理通信系统通常由信源、信道、信宿和传输介质组成。
信源产生待传输的信息,信道负责传输信号,信宿接收并处理信号,传输介质是信号传输的物理通道。
本实验主要研究以下通信原理:1. 模拟调制与解调:包括调幅(AM)、调频(FM)和调相(PM)。
2. 数字调制与解调:包括幅度键控(ASK)、频率键控(FSK)和相位键控(PSK)。
3. 信号频谱分析:利用傅里叶变换分析信号频谱,了解信号带宽和能量分布。
三、实验内容1. 模拟调制与解调:(1)使用MATLAB生成模拟信号,如正弦波、方波等。
(2)进行调幅、调频和调相调制,观察调制后的信号波形。
(3)对调制信号进行解调,恢复原始信号。
(4)分析调制和解调过程中的信号质量。
2. 数字调制与解调:(1)使用MATLAB生成数字信号,如二进制序列。
(2)进行ASK、FSK和PSK调制,观察调制后的信号波形。
(3)对调制信号进行解调,恢复原始数字信号。
(4)分析调制和解调过程中的信号质量。
3. 信号频谱分析:(1)对模拟和数字信号进行傅里叶变换,观察信号频谱。
(2)分析信号带宽和能量分布,评估信号传输质量。
四、实验步骤1. 模拟调制与解调:(1)在MATLAB中生成模拟信号,如正弦波、方波等。
(2)进行调幅调制,观察调制后的信号波形。
(3)对调幅信号进行解调,恢复原始信号。
(4)重复步骤2和3,进行调频和调相调制与解调。
2. 数字调制与解调:(1)在MATLAB中生成数字信号,如二进制序列。
(2)进行ASK调制,观察调制后的信号波形。
(3)对ASK信号进行解调,恢复原始数字信号。
(4)重复步骤2和3,进行FSK和PSK调制与解调。
3. 信号频谱分析:(1)对模拟和数字信号进行傅里叶变换,观察信号频谱。
一、实习目的本次通信原理实习旨在通过实际操作和理论联系实践,使我对通信原理有一个更深入的理解,提高我的动手能力,为今后的学习和工作打下坚实的基础。
二、实习内容1. 实验室环境及设备介绍本次实习在XX大学通信实验室进行,实验室配备了丰富的通信实验设备,如信号发生器、示波器、频谱分析仪、网络分析仪等。
实验室环境整洁,设备齐全,为我们的实习提供了良好的条件。
2. 通信原理实验(1)基带信号传输实验实验目的:验证基带信号传输的原理,分析信号在传输过程中的失真和畸变。
实验内容:使用信号发生器产生基带信号,通过传输线路(如电缆、光纤等)传输,在接收端用示波器观察信号波形,分析信号失真和畸变。
(2)调制解调实验实验目的:验证调制解调原理,分析不同调制方式对信号传输的影响。
实验内容:使用调制器将基带信号调制为高频信号,通过传输线路传输,在接收端使用解调器将高频信号解调为基带信号,观察解调效果。
(3)多路复用实验实验目的:验证多路复用原理,分析不同复用方式对信号传输的影响。
实验内容:使用多路复用器将多个基带信号复用为一个高频信号,通过传输线路传输,在接收端使用多路解复用器将高频信号解调为多个基带信号,观察解调效果。
(4)差错控制实验实验目的:验证差错控制原理,分析不同差错控制方法对信号传输的影响。
实验内容:使用差错控制设备(如纠错编码器、解码器等)对信号进行编码和解码,分析差错控制对信号传输的影响。
三、实习收获1. 深入理解通信原理通过本次实习,我对通信原理有了更深入的理解,包括信号传输、调制解调、多路复用、差错控制等方面的知识。
2. 提高动手能力在实习过程中,我学会了使用通信实验设备,掌握了实验操作技能,提高了自己的动手能力。
3. 培养团队协作精神实习过程中,我与同学们相互协作,共同完成实验任务,培养了团队协作精神。
4. 拓宽知识面通过实习,我了解了通信行业的最新技术和发展趋势,拓宽了自己的知识面。
四、实习总结本次通信原理实习让我受益匪浅,不仅加深了我对通信原理的理解,还提高了我的动手能力和团队协作精神。
实验报告(一)实验日期:2020 年4 月26 日;时间:19:00实验项目:信源编码技术实验使用仪器及装置:仪器:示波器,连接线,装置:主控&信号源模块、3号、21号模块(各一块)实验内容:一、抽样定理实验1、实验目的(1)了解抽样定理在通信系统中的重要性。
(2)掌握自然抽样及平顶抽样的实现方法。
(3)理解低通采样定理的原理。
(4)理解实际的抽样系统。
(5)理解低通滤波器的幅频特性对抽样信号恢复的影响。
(6)理解低通滤波器的相频特性对抽样信号恢复的影响。
(7)理解带通采样定理的原理。
2、实验原理(1)实验原理框图抽样定理实验框图(2)实验框图说明抽样信号由抽样电路产生。
将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。
平顶抽样和自然抽样信号是通过开关S1切换输出的。
抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。
这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。
反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。
3、实验步骤实验项目一抽样信号观测及抽样定理验证概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。
1、登录e-Labsim仿真系统,创建实验文件,选择实验所需模块和示波器。
2、运行仿真,开启所有模块的电源开关。
3、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。
调节主控模块的W1使A-out输出峰峰值为3V。
4、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。
抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。
5、实验操作及波形观测。
(1)调用示波器观测自然抽样前后的信号波形:设置开关S13#为“自然抽样”档位,用示波器CH1和CH2分别接MUSIC主控&信号源和抽样输出3#。
通信原理实验报告(8份)姓名:学号:通信原理实验报告姓名:姓名:学号:实验一HDB3码型变换实验一、实验目的了解几种常用的数字基带信号的特征和作用。
掌握HDB3码的编译规则。
了解滤波法位同步在的码变换过程中的作用。
二、实验器材主控&信号源、2号、8号、13号模块双踪示波器连接线三、实验原理1、HDB3编译码实验原理框图各一块一台若干姓名:学号:HDB3编译码实验原理框图2、实验框图说明我们知道AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。
而HDB3编码由于需要插入破坏位B,因此,在编码时需要缓存3bit的数据。
当没有连续4个连0时与AMI编码规则相同。
当4个连0时最后一个0变为传号A,其极性与前一个A的极性相反。
若该传号与前一个1的极性不同,则还要将这4个连0的第一个0变为B,B的极性与A相同。
实验框图中编码过程是将信号源经程序处理后,得到HDB3-A1和HDB3-B1两路信号,再通过电平转换电路进行变换,从而得到HDB3编码波形。
同样AMI译码只需将所有的±1变为1,0变为0即可。
而HDB3译码只需找到传号A,将传号和传号前3个数都清0即可。
传号A的识别方法是:该符号的极性与前一极性相同,该符号即为传号。
实验框图中译码过程是将HDB3码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。
四、实验步骤姓名:学号:实验项目一HDB3编译码(256KHz归零码实验)概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证HDB3编译码规则。
1、关电,按表格所示进行连线。
2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【HDB3编译码】→【256K归零码实验】。
将模块13的开关S3分频设置拨为0011,即提取512K同步时钟。
姓名:学号:3、此时系统初始状态为:编码输入信号为256K的PN序列。
4、实验操作及波形观测。
中央民族大学实验报告
学生姓名:马丽娜学号:0938087 专业班级:09电子班
实验类型:□√验证□综合□设计□创新实验日期:2012年3月21日实验成绩:
指导老师:邹慧兰
一、实验项目名称
模拟锁相环模块
二、实验目的
1、熟悉模拟锁相环的基本工作原理
2、掌握模拟字锁相环的基本参数及设计
三、实验基本原理
模拟锁相环模块在通信原理综合实验系统中可作为一个独立的模块进行测试。
在系统256KHz时钟锁在发端的256KHz的时钟上,来获得系统的同步时钟,如HDB3接受的同步时钟以及后续电路同步时钟。
该模块主要由模拟锁相环UP01(MC4066)、数字分频器UP02(74LS161)、D触发器UP04(74LS74)、环路滤波器和运放UP03(TEL2702)及阻容器件构成的输入带通滤波器(中心频率:256KHz)组成。
在UP01内部有一个振荡器与一个高速鉴相器组成。
该模拟锁相环的框图见图2.1.1。
因来自发端信道的HDB3码为归零码,归零码中含有256KHz时钟分量,经UP03B构成中心频率为256KHz有源由带通滤波器后,滤出256KHz时钟信号,该信号再通过UP03A放大,然后经UP04A和UP04B两个除二分频器(共四分频)变为64KHz信号,进入UP01鉴相器输入A脚;VCO输出的512KHz 输出信号经UP02进行八分频变为64KHz信号,送入UP01的鉴相输入B脚;经UP01内部鉴相器鉴相之后的误差控制信号经环路滤波器送入UP01的压控振荡器输入端;WP01可以改变模拟锁相环的环路参数。
正常时,VCO锁定在外来的256KHz频率上。
模拟锁相环模块各跳线开关功能如下:
1、跳线开关KP01用于选择UP01的鉴相输出。
当KP01设置于1_2时(左端),选择异或门鉴相输出,环路锁定时TPP03、TPP05输出信号将存在一定相差;当KP01设置于2_3时(右端),选择三态门鉴相输出,环路锁定时TPP03、TPP05将不存在相差,调整电位器WP01可以改变模拟锁相环的环路参数。
2、跳线开关KP021是用于选择输入锁相信号,当KP021设置于1_2时(HDB3:左端),输入信号来自HDB3编码模块的HDB3码信号;当KP021设置于2_3时(TEST:右端)选择外部的测试信号(J007输入),此信号用于测量该模拟锁相环模块的性能。
在该模块中,各测试点的定义如下:
1、TPP01:256KHz带通滤波器输出
2、TPP02:隔离放大器输出
3、TPP03:鉴相器A输入信号(64KHz)
4、TPP04:VCO输出信号(512KHz)
5、TPP05:鉴相器B输入信号(64KHz)
6、TPP06:环路滤波器输出
7、TPP07:锁定指示检测(锁定时为高电平)
以上测试点通过JP01测试头引出,JPO1的排列如下图所示
四、主要仪器设备及耗材
1、JH5001 通信原理综合实验系统一台
2、20MHz 双踪示波器一台
3、函数信号发生器一台
五、实验步骤
2. 锁定状态观测
(1)用函数信号发生器从测试信号输入端口J007 送入一个256 KHz 的TTL 方波信号。
用示波器同时测量鉴相器输入A、B 脚的波形TPP03、TPP05 的相位关系环路锁定该两信号将不存在相差。
(2)将鉴相输出开关KP01 设置在1_2 位置(左端),重复上述测量步骤。
环路锁定该两信号将存在相差。
4. 环路锁定过程观测
用函数信号发生器从测试信号输入端口J007 送入一个256KHz 的TTL 方波信号。
用示波器同时观测TPP03、TPP05 的相位关系,测量时用TPP03 同步;反复断开和接入测试信号,让锁相环进行重新锁定状态。
此时,观察它们的变化过程(锁相过程)。
5. 锁定检测信号观测
将跳线器KP01 设置在2_3 位置(由端),用函数信号发生器产生一个256KHz 的TTL 信号送入数字数字信号测试端口J007,用示波器观测锁定检测点TPP07 点的波形。
调整函数信号发生器输出频率使环路失锁和锁定,记录TPP07 点的波形变化。
6. 同步带测量
(1)用函数信号发生器产生一个256KHz 的TTL 信号送入数字信号测试端口J007。
用示波器同时测量J007、TPP04 的相位关系,测量时用J007 同步;正常时环路锁定,该两信号应为同步。
(2)缓慢增加函数信号发生器输出频率,直至J007、TPP04 两点波形失步,记录下失步前的频率。
(3)调整函数信号发生器频率为256KHz,使环路锁定。
缓慢降低函数信号发生器输出频率,直至J007、TPP04 两点波形失步,记录下失步前的频率。
(4)计算同步带。
7. 捕捉带测量
(1)用函数信号发生器产生一个256KHz 的TTL 信号送入数字信号测试端口J007。
用示波器同时测量J007、TPP04 的相位关系,测量时用J007 同步;正常时环路锁定,该两信号应为同步。
(2)增加函数信号发生器输出频率,使J007、TPP04 两点波形失步;然后缓慢降低函数信号发生器输出频率,直至J007、TPP04 两点波形同步。
记录下同步一刻的频率。
(3)降低函数信号发生器输出频率,使J007、TPP04 两点波形失步;然后缓慢增加函数信号发生器输出频率,直至J007、TPP04 两点波形同步。
记录下同步一刻的频率。
(4)计算捕捉带。
六、实验数据及处理结果
2.(1)、开关KP01设置在右端(2_3端)
(2)、开关KP01设置在左端(1_2端)
4、锁相过程观察:
锁相前
锁相后
5、失锁与锁定时TPP07点的波形变化:
图表1 有错
失锁时的波形(频率大约在340KHz)
锁定时的波形(频率大约在345.5KHz)
6、同步带测量结果
增加函数信号发生器频率时,信号波形同步频率:342.3KHz 减小函数信号发生器频率时,信号波形同步频率:156.9KHz 同步带:342.3KHz-156.9KHz=185.4KHz
7、捕捉带测量结果
增加函数信号发生器频率时,信号波形同步频率:343.1KHz 减小函数信号发生器频率时,信号波形同步频率:157.0KHz 捕捉带:343.1KHz-157.0KHz=186.1KHz
七、思考讨论题或体会或对改进实验的建议
1、根据环路参数,解释为什么TPP04 的波形存在抖动?
VCO是本控制系统的控制对象,被控参数通常是其振荡频率,控制信号为加在VCO 上的电压,故称为压控振荡器,也就是一个电压——频率变换器,实际上还有一种电流——频率变换器,但习惯上仍称为压控振荡器。
TPP04的波形就是压控振荡器VCO的波形,根据实验书所给的环路参数,从4分频器中输出的64KHz信号直接进入模拟锁相环模块,在环路锁定之后,若输入信号频率发生变化,产生了瞬时频差,从而使瞬时相位差发生变化,则环路将及时调节误差电压去控制VCO,使VCO输出信号频率随之变化,即产生新的控制频差,VCO输出频率及时跟踪输入信号频率,当控制频差等于固有频差时,瞬时频差再次为零,继续维持锁定,这就是跟踪过程,在锁定后能够继续维持锁定所允许的最大固有角频差的两倍称为跟踪带或同步带。
由于存在跟踪带或同步带,故最后在TPP04上的波形存在抖动。
2、分析总结各项测量结果
此次实验为验证性实验,在进行实验之前已经得知最终的实验结果。
通过实际测量模拟锁相环各个输出端口的波形以及频率,对锁相环的锁相过程有清晰的见解;实际测量的结果与预期结果相符合,实验较为成功。
开关KP01在右端,TPP03与TPP05保持同步;开关KP01在左端,TPP03与TPP05存在一定的相位差,上述功能在实验测量中进行了较为准确的验证。
在锁相过程的观测过程中,发现在失锁状态下TPP03已经呈现无输入状态,TPP05呈现不稳定的近似方波状态;在失锁状态下,VCO的振荡频率与输入频率差别很大。
在TPP07(锁定指示检测信号)的观测中,可以看出在失锁状态时该信号处于低电平;在锁定状态时该信号处于高电平。
最后通过对同步带以及捕捉带的测量,发现测试结果不是同步带包含捕捉带,这说明在整个实验过程中存在一定的误
差干扰;其次,根据定义捕捉带,同步带,对于一阶锁相环(没有环路滤波器),捕捉带等于同步带;对于二阶锁相环,捕捉带小于同步带;环路滤波器的RC时间积分常数越大,或者说低通截止频率越低,捕捉带越窄。
捕捉带与同步带是锁相环的重要参数,前者影响入锁的可靠性,后者决定入锁后相位误差的大小,因而实用的锁相环应具有足够大的捕捉带与同步带。
八、参考资料
《通信原理实验指导书》。