电磁学论文.
- 格式:doc
- 大小:676.00 KB
- 文档页数:30
电磁学原理的应用论文1. 引言电磁学是物理学的一个重要分支,研究电场和磁场以及它们之间的相互作用。
电磁学原理在各个领域得到广泛应用,包括通信、能源、医学等。
本论文将探讨电磁学原理在不同领域的应用案例,并分析其原理和效果。
2. 通信领域应用2.1 电磁波传输•无线通信中常用的调制技术有频率调制、相位调制和幅度调制。
•调制技术基于电磁波的传播原理,通过改变电磁波的频率、相位或幅度来传输信息。
2.2 电磁波天线•通信系统中常用的天线类型有单极天线、双极天线、饼形天线等。
•这些天线通过辐射电磁波来实现无线通信,天线的设计和调整基于电磁学原理。
2.3 频率选择性表面•频率选择性表面(FSS)通过设计和布局特定形状和尺寸的导电元件,选择特定的频率波段进行传输。
•FSS在通信领域中被广泛应用于天线设计、电磁波隔离等。
3. 能源领域应用3.1 电磁感应发电•电磁感应发电是将磁场相对于导线产生感应电动势,并通过导线形成电流,实现能量转换的原理。
•应用电磁学原理设计的电磁感应发电装置广泛应用于各种发电系统,例如风力发电、水力发电等。
3.2 电磁辐射加热•电磁辐射加热利用电磁场对材料的吸收和转化,实现物体加热的原理。
•该原理应用于工业加热、医疗设备等领域,具有高效、环保等优势。
4. 医学领域应用4.1 磁共振成像(MRI)•磁共振成像利用人体组织对强磁场和射频信号的响应来获得影像。
•MRI是一种无创性的检查方法,应用于医学诊断、病理学研究等领域。
4.2 细胞电生理实验•细胞电生理实验通过记录和分析细胞膜上的电流、电势变化,研究细胞的电生理特性。
•应用电磁学原理的电生理研究在解析生物系统的工作原理、疾病治疗等方面具有重要意义。
5. 结论电磁学原理是现代科学和技术的核心基础,其应用涉及到多个领域。
本论文简要介绍了电磁学原理在通信、能源和医学领域的应用案例。
通过对这些案例的分析,可以看出电磁学原理在实际应用中的重要性和价值。
高中物理电磁学教学方法研究论文五篇第一篇:高中物理电磁学教学方法研究论文高中物理电磁学是将磁场与电场结合在一起,整体突出场与路的关系。
物理教师在教学过程中需要帮助学生深入了解电磁学的特点,运用针对性的教学方法,理论结合实践对学生进行教学,帮助学生掌握电磁学知识。
1、了解高中物理电磁学的特点与注意事项高中物理主要思路就是力与运动、功与能的转换,所以对于高中物理的电磁学教学也需要充分把准这一命脉,将其作为教学的基本思路。
电磁学在高中物理课程的设置中由场和路两方面构成,所以在电磁学教学过程中也应该从这2方面进行教学,帮助学生理解和掌握其基本概念,找出电磁学的基本规律,最终更好地解决电磁场综合问题,完成对电磁学的学习。
例如,在电磁学问题的解答过程中,首先根据粒子在不同的运动情况或者物理现象下都是以力与运动的联系进行组合,将电磁学的问题转换为力与运动或者是功与能的问题。
这样,解题思路得以显现,再对电磁学问题进行力学分析,将粒子运动状态所体现的受力情况完全显露出来,再应用牛顿定律,最终完成电磁学中力学的讨论部分。
同时,对于电磁学中功与能的问题就需要应用能量守恒与转化的观点,列出能量方程式,让电磁学问题迎刃而解。
对于电磁学的教学就是抓住电磁学特点,将抽象的电磁运动转化为宏观的力学与能量问题,利于学生运用已知的知识解决未知的问题。
在电磁学教学过程中,还需要注意尽量帮助学生理解抽象的物理现象,帮助学生运用丰富的想象掌握电磁学运动问题,总结解题的一般思路。
2、高中物理电磁学教学方法分类既然电磁学主要包括了场与路,那么在教学方法的选择上就可采用将这二者分开研究的方式进行。
物质与物质相互作用形成电磁学的场,例如匀强电场、匀强磁场等可以从场入手,对学生进行电磁学的讨论与研究。
而对于电磁学中的路,包括磁感线、电路等,例如匀强磁场与电路的关系就可以反映出它们存在某种特殊的联系。
在电磁学教学过程中可以以场为研究对象,以路为研究方法:1)对于“电生磁”与“磁生电”的讨论中,会运用逆向教学的方法,让学生去思考和探索未知的问题。
电磁改变生活一LC振荡电路应用----校园一卡通:我们生活离不开货币,但是在校园内随时拿着一把现金很不方便,尤其还要找零,就更繁琐了。
但现在我们有了校园一卡通,无论是吃饭打水,还是坐车买东西,只要在校园内有卡就能行!那么,一卡通的原理是什么呢?其实校园一卡通的结构并不是十分复杂,运用的都是电磁学知识,其实质是以射频识别技术为核心的非接触式IC卡。
卡内主体就是一个集成电路芯片(IC)和一个感应线圈(LC振荡器)。
但是与其配套的读卡器,也就是我们平时刷卡的机器结构就复杂得多了。
内部结构分为射频区和接口区:射频区内含调制解凋器和电源供电电路,直接与天线连接;接口区有与单片机相连的端口,还具有与射频区相连的收/发器、16字节的数据缓冲器、存放64对传输密钥的ROM、存放3套密钥的只写存储器,以及进行3次证实和数据加密的密码机、防碰撞处理的防碰撞模块和控制单元。
读卡器随时都在发着频率和LC振荡器固有频率相同的脉冲,当卡靠近时,产生电磁激励,LC振荡器产生共振,导通芯片工作,读写数据。
一、涡流的应用----电磁炉科大食堂在冬天就会卖一些煮菜,当你买的时候菜还在电磁炉上煮着,这样在寒冷的冬天,我们就可以一直有热乎乎的菜吃,这是多么幸福的事!时至今日,电磁炉在我们的生活中已经必不可少,它无需明火或传导式加热而让热直接在锅底产生,因此热效率得到了极大的提高。
它是一种高效节能橱具,完全区别于传统所有的有火或无火传导加热厨具。
电磁炉是利用电磁感应加热原理制成的电气烹饪器具。
使用时,加热线圈中通入交变电流,线圈周围便产生一交变磁场,交变磁场的磁力线大部分通过金属锅体,在锅底中产生大量涡流,从而产生烹饪所需的热。
在加热过程中没有明火,因此安全、卫生。
电磁炉的功率一般在700~1800W之间,它的结构主要由外壳、高级耐热晶化陶瓷板、PAN 电磁线盘、加热电路板、控制电路板、显示电路板、风扇组件及电源等组成。
电磁炉使我们的生活更加美好舒适!二、电磁波应用----微波炉现在人们生活很忙碌,饭不一定能准时吃,经常到工作完成了饭也已经凉了,这时候微波炉就是我们的最好选择,因为只需食物放进去一会就热了,简单方便!在我们学校每个食堂和宿舍门口都有一个微波炉供我们使用!微波炉里没有火,是靠微波,即高频电磁波,作为微波炉的热源。
电磁学论文生活中的电磁学地球上的第一个生命在大约在46亿年前诞生,就在这时,电磁就与生命结下了不解之缘,伴随生命形式从低等走向高等,也见证着整个生物界的一次次变革。
而在科技快速发展的今天,电磁更是与生命紧密的联系着,小到移动电话,大到卫星通信,无一不是与电磁紧密相连的。
可以说,没有电磁,就没有信息时代,恐怕连人类的整个文明都要倒退几个世纪了。
近些年中,人们对电磁的研究在不断地深入,对磁场、电磁场能、太阳磁场能等与生命之间的能量转化和转移的研究正逐步成为二十一世纪的热门研究方向。
电磁学在生活中的应用有许多,与人们生活息息相关的比如电磁炉、微波炉等给人们生活带来了极大地方便,而最近十分流行的蓝牙耳机,也是电磁学发展的结果。
下面就具体介绍几个电磁学在人们生活中的应用实例。
1.电磁炉(微波炉电路图)(1)电磁炉主要结构有两大部分构成:电子线路部分及结构性包装部分。
①电子线路部分包括:功率板、主机板、灯板、线圈盘及热敏支架、风扇马达等。
②结构性包装部分包括:瓷板、塑胶上下盖、风扇叶、风扇支架、电源线、说明书、功率贴纸、操作胶片、合格证、塑胶袋、防震泡沫、彩盒、条码、卡通箱。
(2)电磁炉工作原理:采用磁场感应电流(又称为涡流)的加热原理,电磁炉是通过电子线路板组成部分产生交变磁场、当用含铁质锅具底部放置炉面时,锅具即切割交变磁力线而在锅具底部金属部分产生交变的电流(即涡流),涡流使锅具铁分子高速无规则运动,分子互相碰撞、摩擦而产生热能(故:电磁炉煮食的热源来自于锅具底部而不是电磁炉本身发热传导给锅具,所以热效率要比所有炊具的效率均高出近1倍)使器具本身自行高速发热,用来加热和烹饪食物,从而达到煮食的目的。
(3)电磁炉的优点:热效率高;更安全(无明火烹调好处多);更环保(卫生、清洁);更精确(温度控制准确);更多能(煎、炒、炸、煮、炖全能);更方便(操作简单外形秀丽)。
2.蓝牙(蓝牙电路示意图)(1)蓝牙是一种支持设备短距离通信(一般是10m之内)的无线电技术。
高斯定理的简单应用陈龙(内江师院工程技术学院 2012级1班 邮编641100)指导教师:黎昌金摘要:高斯定理是电磁学的一条重要定理,它不仅在静电场中有重要的应用,而且也是麦克斯韦电磁场理论中的一个重要方程高斯定理是物理学中电学部分的重要定理之一,在简化计算具有对称性的电场中有着重要应用,例如均匀带电的平面、直线、圆柱体、球面、球体等的电场的计算. 如果不理解高斯定理,不熟练掌握高斯定理的应用技巧。
关键词:高斯定理;应用;重要定理引言高斯定理又叫散度定理,高斯定理在物理学研究方面,应用非常广泛,应用高斯定理求曲面积分、静电场、非静电场或磁场非常方便,特别是求电场强度或者磁感应强度。
虽然有时候应用高斯定理求解电磁学问题很方便,但是它也存在一些局限性,所以要更好的运用高斯定理解决电磁学问题,我们首先应对高斯定理有一定的了解。
1高斯定理的表述1.1数学上的高斯公式设空间区域V 由分片光滑的双侧封闭曲面S 所围成,若函数,,P Q R 在V 上连续,且有一阶连续函数偏导数,则SV P Q R dxdydz Pdydz Qdzdx Rdxdyx y z ⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 1-1其中S 的方向为外发向。
1-1式称为高斯公式[1]。
1.2静电场的高斯定理一半径为r 的球面S 包围一位于球心的点电荷q ,在这个球面上,场强→E 的方向处处垂直于球面,且→E 的大小相等,都是204q E r πε=。
通过这个球面S 的电通量为oo o o εππεπεπεφqr rq dS r q dS rq S d E ssse=⋅==⋅=⋅=⎰⎰⎰⎰⎰⎰→→22224444其中SdS ⎰⎰是球面积分,等于24r π。
从此例中可以看出,通过球面S 的电通量只与其中的电量q 有关,与高斯面的半径r 无关。
若将球面S 变为任意闭合曲面,由电场线的连续性可知,通过该闭合曲面的电通量认为0q ε。
若闭合曲面S 内是负电荷q -,则→E 的方向处处与面元→S d 取相反,可计算穿过S 面的电通量为0/q ε-。
电磁学的原理及其应用论文电磁学是自然界一项重要的物理学分支,研究电荷之间的相互作用及其与磁场之间的关系。
其原理是基于麦克斯韦方程组,描述了电磁场的行为与相互作用,其中包括库仑定律、安培定律、法拉第电磁感应定律和麦克斯韦-安培定律等。
电磁学的原理在实际应用中有着广泛的应用,可以用于电路分析、电磁波传播、电磁传感器等方面。
首先,电磁学原理可以用于电路分析。
在电路中,通过应用欧姆定律和基尔霍夫定律等电磁学原理,我们可以分析电路中各个元件之间的电流和电压关系,帮助我们理解电路的工作原理,研究电路中的功率、电阻、电容和电感等参数。
例如,在设计电子设备时,我们需要通过电磁学原理计算电路中的电流和电压分布,确保电路的正常工作。
其次,电磁学原理在电磁波传播中有着重要的应用。
根据麦克斯韦方程组,我们可以推导出电磁波的传播方程,进一步研究电磁波的传播特性。
在通信系统中,例如无线电与光纤通信中,我们可以利用电磁学原理,研究电磁波在不同介质中的传播速度、传播损耗和反射折射等现象,从而优化通信系统的设计和性能。
此外,电磁学原理也有着广泛的应用于电磁传感器中。
根据法拉第电磁感应定律,当一个导体相对于磁场发生运动时会产生感应电动势。
这一原理被广泛应用于感应电机、发电机和变压器等电磁传感器中,将机械能转化为电能或者电能转化为机械能。
例如,在电能供应方面,我们利用电磁感应原理,通过转动磁铁和线圈的相对运动,产生变化的磁场,从而产生交流电,实现电能的传输和分配。
综上所述,电磁学的原理可以广泛应用于电路分析、电磁波传播和电磁传感器等方面。
通过运用电磁学原理,我们能够深入研究电磁场的特性,提高电路和通信系统的设计与性能。
在实际应用中,电磁学原理为我们解决电磁场及其相互作用的问题提供了重要的理论基础,推动了电子技术的发展和应用。
电磁学论文写作范例(导师推荐6篇)电磁学是物理学的一个分支。
电学与磁学领域有着紧密关系,广义的电磁学可以说是包含电学和磁学;但狭义来说是一门探讨电性与磁性交互关系的学科。
主要研究电磁波,电磁场以及有关电荷,带电物体的动力学等。
我们在这里整理了六篇电磁学论文,希望给你带来灵感和启发。
电磁学论文写作范例一:题目:超材料在可重构电磁学中的应用与发展摘要:介绍了超材料在微波(0.3~300GHz)、太赫兹(0.3~100THz)和近红外频段(100~790THz)中的可重构电磁学的调控方法和研究现状,并依照功能分类,对在可重构电磁学方面的应用分别做了综合性归纳描述,最后对其在可重构电磁学方向的未来可能的发展趋势做了进一步的展望。
关键词:超材料,可重构,发展趋势超材料(Metamaterial)是可用于工程的但自然界不存在的一种材料,又叫"异向介质";"超电磁介质";或"特异电磁介质";,主要由复合材料以一定的方式重复排列形成,尺度上比涉及的波长更小。
超材料的特性不是来自基本材料的特性,而是他们新设计的结构。
通过外形、尺寸和排列方式等的精确设计能给超材料操纵电磁波的超级特性,通过吸收、增强、或波形弯曲,可以获得传统材料所不具备的益处。
恰当设计的超材料可以以一定的方式影响电磁辐射波或声波,这在一般材料中是做不到的。
超材料的出现迄今为止已有几十年,尤其是对于特定的波长有负折射率,这一现象引起工业界和学术界的广泛兴趣,超材料相关科学研究成果已有3次被《科学》杂志评选为年度十大科技突破。
超材料介质具有从负到正的折射率,其中包括零折射率。
并以其低成本、可满足多种的成本、尺寸和性能的需要,目前已使用在透镜、天线、天线罩和频率选择性表面等设计中。
特别是在引入自然界不存在的场操控特性的工程材料之后,应用更趋广泛。
最初,具有奇异电磁特性的超材料主要通过有序的亚波长谐振器实现,这使新型电磁器件的制造成为可能,包括高增益小天线、完美透镜、小型滤波器以及功率分配器、隐身斗篷、吸收器、波操纵表面和小型极化器。
关于磁场的论文.doc一、电磁学教材的整体结构电磁运动是物质的一种基本运动形式.电磁学的研究范围是电磁现象的规律及其应用.其具体内容包括静电现象、电流现象、磁现象,电磁辐射和电磁场等.为了便于研究,把电现象和磁现象分开处理,实际上,这两种现象总是紧密联系而不可分割的.透彻分析电磁学的基本概念、原理和规律以及它们的相互联系,才能使孤立的、分散的教学变成系统化、结构化的教学.对此,应从以下三个方面来认真分析教材.1.电磁学的两种研究方式整个电磁学的研究可分为以“场”和“路”两个途径进行,这两种方式均在高中教材里体现出来.只有明确它们各自的特征及相互联系,才能有计划、有目的地提高学生的思维品质,培养学生的思维能力.场的方法是研究电磁学的一般方法.场是物质,是物质的相互作用的特殊方式.中学物理的电磁学部分完全可用场的概念统帅起来,静电尝恒定电尝恒定磁尝静磁尝似稳电磁尝迅变电磁场等,组成一个关于场的系统,该系统包括中学物理电学部分的各章内容.“路”是“场”的一种特殊情况.中学教材以“路”为线的大骨架可理顺为:静电路、直流电路、磁路、交流电路、振荡电路等.“场”和“路”之间存在着内在的联系.麦克斯韦方程是电磁场的普遍规律,是以“场”为基础的.“场”是电磁运动的实质,因此可以说“场”是实质,“路”是方法.2.物理知识规律物理知识的规律体现为一系列物理基本概念、定律和原理的规律,以及它们的相互联系.物理定律是在对物理现象做了反复观察和多次实验,掌握了充分可靠的事实之后,进行分析和比较找出它们相互之间存在着的关系,并把这些关系用定律的形式表达出来.物理定律的形成,也是在物理概念的基础上进行的.但是,物理定律并不是绝对准确的,在实验基础上建立起来的物理定律总是具有近似性和局限性,因此其适用范围有一定的局限性.第二册第一章“电潮重要的物理规律是库仑定律.库仑定律的实验是在空气中做的,其结果跟在真空中相差很小.其适用范围只适用于点电荷,即带电体的几何线度比它们之间的距离小到可以忽略不计的情况.“恒定电流”一章中重要的物理规律有欧姆定律、电阻定律和焦耳定律.欧姆定律是在金属导电的基础上总结出来的,对金属导电、电解液导电适用,但对气体导电是不适用的.欧姆定律的运用有对应关系.电阻是电路的物理性质,适用于温度不变时的金属导体.“磁场”这一章阐明了磁与电现象的统一性,用研究电场的方法进行类比,可以较好地解决磁场和磁感应强度的概念.“电磁感应”这一章,重要的物理规律是法拉第电磁感应定律和楞次定律.在这部分知识中,能的转化和守恒定律是将各知识点串起来的主线.本章以电流、磁场为基础,它揭示了电与磁相互联系和转化的重要方面,是进一步研究交流电、电磁振荡和电磁波的基础.电磁感应的重点和核心是感应电动势.运用楞次定律不仅可判断感应电流的方向,更重要的是它揭示了能量是守恒的.“电磁振荡和电磁波”一章是在电场和磁场的基础上结合电磁感应的理论和实践,进一步提出电磁振荡形成统一的电磁场,对场的认识又上升了一步.麦克斯韦的电磁场理论总结了电磁场的规律,同时也把波动理论从机械波推进到电磁波而对物质的波动性的认识提高了一步.3.通过电磁场在各方面表现的物质属性,使学生建立“世界是物质的”的观点电现象和磁现象总是紧密联系而不可分割的.大量实验证明在电荷的周围存在电场,每个带电粒子都被电场包围着.电场的基本特性就是对位于场中的其它电荷有力的作用.运动电荷的周围除了电场外还存在着另一种唱—磁场.磁体的周围也存在着磁场.磁场也是一种客观存在的物质.磁场的基本特性就是对处于其中的电流有磁场力的作用.现在,科学实验和广泛的生产实践完全肯定了场的观点,并证明电磁场可以脱离电荷和电流而独立存在,电磁场是物质的一种形态.运动的电荷(电流)产生磁场,磁场对其它运动的电荷(电流)有磁场力的作用.所有磁现象都可以归结为运动电荷(电流)之间是通过磁场而发生作用的.麦克斯韦用场的观点分析了电磁现象,得出结论:任何变化的磁场能够在周围空间产生电场,任何变化的电场能够在周围空间产生磁场.按照这个理论,变化的电场和变化的磁场总是相互联系的,形成一个不可分割的统一场,这就是电磁场.电磁场由近及远的传播就形成电磁波.从场的观点来阐述路.电荷的定向运动形成电流.产生电流的条件有两个:一是存在可自由移动的电荷;二是存在电场.导体中电流的方向总是沿着电场的方向,从高电势处指向低电势处.导体中的电流是带电粒子在电场中运动的特例,即导体中形成电流时,它的本身要形成电场又要提供自由电荷.当导体中电势差不存在时,电流也随之而终止.二、以“学科体系的系统性”贯穿始终,使知识学习与智能训练融合于一体1.场的客观存在及其物质性是电学教学中一个极为重要的问题.第一章“电潮是学好电磁学的基础和关键.电场强度、电势、磁尝磁感应强度是反映电、磁场是物质的实质性概念.电场线,磁感线是形象地描述场分布的一种手段.要进行比较,找出两种力线的共性和区别以加强对场的理解.2.电磁场的重要特性是对在其中的电荷、运动的电荷、电流有力的作用.在教学中要使学生认识场和受场作用这两类问题的联系与区别,比如,场不是力,电势不是能等.场中不同位置场的强弱不同,可用受场力者受场力的大小(方向)跟其特征物理量的比值来描述场的强弱程度.在电场中用电场力做功,说明场具有能量.通常说“电荷的电势能”是指电荷与电场共同具有的电势能,离开了电场就谈不上电荷的电势能了.3.认真做好演示实验和学生实验,使“潮抽象的概念形象化,通过演示实验是非常重要的措施.把各种实验做好,不仅使学生易于接受知识和掌握知识,也是基本技能的培养和训练.安排学生自己动手做实验,加强对实验现象的分析,引导学生从实验观察和现象分析中来发展思维能力.从物理学的特点与对中学物理教学提出的要求来看,应着力培养学生的独立实验能力和自学能力,使知识的传授和能力的培养统一在使学生真正掌握科学知识体系上.。
闽江学院本科毕业论文(设计)题目电磁学现象及规律探究的概述学生姓名江贤晶学号 ************系别物理学与电子信息工程系年级 2007级专业物理学指导教师李雪梅职称讲师完成日期 2010.11.01-2011.5.20闽江学院本科毕业论文(设计)诚信声明书本人郑重声明:兹提交的毕业论文(设计)《电磁学现象及物理规律探究的概述》,是本人在指导老师苏启录的指导下独立研究、撰写的成果;论文(设计)未剽窃、抄袭他人学术观点、思想和成果,未篡改研究数据,论文(设计)中所引用的文字、研究成果均已在论文(设计)中以明确的方式标明;在毕业论文(设计)工作过程中,本人恪守学术规范,遵守学校的有关规定,依法享有和承担由此论文(设计)产生的权利和责任。
声明人(签名):江贤晶2011年5月7日摘要随着科技日新月异的发展,电磁学走上历史舞台扮演着不可或缺的角色,它的应用已如旧时王谢堂前燕,飞入寻常百姓家。
本文基于向读者描述传统电磁学的基本内容,致力于对基本概念和基本规律的阐述。
本文顺着从电现象引出电磁学规律的主线,从库伦定律发现后为研究方便引入电场和磁场概念讲到电磁波,着重概述电磁学的基础现象和规律,并根据本人的理解向读者讲述电磁学的应用。
关键词:电磁学电场磁场电磁波Abstract Keywords:目录引言 (6)一、静电场1.库伦定律 (7)2.电场 (7)二、磁场1.奥斯特实验 (9)2.安培环路定理 (10)3.通电螺线管上的磁场 (11)4.载流线圈的磁场 (12)5.电磁感应现象 (12)6.楞次定律 (14)三、塞曼效应1.正常塞曼效应 (15)2.反常塞曼效应 (16)四、电磁波1.麦克斯韦方程组 (17)2.平面电磁波 (19)3.可见光(光波) (19)电磁学的应用总结注释 (22)参考文献 (23)致谢 (24)引言研究物质规律的物理在生活中扮演着一个及其重要的角色,清晨当迈出你的第一步时你是否考虑到物理已经和你接触了呢?物理伴随着生活的每一步,深入生活的每一个角落。
物理中每一个规律的发现都是历史·辉煌的见证,它们指引着人类认识自然认识世界的步伐,将我们引向那充满幻想的世界。
而众多物理规律中有一类规律把我们的距离拉近了,曾今的一封信让我心急如焚,可如今即使天涯海角,思时也无非咫尺,这就是电磁学规律的一个重要应用,应用于广泛的通信!电磁学规律的应用还不仅限于通信,它有这更广阔的应用范围,它给生活带来了福音,给世界带来了交响曲,然而在寻找这些电磁学规律中物理学家们却是历尽千辛万苦。
今天让我们畅游在漫漫的反思中。
电磁学是研究电、磁和电磁的相互左右的现象,及其规律和应用的物理学分支的学科。
它是物理学的一个分支。
广义的电磁学可以说是包含电学和磁学,但狭义来说是一门研究电性和磁性交互关系的学科,本文也将重点从电与磁之间的关系找出电磁学规律。
从狭义的观点上看,电、磁两种现象本是认为是独立无关的两门学科,当然很多因素也关于磁学本身的发展和应用,正如近代磁性材料和磁学技术的发展,各种此现象和磁效应的发现和应用等等,使得磁学的范围不段的扩张,这样到目前磁学的范围就已经足够另立门户,成为一门独立的学科也是理所当然,所以实际中已经将电磁学作为一门与电学平起平坐的学科来研究了。
从广义上认识,根据近代物理学的观点,磁的现象是由运动电荷(电流)所产生的,因而在电学的范围内必然不同程度地包含磁学的内容,所以电磁学和电学的内容很难截然区分开来,二者并没有太明显的界限,甚至有时也将电磁学简称为电学。
磁学主要研究电磁波、电磁场以及有关电荷、带电物体的电力学等等。
这样电磁学的规律的电学的发展,同时我认为又电学引出电磁学的分水岭在于法拉第的电磁感应现象的发现,让我们来了解一下如何从简单的电现象引出电磁学的规律。
一、静电场(一)库伦定律欲从电学中找到电磁学规律的发现,首先我们得先从电现象入手,找到电学中动力学关系和磁动力关系就不难知道电与磁之间存在着怎么的关系。
让我们认识一下库伦定律,了解两点电荷之间的关系,库仑定律:(图1-1)是电磁场理论的基本定律之一。
真空中两个静止的点电荷之间的作用力与这两个电荷所带电量的乘积成正比,和它们距离的平方成反比,作用力的方向沿着这两个点电荷的连线,同名电荷相斥,异名电荷相吸。
公式:F=k*(q1*q2)/r^2 (式1-1)其中F是两点电荷之间所受的库伦力,k是比例常数,q1、q2分别代表两点电荷所带的电荷量,r是两点电荷的距离。
[4][8](二)电场在很多没有直接接触的力现象中力的相互作用需要有介质的存在,例如马拉车,马能拉动车肯定少不了绳子的存在,只有将马和马车栓在一起才能使马在奔跑中带动马车。
再如声音的传播,我们聊天时虽然对方并没有将声带直接贴在我们的耳朵上,但我们能听到对方的声音,这是因为有空气介质的存在。
加入我们生活的空间没有空气的存在,那么所谓的聊天只能看到对方嘴唇的动作,并不能听到声音……但刚才说过的例子中q1、q2明显没有直接接触,又似乎没有介质的存在,那么q1、q2之间存在的库伦力又是怎样传递的呢?历史上对这个问题有很多争论,一类人认为这种力并不需要介质的存在就可以之间传递,甚至更不需要时间,不受时间的限制,力的作用就能从一个物体直接传递到另一个物体上。
另一种观点认为空间中存在着科学家还未发现的弹性物质——“以太”,电场力就是通过“以太”来传递的。
这些观点都被近代物理学家所否认并引入电场。
而且还将点电荷在电场中受到的力F与电荷量q0的比值称为电场强度,用字母E 来表示:E=F/q以下是几种电荷模型的电场分布:正点电荷负点电荷等量异种电荷(图1-2)更多的电磁分布这里就不再多举。
[4]二、磁场我们现在先来看看以下实验现象:(图2-1)本实验的原理图如上图所示,其中深黑色的直导线是原来的导线,就是还没通电时的导线,灰色的导线是通有电流后导线原导线移动的位置。
如上图,在导线中通有电流大小为I的电流,这样导线的位置就会发生改变,当电流的方向时导线互相吸引,电流方向相反时导线互相排斥,牛顿第二定律告诉我们,当物体状态发生改变时肯定要受到外力的作用,导线从原来的静止状态开始运动,使得导线的形状发生改变,这说明导线受到力的作用,问题就产生了,导线明显受到了力的作用,那通电导线中相互间的作用力从何而来?以下将对这个问题进行简易的解释。
(一)奥斯特实验库伦定律说明了两点电荷之间存在着相互作用,在这基础上物理学家们发现带电物体接触磁场时也能产生力的作用,说到这就少不了说奥斯特实验了,奥斯特实验说明了通电导线与磁性物质之间存在着力的作用,奥斯特是丹麦的科学家,他在1820年4月的一节课中,他讲授了电与磁的课程,他做了一个实验中无意发现了这个现象:通电铂丝扰动玻璃罩内的指南针,虽然效应很弱,看上去也很不规则,但奥斯特却对这种无意间发现的现象产生浓厚的兴趣,在课后他进行了大量的电池反复做了同样的实验对自己的假设进行验证。
奥斯特在做实验时还在磁针与导线间放入玻璃、金属、木头等物质,然而磁针的偏转并不因此减弱或者消失[8],他的实验可以如下概述:(图2-2)上图是奥斯特实验的简易实验图,导线中通有大小为I的电流,在导线旁放一个小磁针,众所周知磁针在地磁场的作用下沿南北取向,但磁针在电流的作用下会产生偏转,说明磁针与导线间存在着力的作用。
当断开电源时磁针重新南北指向,这个实验中的单一变量是导体是否通电,这样我们就能很明确的得到一个结论:通电导体对磁性物质有力的作用。
这样就能说明通电导体不仅能产生电场,它也能产磁性质,并又此产生的磁场使奥斯特实验中的磁针发生偏转。
[5]也像电荷一样奥斯特实验中通电导线和磁针之间并没有直接的接触,他们之间又是以什么形式传递力的作用呢?与电荷之间的作用力一样,磁性物质周围也存在场的性质,所以物理学家引入的磁场的概念,并以字母B代表磁场强度。
这样就不难解释图二所示实验中产生的现象,通电导线能产生磁场,实验中两导线所通电流方向相同时产生的磁场使得两导线互相吸引,相反当电流的方向相反时产生的磁场使得两导线互相排斥,图二中的第一个实验就是因为导线通的电流相同导线互相吸引,最后出现的现象必然是两导线同时向内弯曲,第二个实验磁场间的相互作用使得导向向外弯曲!(二)安培环路定理由奥斯特实验得到了惊人的结论,那么通电导体产生的磁场又是怎样的呢?这个问题我们让安培我们解答:安培知道奥斯特的发现时非常惊讶,他注意到了这个发现的重要性,立刻对电流间的作用进行了精密的研究,他发现图2-3所示实验现象,他便由此猜想到所有的磁性都能用电流置换[5]。
随后安培便花了大量的时间研究导体中电流所产生磁场的性质。
这里我们取简单的一个种模型(通电直导线)为例,许多实验证实了通电直导线产生的磁场如图。
(图2-3) 以上就是安培环路定理,磁场的方向应服从右手螺旋定则[4]:手握导线,大拇指指向电流方向,那么其余四个手指的环绕方向就是磁场的方向,而且在这种简单的模型中产生磁场的强度还满足公式:02r I B πμ= (式2-1) 注:②(三)通电螺线管上的磁场现在我们来讨论一下通电螺线管,我记得初中我们学到电磁感应现象的时候就是通过通电螺线管来说明的,下图就是一个通电螺线管:(图2-4)根据电磁感应现象的原理,我们不难理解通电螺线管周围会有磁场的存在,如上图在软铁上绕有导线,并在导线中通有电流大小为I的电流,在螺线管中磁场的方向同样服从右手定则,将右手的四个手指弯曲并指向电流环绕的方向,那样大拇指所指向的方向就是磁场的方向。
当然在这种情况中如果要求场强的大小还需知道软铁的性质,本文不在这里做解释[4]。
(四)载流线圈的磁场下面我们来看看通电线圈中磁场的方向是如何的,下面是通电导线圈的模型:(图2-5)如上图,导线圈中通有电流的大小为I,这种模型服从右手螺旋定则,将右手的四只手指指向电流方向沿线圈环绕,右手大拇指伸直,大拇指指向的方向就是磁场的方向,上图模型的磁场方向如上图所示。
这种情可以当做简单的通电螺线管来理解,通电螺线管中线圈的匝数较多,而本模型中可以认为是线圈匝数为一的通电螺线管[4]。
(五)电磁感应现象上述内容能很清楚的知道通电导体能产生磁场,我们能不能根据以上结论做一个假设呢?我们假设磁场也可能产生电流或者电动势。
带着这个问题我们访问法拉第任何认识这个问题的。
法拉第是英国著名的物理学家和化学家。
他发现了电磁感应现象,这在物理学上起着很重要的作用。
电磁感应现象是指放在变化磁通量中的导体,会产生电动势。
此电动势称为感应电动势或者感生电动势,若将此导体闭合成一回路,则该电动势会驱使电子流动,形成感应电流(感生电流)。
电磁感应现象不止揭示了电与磁的内在联系,而且为电与磁之间的相互转化奠定了实验基础。