北京师范大学959量子力学答案(2003-2012)
- 格式:doc
- 大小:44.29 MB
- 文档页数:27
第一章 绪论1.1.由黑体辐射公式导出维恩位移定律:C m b b T m 03109.2 ,⋅⨯==-λ。
证明:由普朗克黑体辐射公式:ννπνρννd e ch d kT h 11833-=, 及λνc =、λλνd cd 2-=得1185-=kThc ehc λλλπρ,令kT hcx λ=,再由0=λρλd d ,得λ.所满足的超越方程为 15-=x xe xe用图解法求得97.4=x ,即得97.4=kThcm λ,将数据代入求得C m 109.2 ,03⋅⨯==-b b T m λ 1.2.在0K 附近,钠的价电子能量约为3eV,求de Broglie 波长.解:010A 7.09m 1009.72=⨯≈==-mEh p h λ #1.3. 氦原子的动能为kT E 23=,求K T 1=时氦原子的de Broglie 波长。
解:010A 63.12m 1063.1232=⨯≈===-mkTh mE h p h λ 其中kg 1066.1003.427-⨯⨯=m ,123K J 1038.1--⋅⨯=k #1.4利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。
(2)在均匀磁场中作圆周运动的电子的轨道半径。
已知外磁场T 10=B ,玻尔磁子123T J 10923.0--⋅⨯=B μ,求动能的量子化间隔E ∆,并与K 4=T 及K 100=T 的热运动能量相比较。
解:(1)方法1:谐振子的能量222212q p E μωμ+=可以化为()12222222=⎪⎪⎭⎫ ⎝⎛+μωμE q Ep的平面运动,轨道为椭圆,两半轴分别为22,2μωμEb E a ==,相空间面积为,2,1,0,2=====⎰n nh EEab pdq νωππ所以,能量 ,2,1,0,==n nh E ν方法2:一维谐振子的运动方程为02=+''q q ω,其解为()ϕω+=t A q sin速度为 ()ϕωω+='t A q c o s ,动量为()ϕωμωμ+='=t A q p cos ,则相积分为 ()()nh TA dt t A dt t A pdq T T==++=+=⎰⎰⎰2)cos 1(2cos 220220222μωϕωμωϕωμω, ,2,1,0=nνμωnh Tnh A E ===222, ,2,1,0=n(2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。
⒈热辐射的峰值波长与辐射体温度之间的关系被维恩位移定律: 表示,其中。
求人体热辐射的峰值波长(设体温为)。
解:,由题意,人体辐射峰值波长为:。
⒉宇宙大爆炸遗留在宇宙空间的均匀各向同性的背景热辐射相当于黑体辐射。
此辐射的峰值波长是多少?在什么波段?解:T=2.726K ,由维恩位移定律,属于毫米波。
⒊波长为的X 射线光子与静止的电子发生碰撞。
在与入射方向垂直的方向上观察时,散射X射线的波长为多大?碰撞后电子获得的能量是多少eV ?解:设碰撞后,光子、电子运动方向与入射方向夹角分别为θ,α,由能量守恒,,动量守恒:;;整理得:;联立第一式:nm c m h e 01.0;2sin 20201===-λλθλλ ;则X 射线的波长为:01.02sin 221+=θλc m h e ;电子能量:1λλhchc E e -= ⒋在一束电子束中,单电子的动能为,求此电子的德布罗意波长。
解:电子速度远小于光速,故:;则:。
5.设归一化函数: (x )=Aexp(-2x 2)(-)a 为常数,求归一化常数A 。
解:由归一化条件 |2dx=1 得A 2==A=6.设归一化波函数=A(0n为整数,a为常数,求归一化常数A解:由归一化条件|2dx得A2=1解得A=7.自由粒子的波函数为=Aexp()其中和是粒子的动量和能量,和t是空间与时间变量,ℏ是普朗克常数,A是归一化常数,试建立自由粒子波函数所满足的方程。
解:由=Aexp(),将其对时间求偏微商,得到=-E,然后对其空间求偏微商,得到:=-利用自由粒子的能量和动能的关系式:E=就可以得到:i=---------自由粒子波函数所满足的方程8.设一个微观粒子的哈密顿算符的本征方程为Ĥ=该粒子的初始波函数为=+设和是实数,求任意时刻的波函数及粒子的几率密度.解:由=exp()=dx=== exp()+ exp()粒子的几率密度===[ exp()+ exp()][ exp()+ exp()]因为和是实数,利用欧拉公式:原式=9.宽度为a的一维无限深势阱中粒子的本征函数为=求证本征函数的正交性:dx=0(m)证:===[]=0()10.原子核内的质子和中子可以粗略地当成处于无限深势阱中而不能逸出,它们在核中可以认为是自由的,按一维无限深势阱估算,质子从第一激发态(n=2)跃迁到基态(n=1)时,释放的能量是多少MeV?核的线度按a=1.0m计算。
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
1 量子力学测试题(6)(北师大2003)1、(20分)一维谐振子t=0时处于基态0ψ和第一激发态1ψ的叠加态))()((21)0,(10x x x ψψψ+=其中 222100)(x e N x αψ-= x e N x x αψα2)(222111-=(1)求t 时刻位置和动量的平均值t t p x ,;(2)证明:对于一维谐振子的任何态,t 时刻位置和动量的平均值有以下关系 t t p mx dt d1= (3)求t 时刻能量的平均值t H 。
2、(40分)t=0时氢原子的波函数为⎥⎦⎤⎢⎣⎡+=-+χϕθχϕθϕθψ),(32),(31)(),,(111021Y Y r R r其中±χ为自旋z S 的本征态。
(1)测量下列物理量的可能值及相应几率是什么?轨道角动量平方和z 分量z L L ˆ,ˆ2;自旋角动量平方2ˆS ;总角动量平方2ˆJ (S L J ˆˆˆ+=)。
(2)电子自旋向上,到坐标原点距离为r 的概率密度;(3)能量的平均值E ;(4)轨道角动量x 分量的平均值x L ;(5)0≠t 时问题(3)和(4)的结论会改变吗?3、(30分)自旋算符σσ ⋅=n n ,其中为方向单位矢)cos ,sin sin ,cos (sin θϕθϕθ=n(1)求n σ的本征态±χ;(2)证明n ±=±±χσχ||;(3)一个两电子体系处在自旋单态[])2()1()2()1(2100αββαχ-=,求第一个电子的自旋算符σσ ⋅=n n 1作用于00χ的结果?001=χσn4、(30分)外磁场中电子的哈密顿量()221ˆA q P H -=μ。
(1)求位置矢量r 和Hˆ的对易关系]ˆ,[H r;2 (2)证明连续性方程0),(),(),(*=⋅∇+∂∂t r J t r t r t ψψ中的几率流密度 ⎪⎭⎫ ⎝⎛-∇-∇-=2**22ψψψψψμA iq i J 5、(30分)在磁场0B e B z =中,把()00ˆ2ˆˆB S L H z z +='μ看成微扰。
15-1 将星球看做绝对黑体,利用维恩位移定律测量m λ便可求得T .这是测量星球表面温度的方法之一.设测得:太阳的m 55.0m μλ=,北极星的m 35.0m μλ=,天狼星的m 29.0m μλ=,试求这些星球的表面温度.解:将这些星球看成绝对黑体,则按维恩位移定律:K m 10897.2,3⋅⨯==-b b T m λ对太阳: K 103.51055.010897.236311⨯=⨯⨯==--mbT λ对北极星:K 103.81035.010897.236322⨯=⨯⨯==--mbT λ对天狼星:K 100.11029.010897.246333⨯=⨯⨯==--mbT λ15-3 从铝中移出一个电子需要4.2 eV 的能量,今有波长为2000οA 的光投射到铝表面.试问:(1)由此发射出来的光电子的最大动能是多少?(2)遏止电势差为多大?(3)铝的截止(红限)波长有多大?解:(1)已知逸出功eV 2.4=A 据光电效应公式221m mv hv =A +则光电子最大动能:A hcA h mv E m -=-==λυ2max k 21eV0.2J 1023.3106.12.41020001031063.6191910834=⨯=⨯⨯-⨯⨯⨯⨯=----m2max k 21)2(mvE eUa==∴遏止电势差 V 0.2106.11023.31919=⨯⨯=--a U(3)红限频率0υ,∴000,λυυcA h ==又∴截止波长 1983401060.12.41031063.6--⨯⨯⨯⨯⨯==Ahc λm 0.296m 1096.27μ=⨯=-15-4 在一定条件下,人眼视网膜能够对5个蓝绿光光子(m 105.0-7⨯=λ)产生光的感觉.此时视网膜上接收到光的能量为多少?如果每秒钟都能吸收5个这样的光子,则到 达眼睛的功率为多大? 解:5个兰绿光子的能量J1099.1100.51031063.65187834---⨯=⨯⨯⨯⨯⨯===λυhcn nh E功率 W 1099.118-⨯==tE15-5 设太阳照射到地球上光的强度为8 J ·s -1·m -2,如果平均波长为5000οA ,则每秒钟落到地面上1m 2的光子数量是多少?若人眼瞳孔直径为3mm ,每秒钟进入人眼的光子数是多少? 解:一个光子能量 λυhch E ==1秒钟落到2m 1地面上的光子数为21198347ms1001.21031063.6105888----⋅⨯=⨯⨯⨯⨯⨯===hcEn λ每秒进入人眼的光子数为11462192s1042.14/10314.31001.24--⨯=⨯⨯⨯⨯==dnN π15-6若一个光子的能量等于一个电子的静能,试求该光子的频率、波长、动量.解:电子的静止质量S J 1063.6,kg 1011.934310⋅⨯=⨯=--h m 当 20c m h =υ时,则Hz10236.11063.6)103(1011.92034283120⨯=⨯⨯⨯⨯==--hc m υο12A 02.0m 104271.2=⨯==-υλc122831020122sm kg 1073.21031011.9sm kg 1073.2-----⋅⋅⨯=⨯⨯⨯=====⋅⋅⨯==c m cc m c E p cpE hp 或λ15-7 光电效应和康普顿效应都包含了电子和光子的相互作用,试问这两个过程有什么不同? 答:光电效应是指金属中的电子吸收了光子的全部能量而逸出金属表面,是电子处于原子中束缚态时所发生的现象.遵守能量守恒定律.而康普顿效应则是光子与自由电子(或准自由电子)的弹性碰撞,同时遵守能量与动量守恒定律.15-8 在康普顿效应的实验中,若散射光波长是入射光波长的1.2倍,则散射光子的能量ε与反冲电子的动能k E 之比k E /ε等于多少? 解:由 2200mc h c m hv +=+υ)(00202υυυυ-=-=-=h h h cm mcE kυεh =∴5)(00=-=-=υυυυυυεh h E k已知2.10=λλ由2.10=∴=υυλυc2.11=υυ则52.0112.110==-=-υυυ15-10 已知X 光光子的能量为0.60 MeV ,在康普顿散射之后波长变化了20%,求反冲电子的能量.解:已知X 射线的初能量,MeV 6.00=ε又有00,ελλεhchc =∴=经散射后 000020.1020.0λλλλ∆λλ=+=+= 此时能量为 002.112.1ελλε===hc hc反冲电子能量 MeV 10.060.0)2.111(0=⨯-=-=εεE15-11 在康普顿散射中,入射光子的波长为0.030 οA ,反冲电子的速度为0.60c ,求散射光子的波长及散射角. 解:反冲电子的能量增量为202022020225.06.01c m cm cm cm mcE =--=-=∆由能量守恒定律,电子增加的能量等于光子损失的能量, 故有 20025.0c m hchc=-λλ散射光子波长ο121083134103400A043.0m 103.410030.0103101.925.01063.610030.01063.625.0=⨯=⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯=-=------λλλc m h h由康普顿散射公式2sin0243.022sin22200ϕϕλλλ∆⨯==-=cm h可得 2675.00243.02030.0043.02sin2=⨯-=ϕ散射角为 7162'=οϕ15-12 实验发现基态氢原子可吸收能量为12.75eV 的光子. (1)试问氢原子吸收光子后将被激发到哪个能级?(2)受激发的氢原子向低能级跃迁时,可发出哪几条谱线?请将这些跃迁画在能级图上. 解:(1)2eV 6.13eV 85.0eV 75.12eV 6.13n -=-=+-解得 4=n 或者 )111(22n Rhc E -=∆75.12)11.(1362=-=n解出 4=n题15-12图 题15-13图(2)可发出谱线赖曼系3条,巴尔末系2条,帕邢系1条,共计6条.15-13 以动能12.5eV 的电子通过碰撞使氢原子激发时,最高能激发到哪一能级?当回到基态时能产生哪些谱线?解:设氢原子全部吸收eV 5.12能量后,最高能激发到第n 个能级,则]11[6.135.12,eV 6.13],111[2221nRhc nRhc E E n -==-=-即得5.3=n ,只能取整数,∴ 最高激发到3=n ,当然也能激发到2=n 的能级.于是ο322ο222ο771221A 6563536,3653121~:23A 121634,432111~:12A1026m 10026.110097.18989,983111~:13===⎥⎦⎤⎢⎣⎡-=→===⎥⎦⎤⎢⎣⎡-=→=⨯=⨯⨯===⎥⎦⎤⎢⎣⎡-=→-R R R n R R R n RR R n λυλυλυ从从从可以发出以上三条谱线.题15-14图15-14 处于基态的氢原子被外来单色光激发后发出巴尔末线系中只有两条谱线,试求这两 条谱线的波长及外来光的频率.解:巴尔末系是由2>n 的高能级跃迁到2=n 的能级发出的谱线.只有二条谱线说明激发后最高能级是4=n 的激发态.ο1983424ο101983423222324A4872106.1)85.04.3(1031063.6A6573m 1065731060.1)51.14.3(10331063.6e 4.326.13e 51.136.13e 85.046.13=⨯⨯-⨯⨯⨯=-==⨯=⨯⨯-⨯⨯⨯⨯=-=∴-=∴-==-=-=-=-=-=-=-----E E hc E E hcE E hc E E hch VE V E V E a mn mn βλλλλυ基态氢原子吸收一个光子υh 被激发到4=n 的能态 ∴ λυhcE E h =-=14Hz 1008.310626.6106.1)85.06.13(15341914⨯=⨯⨯⨯-=-=--hE E υ15-15 当基态氢原子被12.09eV 的光子激发后,其电子的轨道半径将增加多少倍? 解: eV 09.12]11[6.1321=-=-nE E n 26.1309.126.13n =-51.16.1309.12.1366.132=-=n , 3=n12r n r n =,92=n,19r r n =轨道半径增加到9倍.15-16德布罗意波的波函数与经典波的波函数的本质区别是什么?答:德布罗意波是概率波,波函数不表示实在的物理量在空间的波动,其振幅无实在的物理意义,2φ仅表示粒子某时刻在空间的概率密度.15-17 为使电子的德布罗意波长为1οA ,需要多大的加速电压? 解: ooA 1A 25.12==uλ 25.12=U∴ 加速电压 150=U 伏15-18 具有能量15eV 的光子,被氢原子中处于第一玻尔轨道的电子所吸收,形成一个 光电子.问此光电子远离质子时的速度为多大?它的德布罗意波长是多少?解:使处于基态的电子电离所需能量为eV 6.13,因此,该电子远离质子时的动能为eV 4.16.13152112=-=+==E E mvE k φ它的速度为31191011.9106.14.122--⨯⨯⨯⨯==mE v k -15s m 100.7⋅⨯=其德布罗意波长为:o953134A 10.4m 1004.1100.71011.91063.6=⨯=⨯⨯⨯⨯==---mvh λ15-19 光子与电子的波长都是2.0οA ,它们的动量和总能量各为多少? 解:由德布罗意关系:2mc E =,λhmv p ==波长相同它们的动量相等.1-241034s m kg 103.3100.21063.6⋅⋅⨯=⨯⨯==---λhp光子的能量eV 102.6J 109.9103103.3316824⨯=⨯=⨯⨯⨯====--pc hch λυε电子的总能量 2202)()(c m cp E +=,eV 102.63⨯=cp而 eV 100.51MeV 51.0620⨯==c m∴ cp c m >>2∴ MeV 51.0)()(202202==+=c m c m cp E15-20 已知中子的质量kg 1067.127n -⨯=m ,当中子的动能等于温度300K 的热平衡中子气体的平均动能时,其德布罗意波长为多少? 解:kg 1067.127n -⨯=m ,S J 1063.634⋅⨯=-h ,-123K J 1038.1⋅⨯=-k中子的平均动能 mpKT E k 2232==德布罗意波长 oA 456.13===mkTh phλ15-21 一个质量为m 的粒子,约束在长度为L 的一维线段上.试根据测不准关系估算这个粒子所具有的最小能量的值.解:按测不准关系,h p x x ≥∆∆,x x v m p ∆=∆,则h v x m x ≥∆∆,xm h v x ∆≥∆这粒子最小动能应满足222222min 22)(21)(21mLhxm hxm h m v m E x =∆=∆≥∆=15-22 从某激发能级向基态跃迁而产生的谱线波长为4000οA ,测得谱线宽度为10-4οA ,求该激发能级的平均寿命. 解:光子的能量 λυhch E ==由于激发能级有一定的宽度E ∆,造成谱线也有一定宽度λ∆,两者之间的关系为: λλ∆=∆2hcE由测不准关系,h t E ≥∆⋅∆,平均寿命t ∆=τ,则λλτ∆=∆=∆=c Eh t 2s 103.51010103)104000(81048210----⨯=⨯⨯⨯⨯=15-23 一波长为3000οA 的光子,假定其波长的测量精度为百万分之一,求该光子位置的测不准量.解: 光子λhp =,λλλλ∆=∆-=∆22hhp由测不准关系,光子位置的不准确量为cm 30A 103103000o962=⨯=====-λλ∆λλ∆λ∆∆p h x。
=,量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kThc kT hc e kT hc e hc λλλλλπρ ⇒ 0115=-⋅+--kT hce kThc λλ ⇒ kThce kT hc λλ=--)1(5 如果令x=kThcλ ,则上述方程为x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学测试题(6) (北师大2002)1、t=0时,描述氢原子中电子的波函数为⎪⎪⎪⎪⎭⎫ ⎝⎛+=)(32311011211131Y Y R Y R ψ 其中nl R 为径向波函数,lm Y 为球谐函数。
求(a )该电子的能量E 、角动量平方2L 、角动量z 分量z L 和自旋z 分量z S 的可能值及相应几率;(b )上述各量的平均值;(c )该电子处在dr r r +→的几率; (d )t 时刻的波函数),,,(t r ϕθψ。
解: 氢原子能级和波函数 222aneE n -= )(),()(),,(z lm nl nlm S Y r R r χϕθϕθψ=(a )由t=0时,氢原子中电子的波函数βψβψαψψ210211311323231++=知电子能量E 的可能值及相应几率为:aeE 1823-=,91;aeE 822-=,98。
角动量平方2L 的可能值及相应几率为:222 =L ,1。
角动量z 分量z L 的可能值及相应几率为: =z L ,95;0=z L ,94。
自旋z 分量z S 的可能值及相应几率为:2=z S ,91;2-=z S ,98。
(b ) aeE E E 162199891223-=+=222 =L95=z L 187 -=z S(c )电子处在dr r r +→的几率为dr r R R Y Y R Y R Y Y R Y R d dr r d dr r P r 22212311011211131*10*1121*1131229891)(3231)(3231⎥⎦⎤⎢⎣⎡+=⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+Ω=Ω=⎰⎰+ψψ (d )t 时刻的波函数),,,(t r ϕθψ βψψαψϕθψ)(3231),,,(210211/311/23++=--t iE t iE eet r2、一维情况下,宇称算符P 的定义为)()(x x P -=ψψ。
试证明 (a )P 是厄密算符;(b )P 的本征值为+1和-1;(c )P 的分别属于本征值+1和-1的本征函数+ψ和-ψ正交; (d )P 是幺正算符。
北京师范大学2014年招收攻读硕士学位研究生入学考试模拟试题部(院、系):物理学系科目代码:959科目名称:量子力学(所有答案必须写在答题纸上,做在试题或草稿纸上一律无效)参考公式:泡利矩阵0110x σ⎛⎫= ⎪⎝⎭,00y i i σ-⎛⎫= ⎪⎝⎭,1001z σ⎛⎫= ⎪-⎝⎭一、单选或多重选择题(共25分)多选、少选、选错均不得分。
1.以下几对算符中,存在共同本征态的有_______(A)ˆˆ,x y p p (B)ˆˆ,x x p (C)ˆˆ,x y s s (D)ˆˆ,x yl l 2.三维各向同性谐振子(不考虑自旋)可能的简并度有________(A)2(B)3(C)4(D)53.以下哪个(些)算符一定为厄米算符________(A)ψψ(B)ψϕ(C)ψϕϕψ+(D)ψϕϕψ-4.以下叙述正确的是________(A)两个定态的叠加是定态(B)若两算符存在共同本征态,则两算符必对易(C)在定态下,几率密度满足(D)定态必定是能量本征态5.厄米算符ˆA、ˆB 满足ˆˆˆˆ0AB BA +=。
若ψ是ˆA 的本征态,本征值非零,则________(A)ψ必为ˆB的本征态(B)ˆBψ必为ˆA 的本征态(C)ˆAψ必为ˆB 的本征态(D)ˆB在ψ中的平均值必为零第1页共3页科目代码:959科目名称:量子力学二、(25分)一根长为l无质量的绳子一端固定,另一端系质量为m的质点。
在重力作用下,质点在竖直平面内摆动。
(1)写出质点运动的哈密顿量;(2)在小角度下求系统的能级;(3)求由于小角度近似的误差而产生的基态能量最低阶修正。
微信搜索:34310531欢迎关注:物理轻松学三、(25分)1/2自旋算符可以用泡利矩阵表示为,其中的两个本征态为和。
(1)求的本征态,其中;(2)求算符对的两个本征态和作用的结果;(3)说明以上两小题的结果之间的关系和的物理意义。
四、(25分)已知轨道角动量在n方向上的分量为其中,为已知的方位角,求在算符与的共同本征态上算符n和n 的平均值。
北京师范大学2012年招收攻读硕士学位研究生入学考试试题部(院、系):物理学系科目代码:959科目名称:量子力学(所有答案必须写在答题纸上,做在试题纸或草稿纸上的一律无效)参考公式:泡利矩阵0110x σ⎛⎫= ⎪⎝⎭,00y i i σ-⎛⎫= ⎪⎝⎭,1001z σ⎛⎫= ⎪-⎝⎭一.选择题(共25分)。
写清每题的题号及所有正确答案,多选、少选、选错均不得分。
1.一维粒子处于势函数()V x 中,已知()V x 是实值偶函数,且()x ψ是能量本征方程的一个解,则(A )()x ψ必为偶函数(B )()x ψ-一定是能量本征方程的解(C )()x ψ必为实值函数(D )()x ψ的复共轭函数*()x ψ一定是能量本征方程的解2.以下哪个(些)数字可能是氢原子能级的简并度(A )2(B )4(C )7(D )93.若算符ˆA满足2ˆˆA A =,则(A )ˆA 的本征值只可能是0或1(B )ˆA必为厄米算符(C )ˆA在任何态的平均值为非负实数(D )ˆA 必为常数算符4.以下哪个(些)算符一定为厄米算符(A )ψψ(B )ψϕ(C )ψϕϕψ+(D )ψϕϕψ-5.厄米算符ˆA、ˆB 满足ˆˆˆˆ0AB BA +=。
若ψ是ˆA 的本征态,本征值非零,则(A )ψ必为ˆB 的本征态(B )ˆBψ必为ˆA 的本征态(C )ˆAψ必为ˆB 的本征态(D )ˆB 在ψ中的平均值必为零。
(转背面!)第1页共3页第2页共3页二.(25分)已知20()2p H V x m=+的某个能级是E ,若系统变为0H H p α=+(α为常数),求该能级的变化。
(提示:此题需严格求解,可在动量表象下计算)三.(25分)在某自旋态χ中,测2z s = 的概率是12,测2x s = 的概率是34,求χ所有可能的独立解,结果用z s 表象α与β表示。
四.(25分)考虑一个沿x 方向运动的一维电子,其运动存在自旋轨道耦合,哈密顿量可写成微信搜索:34310531欢迎关注:物理轻松学21()2σσ=++Ωz x H p a m 其中,αΩ为常数。
一、简答题(1——8题,每题5分,共40分)1. 用球坐标表示,粒子波函数表为()ϕθψ,,r 。
写出粒子在),(ϕθ方向的立体角Ωd 中且半径在a r <<0范围内被测到的几率。
解:()⎰Ω=adrr r d P 022,,ϕθψ。
2. 写出三维无限深势阱⎩⎨⎧∞<<<<<<=其余区域,0,0,0,0),,(cz b y a x z y x V中粒子的能级和波函数。
解:能量本征值和本征波函数为⎪⎪⎭⎫ ⎝⎛=++222222222c n b n a n mE z yx n n n zy x π ,,3,2,1,00,0,0,sin sin sin 8),,(=⎪⎩⎪⎨⎧<<<<<<=n c z b y a x czn b y n a x n abc z y x z y x n n n z y x 其余区域πππψ3. 量子力学中,一个力学量Q 守恒的条件是什么?用式子表示。
解:有两个条件:0],[,0==∂∂H Q t Q。
4.)(z L L ,2 的共同本征函数是什么?相应的本征值又分别是什么?解:()zL L,2的共同本征函数是球谐函数),(ϕθlmY。
),(),(,),()1(),(22ϕθϕθϕθϕθlm lm z lm lm Y m Y L Y l l Y L =+=。
5. 量子力学中,体系的任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ展开:∑=nn n x c x )()(ψψ,写出展开式系数n c 的表达式。
解: ()dxx x x x c n n n ⎰==)()()(,)(*ψψψψ。
6. 一个电子运动的旋量波函数为()()()⎪⎪⎭⎫ ⎝⎛-=2,2,,r r s r z ψψψ,写出表示电子自旋向上、位置在r处的几率密度表达式,以及表示电子自旋向下的几率的表达式。
解:电子自旋向上(2 =z s )、位置在r 处的几率密度为()22/, r ψ;电子自旋向下(2 -=z s )的几率为()232/,⎰-r r d ψ。
可编辑修改精选全文完整版量子力学课后习题答案2.1证明在定态中,概率流密度与时间无关。
证:对于定态,可令)]r ()r ()r ()r ([m2i ]e )r (e )r (e )r (e )r ([m2i )(m 2i J e)r ( )t (f )r ()t r (**Et iEt i **Et i Et i **Etiψψψψψψψψψψψψψψψ∇-∇=∇-∇=∇-∇===-----)()(,可见t J 与无关。
2.2 由下列定态波函数计算几率流密度: ikr ikr e re r -==1)2( 1)1(21ψψ 从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。
解:分量只有和r J J 21在球坐标中 ϕθθϕθ∂∂+∂∂+∂∂=∇sin r 1e r 1e r r 0 r m r k r m r k r r ik r r r ik r r m i r e rr e r e r r e r m i mi J ikr ikr ikr ikr30202201*1*111 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψ r J 1与同向。
表示向外传播的球面波。
rm r k r m r k r r ik r r r ik r r m i r e r r e r e r r e r m i mi J ikr ikr ikr ikr3020220*2*222 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )2(-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ可见,r J与2反向。
表示向内(即向原点) 传播的球面波。
2.3 一粒子在一维势场⎪⎩⎪⎨⎧>∞≤≤<∞=a x a x x x U ,,,0 00)( 中运动,求粒子的能级和对应的波函数。
解:t x U 与)(无关,是定态问题。
北京大学2003——2012学年 量子力学 考研真题 与原子物理试题答案可能会有用的公式:薛定谔方程:ˆH i tψψ∂=∂ 一维定态薛定谔方程:()()()2222d V x x E x m dx ψψ⎛⎫-+= ⎪⎝⎭动量算符:ˆp i x ∂=∂高斯积分:2x e dx α∞--∞=⎰一。
[30分]一维无限深方势阱:质量为m 的粒子在一维无限深方势阱中运动,势阱可表示为:()()0;0,;0,x a V x x x a∈⎧⎪=⎨∞<>⎪⎩ 1。
[10分]求解能量本征值n E 和归一化的本征函数()n x ψ;2。
[5分]若已知0t =时,该粒子状态为:())12,0()()x x x ψψψ=+,求t 时刻该粒子的波函数; 3。
[5分]求t 时刻测量到粒子的能量分别为1E 和2E 的几率是多少?4。
[10分]求t 时刻粒子的平均能量E 和平均位置x 。
解:1)[10分]22222n n n x a n E ma πψπ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎪=⎪⎩2)[5分]()(),n iE tn n x t x e ψψ-=时刻的波函数:()1212,()()iE t iE t x t x e x e ψψψ--⎛⎫=+⎪⎭3)[5分] t 时刻测量到粒子的能量为1E 的几率是:()()211,,2x t x t ψψ= 时刻测量到粒子的能量为2E 的几率是:()()221,,2x t x t ψψ= 4)[10分] 平均能量:()()()()221225ˆ,,,,24E E E x t E x t x t i x t t ma πψψψψ+∂====∂ 平均位置:()()()12216,,cos 29E E t a a x x t x x t ψψπ-⎛⎫==- ⎪⎝⎭二。
[30分]一维线性谐振子:质量为m 的粒子在一维线性谐振子势:22()2m x V x ω=中运动。
按占有数表象,哈密顿可写为:()†12H a a ω=+。