空间几何体与球的切接问题
- 格式:docx
- 大小:81.37 KB
- 文档页数:2
高考数学空间几何体的外接球与内切球常见题型本文介绍了空间几何体的外接球与内切球的经典类型,其中第一种类型为墙角模型,即三条棱两两垂直,不需要找球心的位置即可求出球半径。
具体方法是找到三条两两垂直的线段,然后使用公式2R=a+b+c或2R=a^2+b^2+c^2来求出R。
例如,在已知各顶点都在同一球面上的正四棱柱的高为4,体积为16的情况下,可以求出该球的表面积为32π。
第二种类型为对棱相等模型,补形为长方体。
在这种情况下,需要找到对棱相等的空间几何体,并补成长方体。
例如,如果三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积为36π。
除此之外,文章还给出了一些具体的例子,如正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且AM⊥MN,若侧棱SA=23,则正三棱锥S-ABC外接球的表面积为36π。
同时,文章还提到了一些需要注意的引理,如正三棱锥的对棱互相垂直等。
需要注意的是,文章中存在一些格式错误和明显有问题的段落,需要进行删除或修改。
题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB=CD,AD=BC,AC=BD)首先,我们可以画出一个长方体,标出三组互为异面直线的对棱,如图2-1所示。
设出长方体的长宽高分别为a,b,c,AD=BC=x,AB=CD=y,AC=BD=z,列方程组:a^2+b^2=x^2b+c=yc^2+a^2=z^2根据墙角模型,我们可以得到2R=a+b+c=2(x^2+y^2+z^2)/(x^2+y^2+z^2),化简得到R=sqrt(2)/2*(x^2+y^2+z^2)/(x^2+y^2+z^2),求出R即可。
例2(1)如下图所示三棱锥A-BCD,其中AB=CD=5,AC=BD=6,AD=BC=7,则该三棱锥外接球的表面积为。
2)在三棱锥A-BCD中,AB=CD=2,AD=BC=3,AC=BD=4,则三棱锥A-BCD外接球的表面积为。
3)正四面体的各条棱长都为2,则该正面体外接球的体积为。
空间几何体与球的切、接问题1.体积为 8 的正方体的极点都在同一球面上,则该球的表面积为()B.323种类一:三条棱两两垂直可转变为长方体(正方体)2.在三棱锥P ABC中,PA平面ABC , AC BC , AC BC 1, PA3则三棱锥外接球的体积为3.已知球 O 上四点 A、B、C、D,DA平面ABC,AB BC, DA AB BC a ,则球 O 的体积等于圆柱的外接球ORBC2设柱体的高为l ,底面外接圆的半径为r,则有R r2l24.直三棱柱 ABC- A1B1C1的 6 个极点都在球 O 的球面上”,若 AB=3,AC=4,AB⊥AC,AA1= 12,则球 O 的半径为种类二:有一条侧棱垂直于底面可转变为直棱柱5.已知三棱锥 P-ABC 中,三角形 ABC 为等边三角形,且 PA=8,PB=PC= 13 ,AB=3 ,则其外接球的体积为6.在三棱锥 P ABC 中, PA平面ABC , AC1, BC 2, PA 6,ACB 120 ,求三棱锥的外接球的表面积。
圆锥的外接球O O1A设椎体的高为 h, 底面外接圆的半径为 r, 则有R r 22 h R7.正四棱锥的极点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为()A. 81D.27448.在三棱锥 A-BCD中 ACD 与 BCD 都是边长为 2 的正三角形,且平面 ACD 平面BCD,求三棱锥外接球的体积练习 1、在四周体P ABC 中,PC平面ABC,AB=AC=1,BC=2 ,PC= 3 .则该四周体外接球的表面积为.练习 2、正三角形 ABC的边长为 2,将它沿高 AD翻折,使点 B 与点 C 间的距离为2 ,此时四周体ABCD外接球表面积为____________练习 3.已知三棱锥 S-ABC的全部极点都在球 O 的球面上, SC是球 O 的直径。
若平面 SCA⊥平面 SCB,SA=AC,SB=BC,三棱锥 S-ABC的体积为 9,则球 O 的表面积为 ________。
第08讲拓展一:空间几何体内接球与外接球问题(讲)第08讲拓展一:空间几何体内接球与外接球问题(精讲)高频考点一:空间几何体的内切球问题建立模型球的内切问题(等体积法)例如:在四棱锥P ABCD -中,内切球为球O ,求球半径r .方法如下:P ABCD O ABCD O PBC O PCD O PAD O PABV V V V V V ------=++++即:1111133333P ABCD ABCD PBC PCD PAD PAB V S r S r S r S r S r -=⋅+⋅+⋅+⋅+⋅,可求出r .典型例题例题(2022·江苏·苏州外国语学校高一期末)1.在三棱锥S ABC -中,SA ⊥平面,90ABC ABC ∠= ,且3,4,5SA AB AC ===,若球O 在三棱锥S ABC -的内部且与四个面都相切(称球O 为三棱锥S ABC -的内切球),则球O 的表面积为()A .169πB .49πC .3227πD .1681π【答案】A解:因为SA ⊥平面,90ABC ABC ∠= ,AB ⊂平面ABC ,AC ⊂平面ABC ,BC ⊂平面ABC ,所以SA AB ⊥,SA AC ⊥,SA BC ⊥,又,BC AB SA AB A ⊥= ,所以BC ⊥平面SAB ,所以BC SB ⊥,所以,,SAB ABC SAC SBC ,均为直角三角形,设球O 的半径为r ,则()1+++3S ABC SAB CAB SAC SBC V S S S S r -=⋅ ,而11334632S ABC V -=⨯⨯⨯⨯=,11156,35222SAB CAB SAC SBC S S SA AB S S ==⋅===⨯⨯= ,所以115156+6++6322r ⎛⎫⋅= ⎪⎝⎭,解得23r =,所以球O 的表面积为221644239r S πππ⎛==⨯=⎫ ⎪⎝⎭,故选:A .例题(2022·全国·高一)2.某学校开展手工艺品展示活动,小明同学用塑料制作了如图所示的手工艺品,其外部为一个底面边长为6的正三棱柱,内部为一个球,球的表面与三棱柱的各面均相切,则该内切球的表面积为___________,三棱柱的顶点到球的表面的最短距离为___________.【答案】12π解:依题意如图过侧棱的中点作正三棱柱的截面,则球心为MNG 的中心,因为6MN =,所以MNG 内切圆的半径13r OH MH ====即内切球的半径R 2412S R ππ==,又正三棱柱的高12AA R ==所以23OM OH ==AO =所以A 到球面上的点的距离最小值为AO R -故答案为:12π例题(2022·全国·高一专题练习)3.如图,直三棱柱111ABC A B C -有外接圆柱1OO ,点O ,1O 分别在棱AB 和11A B 上,4AB =.(1)若AC BC =,且三棱柱111ABC A B C -有一个内切球,求三棱柱111ABC A B C -的体积;【答案】(1))161-(1)O ,1O 是圆柱的上下底面圆心,而且点O ,1O 分别在棱AB 和11A B 上,由此可知ABC 是AB 为斜边的直角三角形.4,AB AC BC =∴==11422ABC S AC BC =⋅=⨯= 设ABC 的内切圆的半径为r ,则由等面积法,可知:()1122AB BC AC r AC BC ++⋅=⋅,)21r ∴=,故三棱柱111ABC A B C -的内切球的半径也是)21,故三棱柱的高)241h r ==,进而三棱柱111ABC A B C -的体积))441161ABC V S h =⋅=⨯-=- .题型归类练(2022·全国·高一)1.已知点O 到直三棱柱111ABC A B C -各面的距离都相等,球O 是直三棱柱111ABC A B C -的内切球,若球O 的表面积为16π,ABC 的周长为4,则三棱锥1A ABC -的体积为()A .43B .163C .3D .3(2022·湖南·高一期末)2锥的底面和侧面均相切)的表面积为______.(2022·全国·高三专题练习(文))3.若正四棱锥P ABCD -内接于球O ,且底面ABCD 过球心O ,则球O 的半径与正四棱锥P ABCD -内切球的半径之比为__________.(2022·广西玉林·模拟预测(理))4.若正四棱锥P ABCD -内接于球O ,且底面ABCD 过球心O ,球的半径为4,则该四棱锥内切球的体积为_________.高频考点二:空间几何体的外接球问题模型1:长(正)方体模型——公式法建立模型正方体或长方体的外接球的球心为其体对角线的中点(1)设长方体一个顶点出发的三条边长分别为a ,b ,c ,则外接球半径2r =;(2)设正方体边长为a ,则外接球半径2r a =;典型例题例题(2022·贵州黔西·高二期末(理))1.若一个长方体的长、宽,高分别为4,2,3,则这个长方体外接球的表面积为______________.【答案】29π由题知,长方体的体对角线即为外接球的直径,所以2222(2)42329R =++=,所以2294R =所以外接球的表面积2429S R ππ==.故答案为:29π例题(2022·新疆·乌苏市第一中学高一期中)2.正方体1111ABCD A B C D -的棱长为2,则此正方体外接球的表面积是______.【答案】12π因为正方体的体对角线长度等于长方体外接球的直径,又正方体1111ABCD A B C D -的棱长为2,所以正方体外接球的直径为则该正方体外接球的表面积是2412ππ==S r .故答案为:12π.题型归类练(2022·全国·高一期末)5.正方体的外接球与内切球的表面积之比是()A .13B .3C .D (2021·河北·深州长江中学高三期中)6.已知某正方体外接球的表面积为3π,则该正方体的棱长为______.(2021·福建·莆田锦江中学高一期中)7.已知正方体的棱长为2,则其外接球的表面积为______.模型2:墙角型,对棱相等型——补形法(补长方体或正方体)建立模型①墙角模型(三条线两个垂直)题设:三条棱两两垂直(重点考察三视图)②对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB CD =,AD BC =,AC BD =)典型例题例题(2022·全国·高一)1.若三棱锥-P ABC 的三条侧棱PA ,PB ,PC 两两互相垂直,且PA PB PC ===则其外接球的表面积为()()A .6πB .12πC .18πD .24π【答案】A侧棱PA ,PB ,PC 两两互相垂直,且PA PB PC ===PA ,PB ,PC 作为正方体的棱长,如图:设外接球的半径为R ,则正方体的对角线的长2R =所以R =,所以外接球的表面积为246S R ππ==.故选:A例题(2022·江苏·南京师大附中高一期末)2.在三棱锥-P ABC 中,5PA BC ==,PB AC ==PC AB ==锥外接球的表面积为_________;外接球体积为_________.【答案】26π由题意,该三棱锥的对棱相等,可知该三棱锥可置于一个长方体中,如图所示:记该长方体的棱长为,,a b c ,则222222101725a b a c b c ⎧+=⎪+=⎨⎪+=⎩,即22226a b c ++=,所以r =,23442633S r V r πππ====,.故答案为:26π题型归类练(2022·辽宁·本溪高中高一阶段练习)8.已知正三棱锥S ABC -,则此三棱锥的外接球的表面积为()A .πB .3πC .6πD .9π(2022·安徽·高一阶段练习)9.鳖臑是我国古代对四个面均为直角三角形的三棱锥的称呼.如图,三棱锥A BCD -是一鳖臑,其中AB BC ⊥,AB BD ⊥,BC CD ⊥,AC CD ⊥,且3BC DC ==,4AB =.则三棱锥A BCD -外接球的表面积是()A.25πB .34πC .100πD .3(2022·河北·沧县中学高一期中)10.三棱锥-P ABC 中,已知,,PA PB PC 两两垂直,且1,2PA PB PC ===,则三棱锥-PABC 的外接球的表面积为___________.(2022·贵州·清华中学高三阶段练习(理))11.四棱锥ABCD 中,2,======AB CD AD BC AC BD A ,B ,C ,D 的外接球的表面积是__________.模型3:单面定球心法(定+算)建立模型单面定球心法(定+算)步骤:①定一个面外接圆圆心:选中一个面如图:在三棱锥-P ABC 中,选中底面ABC ∆,确定其外接圆圆心1O (正三角形外心就是中心,直角三角形外心在斜边中点上,普通三角形用正弦定理定外心2sin ar A=);②过外心1O 做(找)底面ABC ∆的垂线,如图中1PO ⊥面ABC ,则球心一定在直线(注意不一定在线段1PO 上)1PO 上;③计算求半径R :在直线1PO 上任取一点O 如图:则OP OA R ==,利用公式22211OA O A OO =+可计算出球半径R .典型例题例题(2022·山西省长治市第二中学校高一期末)1.在四面体ABCD 中,,ABD BCD 都是边长为2的等边三角形,且平面ABD ⊥平面BCD ,则该四面体外接球的表面积为_________.【答案】203π依题意作图,取BD 的中点P ,连接AP ,CP ,取ABD △的中心E ,BCD △的中心G ,分别作平面ABD 和平面BCD 的垂线,得交点H ,则H 点就是四面体ABCD 外接球的球心,CH 就是球的半径r ,AP CP HG PE CG =====,222253r CH CG GH ==+=,外接球的面积为22043S r ππ==;故答案为:203π.例题(2023·山西大同·高三阶段练习)2.球内接直三棱柱1111,1,120,2ABC A B C AB AC BAC AA -===︒∠=,则球表面积为___________.【答案】8π设三角形ABC 和三角形111A B C 的外心分别为D ,E .可知其外接球的球心O 是线段DE 的中点,连结OC ,CD ,设外接球的半径为R ,三角形ABC 的外接圆的半径r ,1,120,AB AC BAC =∠=︒=可得BC =,由正弦定理得,21sin120r r ︒=∴=,而在三角形OCD 中,可知222||||||CO OD CD =+,即2212R r =+=,因此三棱柱外接球的表面积为248S R ππ==.故答案为:8π例题(2022·广西贺州·高一期末)3.已知ABC ∆的三个顶点都在球O 上,AC BC ⊥,2AC BC ==,且三棱锥3O ABC V -=,则球O 的体积为()A .π3B .32π3C .π3D .36π【答案】D△ABC 中,AC BC ⊥,2AC BC ==,则AB =取AB 中点H ,连接OH ,则点H 为△ABC 所在小圆圆心,OH ⊥平面ABC则112232O ABC V OH -=⨯⨯⨯⋅,解之得OH则球O 的半径3OA 则球O 的体积为34π3=36π3⋅故选:D例题(2022·河南开封·高二期末(理))4.已知球O 为三棱锥D ABC -的外接球,球O 的体积为256π3,正三角形ABC 的外接圆半径为D ABC -的体积的最大值为______.【答案】设ABC 外接圆的圆心为1O ,因为正三角形ABC 的外接圆半径为23,即123O B =,由正弦定理243sin 60ACR ==︒,得6AC =,所以166sin 60932ABC S =⨯⨯⨯︒= ,要使三棱锥D ABC -的体积最大,则1O D ⊥平面ABC ,且球心O 在线段1O D 上,因为球O 的体积为34π256π33R =,所以球O 的半径为4R =.在1Rt OO B 中,由勾股定理得221116122OO R O B =-=-=,所以三棱锥D ABC -体积的最大值()()111932418333ABC V S OO R =⋅+=⨯⨯+=△.故答案为:183题型归类练(2022·河北·衡水市第十三中学高一阶段练习)12.在正四棱锥P ABCD -中,4AB =,6PA =,则平面PAB 截四棱锥P ABCD -外接球的截面面积是()A .655πB .365πC .12πD .36π(2022·安徽·巢湖市第一中学模拟预测(文))13.已知三棱锥S ABC -中,平面SAC ⊥平面ABC ,且AB AC ⊥,30SCA ∠=︒,若4AB SA ==,则三棱锥S ABC -外接球的表面积为()A .64πB .128πC .40πD .80π(2022·重庆市万州第二高级中学高一期中)14.在ABC 中,角A ,B ,C 所对的边为a ,b ,c ,且3a =,π3A =.又点A ,B ,C 都在球O 的球面上,且点O 到平面ABC 5O 的体积为()A .642π3B 635π3C .643π3D 636π3(2022·河南·汝州市第一高级中学模拟预测(文))15.已知点,,,A B C D在同一个球的球面上,1AB =,BC =,2AC =,若四面体ABCD)A .14425πB .24825πC .57625πD .67625π(2022·全国·高三专题练习)16.已知球O 是正三棱锥A BCD -的外接球,3BC =,AB =E 在线段BD 上,且6BD BE =,过点E 作球O 的截面,则所得截面圆面积的取值范围是___________.模型4:双面定球心法(两次单面定球心)建立模型如图:在三棱锥-P ABC 中:①选定底面ABC ∆,定ABC ∆外接圆圆心1O ②选定面PAB ∆,定PAB ∆外接圆圆心2O ③分别过1O 做面ABC 的垂线,和2O 做面PAB 的垂线,两垂线交点即为外接球球心O .典型例题例题(2022·全国·高三专题练习)1.已知点A 、B 、C 、D 都在球O 的球面上,AB AC =,BCD ∆是边长为1的等边三角形,AD 与平面BCD 所成角的正弦值为3,若2AD =,且点D 在平面BCD 上的投影与D 在BC 异侧,则球O 的表面积为()A .πB .4πC .8πD .16π【答案】B由题设,若E 是BC 的中点,则O '是△BCD 的中心,连接DE ,如图示:由题设知:DE BC ⊥,AE BC ⊥,又AE DE E = ,则BC ⊥面AED ,而BC ⊂面BCD ,即面BCD ⊥面AED ,过A 作AF ⊥面BCD ,则F 必在直线DE 上,易知:ADF ∠为AD 与平面BCD 所成角的平面角,又AD 与平面BCD ,2AD =,可得DF =.过O '作OO DE '⊥交AD 于O ,易知:OD OB OC ==,而O D '=12O D DF '=,又//AF OO ',故O 为AD 的中点,OD OA =,∴OD OB OC OA ===,即O 是球心,故球O 的半径为1,∴球O 的表面积为4π.故选:B例题(2022·全国·高三专题练习(理))2.已知平面四边形ABCD 中,4AB AD BD =====,现沿BD 进行翻折,使得A 到达A '的位置,连接A C ',此时二面角A BD C '--为150°,则四面体A BCD '外接球的半径为()A .3B .3C D .3【答案】C解:取BD 的中点E ,连接A E ',CE ,因为4AB AD BD =====即BC CD ==所以CE BD ⊥,A E BD '⊥,A EC '∠即为二面角A BD C '--的平面角,且90BCD ∠=︒,所以BCD △外接圆的圆心为E ,设A BD ' 外接圆的圆心为1O ,则1O E =过点1O ,E 分别作平面A BD ',平面BDC 的垂线,交于点O ,则O 即为四面体A BCD '外接球的球心.因为二面角A BD C '--的平面角为150︒,即150A EC '∠=︒,则160∠=︒OEO .在1Rt OO E △中,3cos603OE ==︒,连接OB ,则OB 即为外接球的半径R ,则2222283R OB OE BE ==+=,即3R =,故选:C .题型归类练(2022·湖南·邵阳市第二中学高一期末)17.一边长为4的正方形ABCD ,M 为AB 的中点,将AMD ,BMC △分别沿MD ,MC 折起,使MA ,MB 重合,得到一个四面体,则该四面体外接球的表面积为().A .763πB .48πC .81πD .9(2022·广东梅州·高一阶段练习)18.如图,在三棱锥-P ABC ,PAC △是以AC 为斜边的等腰直角三角形,且CB =AB AC ==,二面角P AC B --的大小为120︒,则三棱锥-P ABC 的外接球表面积为()AB .10πC .9πD .(4π+参考答案:1.B【分析】设三棱柱111ABC A B C -的高为h ,内切球O 的半径为r ,通过内切球的半径可求出h ,再求得ABC S ,由体积公式即可求解三棱锥1A ABC -的体积.【详解】解:设直三棱柱111ABC A B C -的高为h ,AB =c ,BC =a ,AC =b ,内切球O 的半径为r ,则h =2r ,由题意可知球O 的表面积为2164r ππ=,解得r =2,∴h =4,又△ABC 的周长为4,即a +b +c =4,∴连接OA ,OB ,OC ,111,,OA OB OC 可将直三棱柱111ABC A B C -分成5个棱锥,即三个以原来三棱柱侧面为底面,内切球球心为顶点的四棱锥,两个以原来三棱柱底面为底面,内切球球心为顶点的的三棱锥,∴由体积相等可得直三棱柱111ABC A B C -的体积为ABC S h =13ahr +13bhr +13chr +2×13ABC S r ,即4ABC S =13(a +b +c )hr +43ABC S ,∴ABC S =4,∴三棱锥1A ABC -的体积为13ABC S h =13×4×4=163.故选:B .2.4π【分析】根据已知先求母线长,再结合轴截面可得半径,然后可得.【详解】有题意可知,PA π⋅=,所以PA =所以,圆锥的轴截面是边长为23的正三角形,圆锥的内切球的半径等于该正三角形的内切圆的半径,所以tan 3tan 301R OD AD OAD ==⋅∠=⨯︒=,所以该圆锥的内切球的表面积为4π.故答案为:4π331+##13+【分析】根据外接球的性质,结合正四棱锥的性质、内切球的性质进行求解即可.【详解】设外接球半径为R ,由题意可知,OA =OB =OC =OD =OP =R ,设四棱锥P -ABCD 的内切球半径为r ,设正方形ABCD 的边长为a ,因为底面ABCD 过球心O 2222a a R a R +=⇒=,2222116()2242R a R R R +=+⋅=,设该正四棱锥的表面积为S ,由等体积法可知:2211161(224)(2),(31)33223V Sr R R r R R R r ==+⋅⨯==+,314.6435)3π【分析】利用等体积法可求出四棱锥内切球的半径,从而可求出其体积【详解】因为正四棱锥P ABCD -内接于球O ,且底面ABCD 过球心O ,球的半径为4,所以4OA OB OC OD OP =====,所以42AB BC CD DA PA PB PC PD ========,所以正四棱锥P ABCD -的表面积为((22432S =+=,正四棱锥P ABCD -的体积为(21128433V =⨯⨯=设正四棱锥P ABCD -内切球的半径为r,则1112832)333V Sr r ==+=,解得1)r =,所以该四棱锥内切球的体积为334464(35)1)333r ππ⎡⎤=⨯=⎣⎦,故答案为:645)3π5.B【分析】设正方体的棱长为a ,求出其外接球的半径和内切球的半径,再根据表面积公式可得结果.【详解】设正方体的棱长为a,则其外接球的半径为2a ,内切球的半径为12a ,所以正方体的外接球与内切球的表面积之比是224142a ππ⎫⋅⎪⎝⎭⎛⎫⋅ ⎪⎝⎭3=.故选:B 6.1【分析】根据球的表面积公式,求得球的半径,结合正方体的对角线长等于外接球的直径,列出方程,即可求解.【详解】设正方体的棱长为a ,外接球的半径为R ,2R =,由243R ππ=,可得R22=⨯,解得1a =.故答案为:1.7.12π【分析】由于正方体的外接球直径等于正方体的体对角线,所以求出正方体的体对角线的长,可求出球的半径,从而可求出外接球的表面积【详解】解:设正方体外接球的半径为R ,则由题意可得()2222222212R =++=,即2412R =,所以外接球的表面积为2412R ππ=,故答案为:12π8.C【分析】根据题意,把三棱锥S ABC -外接球的半径,进而求得外接球的表面积,即可求解.【详解】由题意,正三棱锥S ABC -此三棱锥S ABC -的正方体,三棱锥S ABC -设正方体的外接球的半径为R ,可得2R =,即R =,所以此三棱锥的外接球的表面积为224π4π6πS R ==⨯=⎝⎭.故选:C.9.B【分析】结合长方体外接球的性质可知三棱锥A BCD -外接球的直径为AD ,进而可得结果.【详解】易得三棱锥A BCD -外接球的直径为AD ,则AD ,故三棱锥A BCD -外接球的半径R =所以24342S ππ⎛⎫=⨯= ⎪⎪ ⎭⎝,故选:B.10.9π【分析】将三棱锥-P ABC 放在长方体中,则长方体的外接球与三棱锥的外接球相同,即可求解.【详解】以线段,,PA PB PC 为相邻的三条棱为长方体,连接AB ,BC ,AC ,即为三棱锥-P ABC ,∵如图所示,长方体的外接球与三棱锥的外接球相同,∴则其外接球直径为长方体对角线的长,设外接球的半径为R ,则2222222(2)1229R PA PB PC =++=++=,解得32R =,则294π4π9π4S R ==⨯=.故答案为:9π.11.13π【分析】由题意将此四棱锥补成一个长方体,则经过A ,B ,C ,D 的外接球即为长方体的外接球,然后求出长方体的对角线的长即可得外接球的直径,从而可求出其表面积【详解】解:因为四棱锥ABCD 的对棱相等,所以将四棱锥ABCD 补成如图所示的长方体,则经过A ,B ,C ,D 的外接球即为长方体的外接球,所以球的直径为长方体的对角线的长,设长方体的长、宽、高分别为,,a b c ,因为2,======AB CD AD BC AC BD ,所以22222241012a b a c b c ⎧+=⎪+=⎨⎪+=⎩,解得13a b c =⎧⎪=⎨⎪=⎩所以球的半径r =所以球的表面积为2244132r πππ=⨯=⎝⎭,故答案为:13π12.B【分析】先作出辅助线,求出外接球半径,求出球心到截面的距离,从而得到截面圆的半径,求出截面的面积.【详解】如图,作PO '⊥平面ABCD ,垂足为O ',则O '是正方形ABCD 外接圆的圆心,从而正四棱锥P ABCD -外接球的球心O 在PO '上,取棱AB 的中点E ,连接,,,O D O E OD PE '',作OH PE ⊥,垂足为H .由题中数据可得2,4O D O E PE O P '''====,设四棱锥P ABCD -外接球的半径为R ,则()22222R O D O O OP O P O O =+='-'='',即()22284R O O O O =+='-',解得3R =.由题意易证OPH EPO ' ∽,则PH OPO P PE=',故PH =故所求截面圆的面积是236ππ5PH ⋅=.故选:B 13.D【分析】三棱锥补成三棱柱,问题转化为三棱柱的外接圆,利用球心到底面圆的距离为12AB ,截面圆的半径为12sin 30SA ⋅︒,由222R d r =+求球半径即可.【详解】由题意得,BA ⊥平面SAC ,将三棱锥补成三棱柱11SAC S BC -,如图,则三棱柱11SAC S BC -的外接球即为所求.设外接球的球心为O ,则SAC 的外心为1O ,则1122OO AB ==,又1142sin SAO A SCA=⨯=∠,则外接球的半径R =表面积2480S R ππ==,故选:D 14.A【分析】依据截面圆半径和球心距即可求得球半径,进而求得球O 的体积.【详解】ABC的外接圆半径2sin 2ar A===则球O 的半径2R=则球O 的体积为(3344πR π33V ===3故选:A 15.D【分析】由已知得到ABC 为直角三角形,得到ABC 所以直角ABC 所在截面小圆的半径1r =,设点D 到平面ABC 的距离为h ,结合题意求得5h =,设四面体ABCD 的外接球半径为R ,球心O 到截面的距离为d ,当D 到底面ABC 距离最远时,即h R d =+时,求得135R =,进而求得球的表面积.【详解】由1,2AB BC AC ===,可得222AB BC AC +=,所以ABC 为直角三角形,其面积为112S ==,所以直角ABC 所在截面小圆的半径112r AC ==,设点D 到平面ABC 的距离为h ,因为四面体ABCD 体积取得最大值为6,所以113263D ABC ABC S h h V -=⨯==⨯ ,解得5h =,设四面体ABCD 的外接球半径为R ,球心O 到截面的距离为d ,当D 到底面ABC 距离最远时,即h R d =+时,四面体ABCD 的体积取得最大值,因为d ==5R +=,解得135R =,所以球的表面积为2136764525S ππ⎛⎫== ⎪⎝⎭.故选:D.16.5,44ππ⎡⎤⎢⎥⎣⎦【分析】设BDC 的中心为1O ,球O 的半径为R ,连接1O D ,OD ,1O E ,OE ,可得223(3)R R =+-,解得2R =,过点E 作圆O 的截面,当截面与OE 垂直时,截面的面积最小,当截面过球心时,截面面积最大,即可求解.【详解】解:如图,设BDC 的中心为1O ,球O 的半径为R ,连接1O D ,OD ,1O E ,OE ,则123sin 603O D =︒⨯=13AO =,在Rt 1OO D 中,223(3)R R =+-,解得2R =,6BD BE = , 2.5DE ∴=,在1DEO 中,12O E ==,OE ∴===过点E 作圆O 的截面,当截面与OE 垂直时,截面的面积最小,,最小面积为54π,当截面过球心时,截面面积最大,最大面积为4π.∴所得截面圆面积的取值范围是5,44ππ⎡⎤⎢⎥⎣⎦,故答案为:5,44ππ⎡⎤⎢⎥⎣⎦.17.A【分析】先判断出MA ⊥平面ACD ,△ACD 为等边三角形.利用球内截面的性质,过△ACD 的中心O1作平面ACD 的垂线l1,过线段MC 的中点O2作平面MAC 的垂线l2,记12l l O =∩,则O 即为三棱锥M 一ACD 外接球的球心.利用勾股定理求出半径R ,即可求出外接球的表面积.【详解】如图所示,由图可知在四面体A -CDM 中,由正方形,ABCD M 为AB 的中点,可得MA ⊥AD ,MA ⊥AC ,AC ∩AD =A ,故MA ⊥平面ACD .将图形旋转得到如图所示的三棱锥M -ACD ,其中△ACD 为等边三角形,过△ACD 的中心O1作平面ACD 的垂线l1,过线段MC 的中点O2作平面MAC 的垂线l2,由球内截面的性质可得直线l1与l2相交,记12l l O =∩,则O 即为三棱锥M 一ACD 外接球的球心.设外接球的半径为R ,连接OC ,O1C ,可得111O C ==.在Rt △OO1C 中,222211193OC OO O C R =+==,故该外接球的表面积219764433S R πππ==⨯=.故选:A.18.B【分析】由题作出图形,易得PAC △外接圆圆心在AC 中点,结合正弦定理可求ABC 外接圆半径,结合图形知,()()222222R AO AO OO ==+,再结合二面角大小求出2OO ,进而得解.【详解】根据题意,作出图形,如图所示,因为PAC △是以AC 为斜边的等腰直角三角形,所以PAC △的外心在AC 中点,设为2O ,设ABC 的外心为1O ,BC 中点为E ,11AO r =,因为AB AC ==,所以1O 必在AE 连线上,则123sin AB ABr AEC AC===,即132r =,因为两平面交线为AC ,1O 为平面ABC 所在圆面中心,所以12O O AC ⊥,()221212O O r AO =-又因为二面角P AC B --的大小为120︒,2PO AC ⊥,所以2121120,30PO O OO O ∠=︒∠=︒,所以2121OO O O =⨯,锥体-P ABC 外接球半径()()2222222512R AO AO OO ==+=+=⎝⎭,则三棱锥-P ABC 的外接球表面积为2410S R ππ==,故选:B。
球的“内切”、“外切”的解题技巧【方法技巧】类型一 球的内切问题 使用情景:有关球的内切问题解题模板:第一步 首先画出球及它的内切圆柱、圆锥等几何体,它们公共的轴截面; 第二步 然后寻找几何体与几何体之间元素的关系 第三步 得出结论. 类型二 球的外切问题 使用情景:有关球的外切问题解题模板:第一步 首先画出球及它的外切圆柱、圆锥等几何体,它们公共的轴截面; 第二步 然后寻找几何体与几何体之间元素的关系 第三步 得出结论.【应用举例】【例题1】在底面半径为2,母线长为4的圆锥中内有一个高为3的圆柱. (1)求:圆柱表面积的最大值;(2)在(1)的条件下,求该圆柱外接球的表面积和体积.【答案】(1)π)(312+;(2)π7=S ,677π=V .【解析】 试题分析:(1)我们可计算出圆柱的底面半径,代入圆柱表面积公式,即可得到答案;(2)求出圆柱的外接球半径,即可求该圆柱外接球的表面积和体积.试题解析:(1)当圆柱内接与圆锥时,圆柱的表面积最大.设此时,圆柱的底面R 半径为r ,高为h′.圆锥的高h 2242-3312h .∴2r 23323,∴r =1.∴S 表面积=2S底+S 侧=2πr 23=2(13)π.(2)设圆柱的外接球半径为R ,72R =,7S π=, 76V π=考点:1、球内接多面体;2、球的表面积和体积.【难度】较易【例题2】求球与它的外切圆柱、外切等边圆锥的体积之比.【答案】964∶∶∶∶锥柱球=V V V . 【解析】试题分析:设球的半径为R ,则外切圆柱的半径为R ,高为2R ;外切等边圆锥底面半径为R 3,高为3R , 所以334R V π=球 ,32R v π=柱, 33R V π=锥 9:6:4=∴锥柱球::V V V考点:本题考查空间几何体的体积。
点评:本题的关键是由球的半径求出外切圆柱、外切等边圆锥的半径和高。
考查了空间想象力。
首先画出球及它的外切圆柱、等边圆锥,它们公共的轴截面,然后寻找几何体与几何体之间元素的关系. 【难度】一般【例题3】把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离. 【答案】3622+. 【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高362)332(222=⋅-=h .而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为3622+. 【点评】关键在于能根据要求构造出相应的几何体,由于四个球半径相等,故四个球一定组成正四面体的四个顶点且正四面体的棱长为两球半径之和2. 考点:空间几何体的球体积和表面积. 【较易】【例题4】正三棱锥ABC P -的侧棱长为l ,两侧棱的夹角为α2,求它的外接球的体积.【答案】322334sin 2(34sin )l παα--.【解析】解:如图,作PD 底面ABC 于D ,则D 为正△ABC 的中心。
空间圆柱体的外接球和内切球问题简介在三维几何中,圆柱体(cylinder)是一个具有圆底和圆顶的几何体。
本文讨论了圆柱体的外接球和内切球问题。
外接球圆柱体的外接球是一个能够完全包围圆柱体的球体。
具体来说,外接球的球心与圆柱体的底面圆心以及顶面圆心都在同一直线上,并且外接球的半径等于这个直线与圆柱体底面、顶面中任意一个圆的半径之和。
对于一个给定的圆柱体,外接球的半径可以通过以下公式计算:$$R = \sqrt{h^2 + r^2}$$其中,$R$ 是外接球的半径,$h$ 是圆柱体的高度,$r$ 是圆柱体底面圆的半径。
内切球圆柱体的内切球是一个与圆柱体的底面和顶面相切的球体。
具体来说,内切球的球心与圆柱体的底面圆心以及顶面圆心都在同一直线上,并且内切球的半径等于这个直线与圆柱体底面、顶面中任意一个圆的半径之差。
对于一个给定的圆柱体,内切球的半径可以通过以下公式计算:$$r_{\text{in}} = \sqrt{h^2 + (R - r)^2}$$其中,$r_{\text{in}}$ 是内切球的半径,$h$ 是圆柱体的高度,$R$ 是外接球的半径,$r$ 是圆柱体底面圆的半径。
结论本文讨论了圆柱体的外接球和内切球问题。
外接球是一个能够完全包围圆柱体的球体,其半径可以通过一个简单的公式计算得到。
内切球是一个与圆柱体的底面和顶面相切的球体,其半径也可以通过一个公式计算得到。
这些问题在几何学和工程学中具有重要的应用价值。
> 注意:以上内容为解答圆柱体的外接球和内切球问题的基本原理和公式,具体计算应考虑实际情况和应用环境。
例1。
若棱长为3的正方体的顶点都在同一球面上,求该球的表面积和体积。
分析:①334R V π=球(R 为球半径) ②24R S π=球 (R 为球半径) 需要求出半径。
正方体的棱长为a ,则:正方体的内切球、棱切球、外接球半径分别为:a 21,a 22,a 23。
变式:一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为。
【解析】关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。
长方体体对角线长为14,故球的表面积为14π。
变式:(已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ).A 。
16π B 。
20π C 。
24π D 。
32π解题关键:通过多面体的一条侧棱和球心,或接点作出截面图。
棱锥与球例题:求棱长为1的正四面体ABCD 的外接球体积. 分析:作出合适的球的轴截面图,找准球心位置,构造三角形求解半径。
常用结论:正四面体外接球的球心在高线上,半径是正四面体高的43解法一、 解法二、如何求正四面体的外接球半径法1.补成正方体法2.勾股定理法例题:求棱长为a 的正四面体的内切球半径。
分析:并非所有多面体都有内切球,正多面体存在内切球,且正多面体的中心为内切球球心。
常用结论:正多面体内切球半径是高的41;31⋅⋅=内切表多R S V 1、正三棱锥的高为1,底面边长为62,内有一个球与它的四个面都相切.求:(1)外接球的表面积和体积;(2)内切球的表面积与体积.设正四面体的棱长为a ,则:正四面体的内切球、棱切球、外接球半径分别为: a 126、a 42、a 46. 构造长方体变式 P 、A 、B 、C 是球O 面上的四个点,PA 、PB 、PC 两两垂直,PA=PB=PC=a,求这个球的体积。
例 已知点A 、B 、C 、D 在同一个球面上,B BCD A ⊥平面,BC DC ⊥,若6,AC=213,AD=8AB =,则B 、C 两点间的球面距离是____。
微专题24球的接、切、截问题纵观近几年高考数学全国卷,球常和其他空间几何体相结合,以选择题或填空题的形式出现.计算几何体的表面积和体积,基本上都是中等难度的试题,既是考查的热点又是考查的难点.试题常用简单多面体与球的接、切、截等结构特征为命题背景,这些简单多面体与球的相关问题实质上是研究球的半径和确定球心的位置问题,分析球与多面体的接、切、截中有关量(长度、角度).通过解决与球相关的问题,培养学生良好的空间想象能力,提升学生直观想象和数学计算等核心素养.(2019·全国Ⅰ卷)已知三棱锥PABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为( ) A.86πB.46πC.26πD.6π(1)球内接正三棱锥:球是中心、轴对称图形,而正三棱锥不具有对称性,设球的半径为R,球心为O,正三棱锥PABC的底面边长为a,侧棱长为b,则:①球心O到正三棱锥三个顶点A,B,C的距离相等,则球心O在面ABC上的射影也是为三角形ABC的中心H处,H是三角形外接圆的圆心,而P在面ABC上的射影也是三角形ABC的中心,则球心O在PH上;②延长AH与BC交于BC的中点D,则AH=33a,Rt△P AH中,PH=b 2-⎝⎛⎭⎫33a2,则OH=|PH-R|(球心在正三棱锥内,R≤PH;否则,R>PH) .(2)Rt △OAH 中,由OA 2=OH 2+AH 2得到a ,b ,R 的等量关系. (3)多面体的外接球常用的结论:①设正方体的棱长为a ,则它的外接球半径R =32a ; ②设长方体的长、宽、高分别为a ,b ,c ,则它的外接球半径R =a 2+b 2+c 22; ③设正四面体的棱长为a ,则它的高为63 a ,外接球半径R =64a .在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π31.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心、“切点”作出截面图,把空间问题化归为平面问题.2.等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形(几何体)的高或点到平面的距离.3.多面体的内切球与外接球常用的结论:(1)设正方体的棱长为a ,则它的内切球半径r =a 2 ,外接球半径R =32 a .(2)设正四面体的棱长为a ,则它的高为63a ,内切球半径r =a .已知正三棱锥P ABC ,点P ,A ,B ,C 都在半径为3 的球面上.若P A ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.已知正四面体ABCD的棱长为12,则其内切球的表面积为( )A.12πB.16πC.20πD.24π设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥DABC体积的最大值为( )A.123B.183C.243D.543已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥OABC的体积的最大值为36,则球O的表面积为________.将一个半径为5cm的水晶球放在如图所示的工艺支架上,支架是由三根细金属杆P A,PB,PC 组成(其中A,B,C分别为水晶球与支架的接触点),它们两两成60°角,则水晶球的球心到支架顶点P的距离是________cm.1.与球有关的“接”“切”“截”问题的处理规律:(1) “接”的处理一个多面体的所有顶点同时在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.应掌握多面体外接球半径的求法,如当。
空间几何体的外接球与内切球问题高考分析: 球与几何体的切接问题是近几年高考的高频考点,常以选择题和填空题的形式出现,以中档题和偏难题为主. 一、几种常见几何体的外接与内切球 1.长方体的外接球 (1)球心:体对角线的交点;(2)半径:R =a 2+b 2+c 22(a ,b ,c 为长方体的长、宽、高).2.正方体的外接球、内切球及与各条棱相切的球 (1)外接球:球心是正方体的中心;半径R =32a(a 为正方体的棱长); (2)内切球:球心是正方体的中心;半径r =2a(a 为正方体的棱长);(3)与各条棱都相切的球:球心是正方体的中心;半径=2r a (a 为正方体的棱长). 3.正四面体的外接球与内切球(1)外接球:球心是正四面体的中心;半径R (a 为正四面体的棱长);(2)内切球:球心是正四面体的中心;半径r (a 为正四面体的棱长).求外接球问题常用方法:1.补体法。
将几何体补形成长方体正方体等常见模型去求解2.外接球的球心都在过底面外接圆圆心的垂线上(注意球体可以滚动所以可以选择较为方便计算的那一面作为底面)3.利用外接球球心到几何体各顶点距离都等于半径4.球心与截面圆圆心的连线垂直于截面圆求外接球的关键是确定球心位置,进而计算出外接球半径。
题型一:柱体的外接球1.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为_________.2.已知三棱柱111ABC A B C -的底面是边长为6的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表面积为12 ,则该三棱柱的体积为_________.3.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A .16πB .20πC .24πD .32π4.已知圆柱的底面半径为12,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4 C.π2 D.π4题型二:锥体的外接球5.求棱长为1的正四面体外接球的体积为_________.6.已知正四棱锥P -ABCD 内接于一个半径为R 的球,则正四棱锥P -ABCD 体积的最大值是( )A.16R 381B.32R 381C.64R 381 D .R 3 7.如图,在四棱锥P -ABCD 中,底面ABCD 为菱形,PB ⊥底面ABCD ,O 为对角线AC 与BD 的交点,若PB =1,∠APB =∠BAD =π3,则三棱锥P -AOB 的外接球的体积是_________.8.已知△ABC 是面积为的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A.B.C. 1D.9.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π10.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱切开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均是直角三角形的四面体).在如图所示的堑堵ABC -A 1B 1C 1中,AA 1=AC =5,AB =3,BC =4,则阳马C 1-ABB 1A 1的外接球的表面积是( )A .25πB .50πC .100πD .200π11.已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68πB .64πC .62πD .6π12.已知正三棱锥的所有顶点都在球O 的球面上,其底面边长为3,E,F ,G 分别为为侧棱AB,AC,AD 的中点.若O 在三棱锥A -BCD 内,且三棱锥A -BCD 的体积是三棱锥O -BCD 体积的3倍,则平面EFG 截球O 所得截面的面积为微专题 球与几何体的切接问题——内切球1.半径为R 的球的外切圆柱(球与圆柱的侧面、两底面都相切)的表面积为_________,体积为_________.2.若正四面体的棱长为a ,则其内切球的半径为_________.3.已知正三棱锥的高为6,内切球(与四个面都相切)的表面积为16π,则其底面边长为( ) A .18 B .12 C .6 3 D .434.将半径为3,圆心角为2π3的扇形围成一个圆锥(接缝处忽略不计),则该圆锥的内切球的体积为( )A.2π3 B.3π3 C.4π3D .2π 5.如图,已知球O 是棱长为1的正方体ABCD -A 1B 1C 1D 1的内切球,则平面ACD 1截球O 的截面面积为( )A.66π B.π3 C.π6 D.33π题型三 最值问题6.已知底面是正六边形的六棱锥P -ABCDEF 的七个顶点均在球O 的表面上,底面正六边形的边长为1,若该六棱锥体积的最大值为3,则球O 的表面积为_________.7.四棱锥S -ABCD 的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥的体积取得最大值时,其表面积等于8+83,则球O 的体积等于( )A.32π3B.322π3 C .16π D.162π38.已知SAB 是边上为2的等边三角形,045ACB ∠=,则三棱锥体积最大时,CA = ;其外接球的表面积为。
高中数学解题指导八个无敌模型全搞定空间几何的外接球和内切球问题八个有趣模型——搞定空间几何体的外接球与内切球类型一、墙角模型墙角模型是指三条线段两两垂直的几何体,通过公式(2R) = a + b + c,即2R = a^2 + b^2 + c^2,可以求出其外接球半径R。
例1:1)已知顶点都在同一球面上的正四棱柱的高为4,体积为16,求该球的表面积。
解:由V = ah = 16,得a = 2,4R = a + a + h = 4 + 4 + 16 = 24,S = 24π,答案为C。
2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,求其外接球的表面积。
解:由2R = a + b + c = 3 + 3 + 3 = 9,得R = 9/4,S =4πR^2 = 9π。
3)在正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且AM⊥MN,若侧棱SA = 23,求正三棱锥S-ABC外接球的表面积。
解:由墙角模型的特点可知,正三棱锥的对棱互垂直。
连接AB、BC的中点D、E,连接AE、CD,交于H,则H是底面正三角形ABC的中心。
由AM⊥MN,SB//MN,可得AM⊥SB,AC⊥SB,故SB⊥平面SAC,SB⊥SA,SB⊥SC,即SB⊥SA,BC⊥SA,故SA⊥平面SBC,SA⊥SC。
因此,三棱锥S-ABC的三棱条侧棱两两互相垂直,由2R^2 = 23^2 + 23^2 + 23^2 = 36,得R^2 = 9,S = 36π。
类型二、棱台模型棱台模型是指上底面和下底面都是正多边形,且两底面中心连线与侧棱垂直的几何体。
通过勾股定理和相似三角形,可以求出其外接球半径R和内切球半径r。
例2:1)已知棱台的上底面和下底面都是正三角形,上底边长为3,下底边长为6,侧棱长为5,求其外接球半径R和内切球半径r。
解:由勾股定理可得棱台的高为4√3.设外接球半径为R,内切球半径为r,则有R/r = (a + b + c)/(a + b - c) = (3 + 6 +5)/(3 + 6 - 5) = 7,解得R = 7r。
8.16作业 空间几何体外接球与内切球问题
1. 已知正四面体棱长为2,分别求该正四面体的外接球与内切球的半径.
2. 已知圆柱的内切球(圆柱的上、下底面及侧面都与球相切)的体积为43
π,求该圆柱的体积.
3. O 内切于该圆锥. (1)求该圆锥的高;
(2)求内切球O 的体积.
4.
5. 在长方体1111ABCD A B C D −中,AB =6,BC =8,16AA =.
(1)求三棱锥1D ABC −的体积;
(2)在三棱柱111ABC A B C −内放一个体积为V 的球,求V 的最大值.
6. 半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体
现了数学的对称美.如图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的棱长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.若二十四等边体的棱长2,
(1)求其体积;
(2)若其各个顶点都在同一个球面上,求该球的表面积.。
微专题 立体几何3空间几何体的外接球与内切球——八个模型一些提速的小结论:1.设正三角形边长为a ,则其高h =,外接圆半径r a =,面积2S =;2.设正四面体棱长为a ,则其高h =,外接球半径R =外,内切球半径4h R ==内,体积312V a =,正四面体相对棱的距离为2d =模型一 墙角模型模型解读:类似于三角形有且仅有唯一一个外接圆,将三角形补成平行四边形,则该平行四边形外接圆与三角形外接圆是同一个外接圆;三菱锥有且仅有一个外接球,特殊情况下,将其补成一个长方体,则该长方体与三棱锥有共同的外接球。
根据对称性,长方体体对角线即为外接球的直径。
模型公式:2222)2(c b a R ++=或2222c b a R ++=; 秒杀公式:()222S a b c π=++,()222222V ab c a b c π=++++适用情况:几何体中有三条两两垂直的棱时(非必要条件,见图3)。
(柱体适应模型1)c abCP A Babc 图2PCBAabc 图3CBPAa bc PCO 2BA典型例题例1、已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( C ) A .π16 B .π20 C .π24 D .π32例2、若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 9π 例3、若三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是 29π跟踪练习1、已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为2、若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( A ) A.3B.6C.36D.93、(2018宝鸡模拟)已知底面边长为12的正四棱柱的各顶点均在同一个球面上,则该球的体积为( D )32.3A π .4B π .2C π 4.3D π4、(广东省汕头市达濠华桥中学2017-2018学年期末)《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC -为鳖臑, PA ⊥平面ABC , 2,4PA AB AC ===,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为( C )A. 8πB. 12πC. 20πD. 24π5、(2020·安徽高三(理))已知一个正方体的各顶点都在同一球面上,现用一个平面去截这个球和正方体,得到的截面图形恰好是一个圆及内接正三角形,若此正三角形的边长为a ,则这个球的表面积为( D ). A .234a πB .23a πC .26a πD .232a π6、(2020延安高考模拟)刘徽《九章算术•商功》中将底面为长方形,两个三角面与底面垂直的四棱锥叫做阳马.如图,是一个阳马的三视图,则其外接球的体积为( B )A .B .C .D .7、(2020菏泽高三模拟)已知直三棱柱的底面为直角三角形,且两直角边长分别为1和,此三棱柱的高为,则该三棱柱的外接球的体积为( C ) A .B .C .D .8、(2020届·厦门市五月质量检测理6)某三棱锥的三视图如图所示,其中网格纸上小正方形的边长为1,则该几何体的外接球的表面积为( B ) A.9π B.27π C.81π D.108π9、已知一个三棱锥的三视图如图,其中俯视图是斜边长为2的等腰直角三角形,该三棱锥的外接球的半径为2,则该三棱锥的体积为(C )(A )2 (B )43 (C )23(D )2210、(2017云南第二次统一检测)已知体积为6的长方体的八个顶点都在球O 的球面上,在这个长方体经过同一个顶点的三个面中,如果有两个面的面积分别为343O 的体积等于( A ) A .323π B .73π C .332πD .1172π11、(2017江西赣州模拟)在四面体SABC 中,SA ⊥平面ABC ,∠ABC =90°,SA =AC =2,AB =1,则该四 面体的外接球的表面积为 . 8π提升练习1、在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱3SA =三棱锥ABC S -外接球的表面积是 。
空间圆锥体的外接球和内切球问题
介绍
空间圆锥体是一个三维几何体,由一个圆锥和一个直径位于圆锥顶点的球构成。
在研究空间圆锥体时,外接球和内切球问题是经常涉及的一个重要问题。
外接球
外接球是指完全包围空间圆锥体的最小球。
它的圆心位于圆锥体的顶点,并且恰好接触圆锥体的底面。
外接球的半径可以通过以下公式计算:
R = √(h^2 + r^2)
其中,R代表外接球的半径,h代表圆锥体的高度,r代表圆锥体底面的半径。
内切球
内切球是指位于空间圆锥体内部,并且与圆锥体的底面和侧面相切的最大球。
内切球的半径可以通过以下公式计算:
r' = √(h^2 + r'^2)
其中,r'代表内切球的半径,h代表圆锥体的高度,r'代表内切球底面的半径。
应用
外接球和内切球的性质在几何学和工程学中有广泛应用。
它们可以用于计算空间圆锥体的几何特征,如体积、表面积等。
此外,外接球和内切球还可以用于优化设计和模拟分析等领域。
结论
空间圆锥体的外接球和内切球问题是一个重要的几何学问题。
通过计算它们的半径,可以获得圆锥体的几何特征,并在实际应用中发挥重要作用。
专题讲解立体几何中的外接球与内切球问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点与难点,也是高考考查的一个热点。
考查学生的空间想象能力以及化归能力。
研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用。
球的内切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作。
当球与多面体的各个面相切时,注意球心到各面的距离相等即球的半径,求球的半径时,可用球心与多面体的各顶点连接,球的半径为分成的小棱锥的高,用体积法来求球的半径。
球与多面体的关系是高考考查的重点,但同学们又因为缺乏较强的空间想象能力,较难找到解题的切入点和突破口。
解决这类题目是要认真分析图形,明确切点和接点的位置及球心的位置是关键。
常见题型有求对应外接球或内切球半径、表面积、体积或球内接几何体最值等问题。
本章节将对常见的关于内切球和外接球的模型作一总结,并附有针对性训练题,供教师和学生参考使用。
一.常见模型归纳1. 墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决。
外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a 2+b2+c2。
),秒杀公式:R2=a2+b2+c24.可求出球的半径从而解决问题.有以下四种类型:【例1】已知二面角α-l-β的大小为π3,点P∈α,点P在β内的正投影为点A,过点A作AB⊥l,垂足为点B,点C∈l,BC=22,P A=23,点D∈β,且四边形ABCD满足∠BCD+∠DAB=π.若四面体P ACD的四个顶点都在同一球面上,则该球的体积为________.A BCDA1B1C1D1类型ⅠA BCDA1B1C1D1类型ⅡA BCDA1B1C1D1类型ⅢA BCDA1B1C1D1例外型【例2】已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( ).A .68πB .64πC .62πD .6π【变式练习1】在空间直角坐标系Oxyz 中,四面体ABCD 各顶点的坐标分别为A (2,2,1),B (2,2,-1),C (0,2, 1),D (0,0,1),则该四面体外接球的表面积是( )A .16πB .12πC .43πD .6π【变式练习2】在长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为32的正方形,AA 1=3,E 是线段A 1B 1上一点, 若二面角A -BD -E 的正切值为3,则三棱锥A -A 1D 1E 外接球的表面积为________.2. 对棱相等模型对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决。
球的“内切”、“外切”的解题技巧【方法技巧】类型一 球的内切问题 使用情景:有关球的内切问题解题模板:第一步 首先画出球及它的内切圆柱、圆锥等几何体,它们公共的轴截面; 第二步 然后寻找几何体与几何体之间元素的关系 第三步 得出结论. 类型二 球的外切问题 使用情景:有关球的外切问题解题模板:第一步 首先画出球及它的外切圆柱、圆锥等几何体,它们公共的轴截面; 第二步 然后寻找几何体与几何体之间元素的关系 第三步 得出结论.【应用举例】【例题1】在底面半径为2,母线长为4的圆锥中内有一个高为3的圆柱.(1)求:圆柱表面积的最大值;(2)在(1)的条件下,求该圆柱外接球的表面积和体积.【答案】(1)π)(312+;(2)π7=S,677π=V .【解析】试题分析:(1)我们可计算出圆柱的底面半径,代入圆柱表面积公式,即可得到答案;(2)求出圆柱的外接球半径,即可求该圆柱外接球的表面积和体积.试题解析:(1)当圆柱内接与圆锥时,圆柱的表面积最大.设此时,圆柱的底面R 半径为r ,高为h′.圆锥的高h 2242-3312h .∴2r 23323,∴r =1.∴S 表面积=2S底+S 侧=2πr 23=2(13)π.(2)设圆柱的外接球半径为R ,72R =,7S π=, 76V π=考点:1、球内接多面体;2、球的表面积和体积.【难度】较易【例题2】求球与它的外切圆柱、外切等边圆锥的体积之比.【答案】964∶∶∶∶锥柱球=V V V . 【解析】试题分析:设球的半径为R ,则外切圆柱的半径为R ,高为2R ;外切等边圆锥底面半径为R 3,高为3R , 所以334R V π=球 ,32R v π=柱, 33R V π=锥 9:6:4=∴锥柱球::V V V考点:本题考查空间几何体的体积。
点评:本题的关键是由球的半径求出外切圆柱、外切等边圆锥的半径和高。
考查了空间想象力。
首先画出球及它的外切圆柱、等边圆锥,它们公共的轴截面,然后寻找几何体与几何体之间元素的关系. 【难度】一般【例题3】把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离. 【答案】3622+. 【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高362)332(222=⋅-=h .而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为3622+. 【点评】关键在于能根据要求构造出相应的几何体,由于四个球半径相等,故四个球一定组成正四面体的四个顶点且正四面体的棱长为两球半径之和2. 考点:空间几何体的球体积和表面积. 【较易】【例题4】正三棱锥ABC P -的侧棱长为l ,两侧棱的夹角为α2,求它的外接球的体积.【答案】322334sin 2(34sin )l παα--.【解析】解:如图,作PD 底面ABC 于D ,则D 为正△ABC 的中心。
空间几何体与球的切、接问题
1.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )
π12.A B.3
32π C.8π D.π4 类型一:三条棱两两垂直可转化为长方体(正方体)
2.在三棱锥 ABC P - 中,31,,===⊥⊥PA BC AC BC AC ABC PA ,平面 则三棱锥外接球的体积为
3.已知球O 上四点A 、B 、C 、D ,ABC DA 平面⊥,a BC AB DA BC AB ===⊥,,则球O 的体积等于
圆柱的外接球
4.直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为
类型二:有一条侧棱垂直于底面可转化为直棱柱
5.已知三棱锥P-ABC 中,三角形ABC 为等边三角形,且PA=8,PB=PC=13,AB=3,则其外接球的体积为
6.在三棱锥ABC P -中, 120621,=∠===⊥ACB PA BC AC ABC PA ,,,平面, 求三棱锥的外接球的表面积。
圆锥的外接球
7.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )
A.481π
B.16π
C.9π
D.427π
8.在三棱锥A-BCD 中ACD ∆与∆BCD 都是边长为2的正三角形,且平面ACD ⊥平面BCD,求三棱锥外接球的体积
练习1、在四面体中,平面,AB=AC=1,BC=2,PC=3.则该四面体外接球的表面积为.
练习2、正三角形ABC 的边长为2,将它沿高AD 翻折,使点B 与点C 间的距离为2,此时四面体ABCD 外接球表面积为____________
练习3.已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。
若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________。
P ABC -⊥PC ABC。