六年级假设法解决问题集锦资料
- 格式:doc
- 大小:24.50 KB
- 文档页数:4
六年级假设法解题练习题一、题目描述假设你是六年级学生小明,以下是关于饮食健康的一些假设,根据提供的假设和相关信息,回答问题。
1. 假设小明每天早餐都吃面包,午餐都吃米饭,晚餐都吃面条,能保证他的膳食均衡吗?2. 假设小明每天吃很多巧克力,他会变得更高吗?3. 假设小明经常吃糖果和甜饮料,他的牙齿会更健康吗?4. 假设小明非常喜欢吃垃圾食品,这对他的身体有什么影响?二、解题过程1. 饮食的均衡是指摄入的食物中包含了充足的营养元素。
尽管小明每天吃的是不同种类的主食,但仅仅靠面包、米饭和面条是无法保证膳食的均衡。
膳食均衡应包括五大类食物,即谷物、蔬菜、水果、肉类和奶制品。
建议小明在餐食中适当增加蔬菜和水果的摄入,以确保膳食的均衡。
2. 吃巧克力并不能让人变得更高。
人的身高主要由遗传因素和生长发育水平决定。
巧克力含有糖分和脂肪,过量摄入可能会导致肥胖和牙齿问题。
因此,小明应该适量饮食,保持均衡营养,而不是指望吃巧克力来增加身高。
3. 糖果和甜饮料含有大量的糖分,过量摄入对牙齿是有害的。
糖分容易被细菌利用,形成酸性环境,导致牙齿脱矿、蛀牙等问题。
因此,频繁食用糖果和甜饮料不利于牙齿的健康。
建议小明减少对这些食物的摄入,并养成良好的口腔卫生习惯,例如刷牙、漱口等。
4. 垃圾食品通常指含有高糖、高脂肪、高盐等不健康成分的食物。
经常食用垃圾食品会引发多种健康问题,如肥胖、心脏病、高血压等。
对于小明来说,经常吃垃圾食品可能导致体重增加、营养不良,还可能影响他的身体发育和免疫力。
因此,建议小明远离垃圾食品,选择健康的食物,保持良好的饮食习惯。
三、小结通过对以上假设的分析,我们可以得出以下结论:- 小明单一主食的饮食习惯无法保证膳食均衡,应适当增加其他食物的摄入。
- 吃巧克力并不能增加身高,应均衡膳食来维持健康。
- 经常食用糖果和甜饮料会对牙齿健康产生不利影响,应减少摄入并注意口腔卫生。
- 垃圾食品会对身体健康产生负面影响,应远离这些食物,选择健康的饮食。
小学六年级奥数:假设法解题1.假设有x台彩色电视机,那么黑白电视机的数量就是250-x台。
根据题意,x+5=1.1(250-x),解得x=95,所以彩色电视机卖出95台,黑白电视机卖出155台。
2.设冰箱数量为x,则洗衣机数量为126-x。
根据题意,x-23=2(126-x),解得x=89,所以冰箱卖出89台,洗衣机卖出37台。
3.设上学期男同学数量为x,则女同学数量为750-x。
本学期男同学增加y人,女同学减少y人,则男女同学数量分别为x+y和(750-x)-y=750-x-y。
根据题意,x+y+(750-x-y)=710,解得y=65,所以男同学增加65人,女同学减少65人。
4.设___今年的年龄为x岁,则他爸爸今年的年龄为2x岁。
根据题意,x+12=2(x+12),解得x=24,所以___今年24岁。
5.设甲队挖了x米,则乙队挖了300-x米。
根据题意,x+55=1.1(300-x),解得x=105,所以甲队挖了105米,乙队挖了195米。
6.设第一包糖中奶糖、水果糖、巧克力糖的粒数分别为x、y、z,则第二包糖中糖的总粒数为9x,水果糖的粒数为0.5(9y),巧克力糖的粒数为2z。
根据题意,x+y+z=0.28(x+y+z+9x),解得8x=3(y+z),再代入第三个条件,解得z=0.16(9y),代入第二个条件,解得y=20x。
最后代入第一个条件,解得x=10,所以第一包糖中奶糖、水果糖、巧克力糖的粒数分别为10、200、80,第二包糖中奶糖、水果糖、巧克力糖的粒数分别为90、180、90.混合后水果糖的粒数为200+180=380,所以水果糖占的百分比为380/900=42.22%。
7.设去年初中招生人数为x,则高中招生人数为4752-x。
今年初中招生人数为1.48x,高中招生人数为1.2(4752-x)。
根据题意,1.48x+1.2(4752-x)=640,解得x=1680,所以去年初中招生人数为1680人,高中招生人数为3072人,今年初中招生人数为2486人,高中招生人数为154.8.设每个足球加价为x元,则每个篮球加价为(2800-100x)/80元。
假设法解题例1. 彩色电视机和黑白电视250台。
如果彩色电视机卖出91,后还比黑白电视机多5台。
问两种电视机原来各多少台?例2. 某商店有冰箱和洗衣126台,卖出冰箱的61和洗衣机的92共23台,原来冰箱和洗衣机各多少台?例3. 育红小学上学期有男女同学共750我,本学期男同学增加61,女同学减少51,共710人。
求本学期男、女同学各多少人?例4. 今年小华的年龄是他爸爸年龄的51,12年后小华的年龄将是他爸爸年龄的73,今年小华多少岁?例5.甲、乙两个工程队合挖了一条长300米的水渠,甲队挖的52比乙队41多55米,甲、乙两个工程队各挖了多少米?例5. 有两包糖,每包糖内有奶糖、水果糖和巧克力糖。
(1)第一包糖的粒数是第二包的糕点数的32;(2)第一包中奶糖占25%,第二包糖中水果糖占50%;(3)巧克力糖在第一包糖中所占的百分比是在第二包糖中所占百分比的两倍。
当两包糖混合在一起时,巧克力糖占28%,那么水果糖占的百分比是多少?假设法解题练习 姓名_____________1.兄弟俩养鸡100只。
如果哥哥卖掉201后还比弟弟多17只,求兄弟俩原来各养了多少只鸡?2.学校有排球和足球共21个,排球借出61后,还比足球多1个,原来排球和足球各有多少个?3.师傅与徒弟两个人共加工零件105个,已知师傅加工零件个数的83与徒弟加工零件个数的74的和是49,师徒各加工零件多少个?4.某会议,昨天参加会议的男代表比女代表多700人。
今天男代表减少了10%,女代表增加了5%,今天共有1995人出席会议。
那么昨天参加会议的有多少人?5.学校买来排球和足球共64个,从中借出排球个数的41和足球个数的31后,还剩下46个,两种球原来共有多少个?6.金放在水里称,重量减轻191;水银放在水里称,重量减轻101。
一块金、银合金重170克,放在水里称,重量减轻了50克,这块合金含金、银各多少克?7.某中学去年共招新生4752人,今年共招新生640人,其中初中招收新生比去年增加48%,高中招生比去年增加20%。
第十周 假设法解题(一)例题1甲、乙两数之和是185,已知甲数的14 与乙数的15 的和是42,求两数各是多少?【思路导航】假设将题中“甲数的14 ”、“乙数的15”与“和为42”同时扩大4倍,则变成了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的15。
解: 乙:(185-42×4)÷(1-15 ×4)=85答:甲数是100,乙数是85。
练习11. 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱?2. 甲、乙两个消防队共有338人。
抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人?3. 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25 少70吨,还有420吨没完成,第二季度原计划生产多少吨?彩色电视机和黑白电视机共250台。
如果彩色电视机卖出19 ,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出19后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-19 )=89。
(250+5)÷(1+1-19)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习21. 姐妹俩养兔120只,如果姐姐卖掉17 ,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2. 学校有篮球和足球共21个,篮球借出13后,比足球少1个,原来篮球和足球各有多少个?3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉120,还比鸭多17只,小明家原来养的鸡和鸭各有多少只师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的38 与徒弟加工零件个数的47的和为49个,师、徒各加工零件多少个? 【思路导航】假设师、徒两人都完成了47 ,一个能完成(105×47 )=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的38 与完成加工零件的47 相差的个数。
用假设法解决问题(二)①河北省平乡县大刘庄小学 李明亮五、把不同的分率(倍数)假设为相同例17.两堆煤共66吨。
一次运走了甲堆的31和乙堆的51,共运走16吨。
两堆煤原来各有多少吨?分析与解法1. 甲堆的31和乙堆的51共16吨。
假设一次运走甲堆的31,也运走乙堆的31,那么,一次应该共运走两堆煤总数的31,即66×31=22(吨),比实际运走的多6吨。
因为假设从乙堆运走的比实际从乙堆运走的多31-51=2/15,所以6吨就相当于乙堆的152。
(66×31-16)÷(31-51)=45(吨) (乙堆) 66-45=21(吨) (甲堆)解法2.假设从甲乙两堆都运走51,…… 甲堆 (16-66×51)÷(31-51)=21(吨) 乙堆 66-16=45(吨)把不同的分率(倍数)假设为相同的分率(倍数),就会使数量与实际的数量不符。
再找出假设的数量与实际数量产生差异的原因,就可使问题得解。
这里运用了一个简单的规律——甲堆的31与乙堆的31的和等于两堆总数的31。
例17与例13很相似。
如果用前面的方法解例17,则有如下解法。
解法3. (66-16×3)÷(1-51×3)=45(吨) (乙堆) 解法4. (16×5-66)÷(31×5-1)=21(吨) (甲堆) 例18.甲乙两数的和是31.如果甲数扩大3倍,乙数扩大5倍,则它们的和是125.求甲数和乙数。
分析略。
解法1.甲数 (31×5-125)÷(5-3)=15① 此文原题目为《用假设法解应用题》,初稿完成于1993年11月,1994年12月第一次修改,1997年8月第二次修改。
乙数 31-15=16解法2.乙数 (125-31×3)÷(5―3)=16甲数 31―16=15解法3.甲数 (31-125×51)÷(1-3×51)=15 解法4.乙数 (125÷3―31)÷(5÷3-1)=16类似习题:1.师徒二人加工零件,他们的任务一共是200个。
假设法解鸡兔同笼(六年级)方法:兔数=(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)鸡数=鸡兔总数-兔数 (假设鸡,先求出兔)或:鸡数=(每只兔脚数×鸡兔总数-总脚数)÷(每只兔子脚数-每只鸡脚数)兔数=鸡兔总数-鸡数 (假设兔,先求出鸡)专项练习一:1、鸡兔共30只,共有脚70只,鸡兔各有多少只?2、鸡兔共20只,共有脚50只,鸡兔各有多少只?3、在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有四个轮子,每辆摩托车有三个轮子,这些车共有172个轮子,停车场内有汽车、摩托车各多少辆?4、体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元,裤子每件19元,问老师买上衣和裤子各多少件?专项练习二:1、买甲、乙两种戏票,甲种票每张6元,乙种票每张4元,两种票买了11张,一共用去50元,两种票各买了多少张?2、扬栋有面值2元、5元纸币共30张,一共是90元,面值2元、5元纸币各有多少张?3、有2角,5角和1元人民币20张,共计12元,则1元有_______张,5角有______张,2角有_______张.4、一批水泥,用小车装载,要用20辆,用大车装载,只要12辆,每辆大车比小车多装4吨。
这批水泥有多少吨?5、一堆水泥,用小集装车装载,要用30辆,用大集装车装载,只要24辆,每辆大集装车比小集装车多装5吨。
这批水泥有多少吨?专项练习三:1、某公司运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元,运后的运费结算为8880元,问这次运输损失了几箱?2、某小学进行英语竞赛,每答对一题得10分,没有做、答错一题倒扣2分,共有15道题,小明得了102分,他做对了多少题?3、九湖小学六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了几题?4、工人运青瓷花瓶250个,规定完整运一个到目的地给运费20元,损坏一个倒赔100元,运完这批花瓶后,工人共得4400元,则损坏了多少只?5、李宇春演唱会售出30元、40元、50元的门票共600张,收入23400元,其中40元和50元的张数相等,每种票各售出多少张?专项练习四:1、王舒琪演唱会售出30元、40元、50元的门票共200张,收入7800元,其中40元和50元的张数相等,每种票各售出多少张?2、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。
六年级奥数假设法25题六年级奥数假设法25题1.鸡和兔放在一只笼子里,上面有29个头,下面有92只脚。
问:笼中有鸡兔各多少只?2.蜘蛛有8条腿,蜻蜒有6条腿和2对翅膀,蝉有6条腿和一对翅膀。
现有这三种小虫16只,共有110条腿和14对翅膀。
问:每种小虫各几只?3.某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分。
小华参加了这次竞赛,得了64分。
问:小华做对几道题?4.某电视机厂每天生产电视500台,在质量评比中,每生产一台合格电视机记5分,每生产一台不合格电视机扣18分。
如果四天得了9931分。
问:这四天生产了多少台合格电视机?5.莎莎这学期的21次测验成绩全在4分以上,总共加起来是100分。
问:她得了多少次5分?6.2分和5分的硬币共36枚,共值99分。
问:两种硬币各多少枚?7.1分、2分和5分的硬币共100枚,价值2元,如果其中2分硬币的价值比1分硬币的价值多13分,问:三种硬币各多少枚?8.1元钱买4分一张和8分一张的邮票共20张,应买4分邮票多少张?9.小明给班里买了甲、乙两种电影票共50张,甲票每张0.5元,乙票每张0.35元,共花了19.6元,问:买甲票花的钱是买乙票花的钱的几分之几?10.一辆公共汽车共载客50人,其中一部分人在中途下车,每张票价0.6元,另一部分到终点下车,每张票价0.9元。
售票员共收票款36.9元。
问:中途下了多少人?11.暑假学校组织优秀少先队员乘汽车到两个不同的地方参加夏令营活动,到甲地的车票1.2元,到乙地的.车票1.5元,共买了75张票,花了99元钱。
问:到甲、乙两地去的人数相差多少?12.学校组织新年游艺晚会,用于奖品的铅笔、圆珠笔和钢笔共232支,价值100元,其中铅笔的数量是圆珠笔的4倍,已知每支铅笔0.2元,每支圆珠笔0.9元,每支钢笔2.1元。
问:三种笔各有多少支?13.5元1千克的茶叶和8元1千克的茶叶共10千克,用去71元。
第10讲 假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的41与乙数的51的和是42,求两数各是多少? 练习1:1、甲、乙两人共有钱150元,甲的21与乙的101的钱数和是35元,求甲、乙两人各有多少元钱?2、甲、乙两个消防队共有338人。
抽调甲队人数的71,乙队人数的31,共抽调78人,甲、乙两个消防队原来各有多少人?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出91,则比黑白电视机多5台。
问:两种电视机原来各有多少台?练习2:1、姐妹俩养兔120只,如果姐姐卖掉71,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2、学校有篮球和足球共21个,篮球借出31后,比足球少1个,原来篮球和足球各有多少个?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的83与徒弟加工零件个数的74的和为49个,师、徒各加工零件多少个?练习3:1、某商店有彩色电视机和黑白电视机共136台,卖出彩色电视机的52和黑白电视机的73,共卖出57台。
问:原来彩色电视机和黑白电视机各有多少台?2、甲、乙两个消防队共有336人,抽调甲队人数的75、乙队人数的73,共抽调188人参加灭火。
问:甲、乙两个消防队原来各有多少人?【例题4】甲、乙两数的和是300,甲数的52比乙数的41多55,甲、乙两数各是多少? 练习4:1、畜牧场有绵羊、山羊共800只,山羊的2/5比绵羊的21多50只,这个畜牧场有山羊、绵羊各多少只?2、师傅和徒弟共加工零件840个,师傅加工零件的个数的85比徒弟加工零件个数的32多60个,师傅和徒弟各加工零件多少个?【例题5】育红小学上学期共有学生750人,本学期男学生增加61,女学生减少51,共有710人,本学期男、女学生各有多少人?练习5:1、金放在水里称,重量减轻191,银放在水里称,重量减少101,一块重770克的金银合金,放在水里称是720克,这块合金含金、银各多少克?2、某中学去年共招新生475人,今年共招新生640人,其中初中招的新生比去年增加48%,高中招的新生比去年增加20%,今年初、高中各招收新生多少人?三、课后作业1、海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的31多50吨,五月份完成总数的52少70吨,还有420吨没完成,第二季度原计划生产多少吨?2、小明甲养的鸡和鸭共有100只,如果将鸡卖掉201,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?3、学校买来足球和排球共64个,从中借出排球个数的41和足球个数的31后,还剩下46个,买来排球和足球各是多少个?4、某校六年级甲、乙两个班共种100棵树,乙班种的101比甲班种的31少16棵,两个班各种多少棵?5、袋子里原有红球和黄球共119个。
假设法问题集锦
一、填空
1.用180元钱可以买3只排球和2只足球,每只足球的价钱是每只排球的3倍。
用替换的思想:
可以把3只排球替换成()只足球,这样180元钱就可以买()足球,每只足球()元。
还可以把2只足球替换成()排球,这样180元钱就可以买()只排球,每只排球()元。
2.44名同学到公园划船,租了3条大船和2条小船,每条大船比每条小船多8人。
用替换的思想:
把3条大船替换成小船,这样5条小船就要比原来少装()人,只能装()人,每条小船装()人。
把2条小船替换成大船,这样5条大船就要比原来多装()人,能装()人,每条大船装()人。
3.松鼠妈妈采松果,晴天每天可以采20个,雨天每天可以采12个,她一连8天共采松果112个。
这几天中有几天是晴天,几天是雨天?
用假设的思想:
假设这8天都是晴天:那么一共可以采松果()个,比112个多()个,把一天雨天看成一天晴天要多采()个,因此有()个雨天被看成了晴天。
假设这8天都是雨天:那么一共可以采松果()个,比112个少()个,把一天晴天看成一天雨天要多采()个,因此有()个晴天被看成了雨天。
3.小明的储蓄罐里1元和5角的硬币一共40枚,有35元。
1元和5角的硬币各有多少枚?
4.某次数学测验共20道题,做对一题得5分,做错或不做一题倒扣1分.小华得了76分.问小华做对了几道题?
5、有1元和8角的人民币共12张,共计10元,1元和8角的人民币各有多少张?
6、小芳家养了鸡和兔共100只,如果鸡和兔共有248条腿,那么鸡和兔各有多
少只?
7、30个人去旅游,住宾馆时租了2人间和4人间共10间,2人间和4人间各租
了多少间?
8、一次数学竞赛共20题,规定做对一题得5分,做错一题倒扣3分,不做的题
不得分。
小红在这次竞赛中全部题都做了,总分是84分,她做错了几题?
9、鸡、兔同笼,头共有35个,脚共有94只,鸡与兔各有多少只?
10、30个人去旅游,住宾馆时租了2人间和4人间工10间,2人间和4人间
各租了多少间?
11、蝉有1对翅膀,蜻蜓有2对翅膀。
现在蝉和蜻蜓一共有10只,共有16
对翅膀。
蝉和蜻蜓各有几只?
(1)如果10只都是蝉,就有()对翅膀,1只蝉比1只蜻蜓少1对翅膀,少了()对翅膀,所以有()只蜻蜓。
如果10只都是蜻蜓,就有()对翅膀,1只蜻蜓比1只蝉多1对翅
膀,多出了()对翅膀,所以有()只蝉。
六年级语文下册课内复习题
1.文言文两则
1.《学奕》选自《孟子·告子》。
通过写奕秋教两人下棋的事,说明了学习必须专心致志,
不能三心二意。
2.《两小儿辩日》选自《列子·汤问》,故事体现了两小儿善于观察,敢于提问,说话有理有据和孔子实事求是的态度。
3.孟子是我国古代的思想家,教育家。
孔子是春秋时期的思想家,教育家,政治家,儒家学派的创始人。
他一生的言行被弟子编成《论语》一书。
4.理解句子。
(1)为是其智弗若与?曰:非然也。
难道是因为他的智力不如别人好吗?回答说:“不是这样的。
”
(2)我以日始出时去人近,而日中时远也。
我认为太阳刚出来的时候离人近一些,而中午的时候离人远一些。
(3)孰为汝多知乎?
谁说你的知识渊博呢?
2.匆匆
1.《匆匆》的作者是朱自清,他的作品还有《绿》、《背影》。
2.文章紧扣“匆匆”,写了时光流逝的踪迹,表达了作者对时光流逝的无奈和惋惜。
3.课文运用了拟人、比喻、排比、反问等修辞手法。
开头、结尾都用了设问句,首尾呼应,突出时间来去匆匆的惋惜和无奈的强烈情感。
4.写出珍惜时间的语句。
(1)一寸光阴一寸金,寸金难买寸光阴。
(2)光阴似箭,日月如梭。
3.桃花心木
1.《桃花心木》的作者是林清玄,我们学过他的《和时间赛跑》。
文章借树的生长比喻人的成长。
写一个种树人让“树木自己学会在土地里找水源”的育苗方法,说明了在艰苦环境中经受生活考验,克服依赖性的重要意义。
2.树的生长“不确定”指老天下雨,种树人浇水没规律。
人生活的“不确定”指生活中不可预知的坎坷、曲折、磨难。
桃花心木在不确定中寻找水源、拼命扎根,就能长成百年大树,显示出勃勃生机。
人在不确定中生活,经历风雨和磨难就能成为意志坚强有所作为的人。
树似人,人如树,这篇文章是借物喻人的表达方法。
3.表达文章主旨句子是“不知是树,人也是一样,再不确定中生活的人能比较经得起生活的考验,会锻炼出一颗独立自主的心。
”这句话的意思是只有在不确定中生活的人经得起生活中风风雨雨的考验,才能成为坚强的人,有所作为的人。
6.北京的春节
1.本课以时间为经线,以人们的活动为纬线,结构全文
2.文章详细描述过春节的三次高潮:(1)除夕夜家家灯火通宵,鞭炮声日夜不绝,吃团圆饭、守岁。
(2)初一男人们外出拜年,女人们在家招待客人,小孩逛庙会。
(3)十五观花灯,放鞭炮,吃元宵。
3.课文按时间顺序,对夕阳、大年初一、元宵节三部分写得详细,其它部分写得简略,这样写的好处是:点面结合、主次分明、印象深刻。
4.本课突出的表达方法是以时间为顺序,有详有略。
7.*藏戏
《藏戏》开头运用了三个排比反问句,它的作用是强调藏戏的三个特点,强烈表达作者对藏戏艺术魅力的惊叹。
文章还运用了总分总的结构。
(2)。