电力系统分析课程设计课案
- 格式:docx
- 大小:214.06 KB
- 文档页数:43
电力系统分析课程设计目录1.引言2.问题描述3.电力系统数据4.电力系统模型5.电力系统分析方法6.结果与讨论7.结论8.参考文献1. 引言电力系统分析是电力工程中重要的一个方向,其主要研究电力系统运行和控制的方法及技术。
电力系统分析课程设计是电气工程相关专业的一门实践性课程,通过对实际电力系统的分析和设计,培养学生的电力系统分析能力和解决实际问题的能力。
本文将介绍一种典型的电力系统分析课程设计,包括问题描述、电力系统数据、电力系统模型、电力系统分析方法、结果与讨论以及结论。
旨在帮助读者了解电力系统分析课程设计的整体框架和内容。
2. 问题描述在电力系统分析课程设计中,常常会给出一个具体的电力系统问题,要求学生通过分析和计算,解决该问题并给出相应的结论。
问题的具体描述包括电力系统的拓扑结构、系统参数、工作条件等。
通过这个问题,学生需要综合运用所学知识,对电力系统进行建模和分析。
3. 电力系统数据在电力系统分析课程设计中,需要提供一定的电力系统数据,包括发电机数据、输电线路数据、变压器数据等。
这些数据反映了电力系统的实际情况,为问题的分析和计算提供了基础。
4. 电力系统模型在进行电力系统分析时,需要建立电力系统的数学模型。
电力系统模型是对电力系统进行抽象和简化的表示,通常包括发电机模型、负载模型、输电线路模型等。
通过建立准确的电力系统模型,可以进行电力系统的稳定性分析、短路分析、潮流计算等。
5. 电力系统分析方法电力系统分析课程设计中常用的电力系统分析方法包括潮流计算、短路分析、稳定性分析等。
潮流计算用于分析电力系统中各节点的电压和功率分布,短路分析用于分析电力系统在短路故障时的电流分布,稳定性分析用于分析电力系统的稳定性及其对外界扰动的响应。
这些方法基于电力系统的数学模型,通过计算和仿真,得到电力系统各项指标的数值结果,并进行进一步的分析和评估。
6. 结果与讨论在电力系统分析课程设计中,学生需要对电力系统的分析结果进行总结和讨论。
电力系统课设案例电力系统课程设计案例一、设计题目设计一个简单的电力系统,包括发电机、变压器、输电线路和负荷。
根据给定的参数,进行电力系统的稳态分析和暂态分析。
二、设计要求1. 电力系统应包括至少一台发电机、一台变压器、一条输电线路和若干负荷。
2. 根据给定的参数,进行电力系统的稳态分析和暂态分析。
3. 稳态分析应包括潮流计算、无功平衡和电压稳定性分析。
4. 暂态分析应包括短路计算、过电压计算和继电保护整定。
5. 使用合适的软件进行计算和分析,并提交完整的报告。
三、参数设置1. 发电机参数:额定功率为100MW,额定电压为11kV。
2. 变压器参数:额定功率为200MVA,额定电压为11kV/10kV。
3. 输电线路参数:线路长度为50km,导线截面积为300mm²,电抗为Ω/km。
4. 负荷参数:总功率为80MW,功率因数为。
四、设计步骤1. 根据题目要求,构建电力系统的模型。
可以使用图形化的建模软件,如MATLAB的Simulink或PSS/E等。
2. 根据模型,设置相应的参数。
参数应根据实际情况进行合理设置,也可以参考相关文献或教科书。
3. 进行稳态分析。
首先进行潮流计算,确定各节点的电压和电流;然后进行无功平衡分析,确保系统无功平衡;最后进行电压稳定性分析,评估系统在正常工作条件下的电压稳定性。
4. 进行暂态分析。
首先进行短路计算,确定短路电流的大小和分布;然后进行过电压计算,评估系统在故障情况下的过电压水平;最后进行继电保护整定,确定保护装置的整定值和动作时限。
5. 根据分析结果,对电力系统的设计和运行提出建议和改进措施。
6. 整理设计报告,将整个设计过程、分析方法和结果整理成完整的报告,并提交给指导老师或评审专家进行评审。
电力系统分析课程设计任务书及说明书格式第一篇:电力系统分析课程设计任务书及说明书格式《电力系统分析》课程设计任务书一.设计原则1.必须遵守国家有关电气的标准规范。
2.必须严格遵守国家的有关法律、法规、标准。
3.满足电力系统的基本要求(电能质量、可靠性、经济性、负荷等级)4.必须从整个地区的电能分配、规划出发,确定整体设计方案。
二.设计目的通过课程设计进一步提高学生的收集资料、专业制图、综述撰写的能力,培养理论与实际应用结合的能力,开发独立思考的能力,寻找并解决工程实际问题的能力,为以后的毕业设计与实际工作打下坚实的基础。
三.时间安排总学时(2周)1.分析设计题目,明确设计要求,收集资料,参考文献,拟定系统方案。
(1-2天)2.独立完成初步设计方案(一般选取两个方案,并加以比较)(1-2天)3.独立完成系统方案设计及计算,如系统中所有设备的选择与校验,故障分析编程,环网分解等类型的设计等。
(1-3天)4.各阶段设计的叙述,纠正和新知识更新能力的应用(1-2天)5.编写说明书,完成最终方案。
(1-2天)6.答辩,验收。
(半天)四.课程设计基本要求 1.要求学生初步掌握工程设计的程序和方法,特别是工程中用到的电气制图标准,常用符号,计算公式和编程技巧。
2.通过独立设计一个工程技术课题,设计应用软件,充分提高运用新技术、新信息、新技术成果和装置的能力。
具体要求见各课题。
3.在设计过程中,要多思考,多分析,对设计计算内容和结果进行整理和总结。
4.完成《课程设计说明书》及相关的图,可以手写,可以计算机打印。
5.准备答辨。
课程设计说明书的格式1.封面:(请学习委统一领取并发给大家)2.标题:电力系统课程设计《……》(各人的课题标题)一.基础资料(四号黑体)1.(小标题用小四黑体)(正文用五号宋体)2.二.设计内容某部分(按设计大纲)三.六.设计内容某部分七.设计小结(总结整个设计内容)八.设计体会(总结个人在设计过程中碰到的问题及解决方法,体会,建议等)九.参考文献附录说明:一.基础资料(课题要求,相关的条例,规范等)二.~六.见各课题的要求七.设计小结(本设计通过对……的分析,提出了……设计方案,并对……进行了分析比较,从……方面考虑,最终选择了……设计方案,它具有……优点,还有……不足)从技术方面总结你的设计。
摘要潮流计算是电力系统最基本最常用的计算。
根据系统给定的运行条件,网络接线及元件参数,通过潮流计算可以确定各母线的电压,包括电压的幅值和相角,各元件流过的功率,整个系统的功率损耗等一系列数据。
牛顿—拉夫逊Newton-Raphson法是数学上解非线性方程组的有效方法,有较好的收敛性。
将N-R法用于潮流计算是以导纳矩阵为基础的,由于利用了导纳矩阵的对称性,稀疏性及节点编号顺序优划等技巧,使N-R法在收敛性,占用内存,计算速度等方面的优点都超过了阻抗法。
本文首先介绍了电力系统潮流利用PSASP仿真软件进行计算机辅助分析的基本知识及潮流计算牛顿-拉夫逊法,然后通过PSASP仿真软件输出结果得出相应结论。
由于利用了PSASP仿真软件,使得结果合理、可靠。
关键词:潮流计算,牛顿-拉夫逊法,PSASP,电力系统仿真目录1 绪论 (1)1.1 电力系统潮流分析计算的意义和目的 (1)1.2 课程设计要求 (1)2牛顿拉夫逊潮流计算简介 (4)3 PSASP软件简介 (7)4仿真结果及报表输出 (8)4.1 线路图仿真结果 (8)4.2 潮流分析报表输出结果 (9)5结论 (12)参考文献 (13)1 绪论1.1电力系统潮流分析计算的意义和目的1、在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大、小方式下潮流交换控制、调峰、调相、调压的要求。
2、在编制年运行方式时,在预计负荷增长及新设备投运基础上,选择典型方式进行潮流计算,发现电网中薄弱环节,供调度员日常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议。
3、正常检修及特殊运行方式下的潮流计算,用于日运行方式的编制,指导发电厂开机方式,有功、无功调整方案及负荷调整方案,满足线路、变压器热稳定要求及电压质量要求。
4、预想事故、设备退出运行对静态安全的影响分析及作出预想的运行方式调整方案。
5、电力系统都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。
电力系统分析课程设计一、课程目标知识目标:1. 掌握电力系统基本概念、组成及运行原理;2. 学会分析电力系统的稳定性、可靠性及经济性;3. 了解电力系统的故障分析方法及其在实际工程中的应用;4. 掌握电力系统短路计算、潮流计算的基本原理及方法。
技能目标:1. 能够运用所学知识对电力系统进行简单的稳定性分析;2. 能够运用潮流计算软件进行电力系统的潮流计算;3. 能够运用短路计算方法分析电力系统的短路故障;4. 培养学生团队协作、沟通表达及解决问题能力。
情感态度价值观目标:1. 培养学生热爱电力工程,关注国家电力产业发展;2. 增强学生的环保意识,认识到电力系统对环境保护的重要性;3. 培养学生严谨、务实、创新的学习态度,提高学生的自主学习能力。
课程性质:本课程为电力系统专业核心课程,具有较强的理论性和实践性。
学生特点:学生具备一定的电路基础和电力系统知识,但对电力系统分析方法的掌握程度不一。
教学要求:结合学生特点,注重理论与实践相结合,强调动手能力培养,提高学生的综合分析能力。
通过本课程的学习,使学生能够掌握电力系统分析的基本方法,具备一定的电力工程实践能力。
二、教学内容1. 电力系统基本概念:包括电力系统的组成、电力系统运行特点、电力系统分类及发展概况。
教材章节:第一章2. 电力系统稳定性分析:介绍电力系统稳定性基本概念、稳定性分析方法(如小干扰稳定性分析、暂态稳定性分析)及应用。
教材章节:第二章3. 电力系统潮流计算:讲解潮流计算的基本原理、数学模型及求解方法,介绍牛顿-拉夫逊法和P-Q分解法等潮流计算方法。
教材章节:第三章4. 电力系统短路计算:阐述短路计算的基本原理、短路电流计算方法以及短路故障类型。
教材章节:第四章5. 电力系统故障分析:介绍电力系统故障分析方法,如对称分量法、序网图法等,分析故障对电力系统的影响。
教材章节:第五章6. 电力系统优化与控制:讲解电力系统优化与控制的基本原理,如最优负荷分配、无功优化等。
电力系统设计课程设计一、课程目标知识目标:1. 理解电力系统的基本组成部分,包括发电、输电、变电、配电等环节。
2. 掌握电力系统的基本参数和运行原理,如电压、电流、功率、效率等。
3. 了解电力系统的设计原则和标准,包括安全性、可靠性和经济性。
技能目标:1. 能够运用电力系统相关知识,进行简单电力系统的设计和分析。
2. 掌握使用相关软件或工具,模拟电力系统的运行状态,并提出优化方案。
3. 能够撰写电力系统设计报告,清晰表达设计思路和结果。
情感态度价值观目标:1. 培养学生对电力系统的兴趣,激发他们探索电力科技的热情。
2. 增强学生的团队合作意识,培养他们在设计过程中分工合作、共同解决问题的能力。
3. 强化学生的安全意识,让他们认识到电力系统设计中的责任和重要性。
课程性质分析:本课程为电力系统设计相关课程,旨在帮助学生将理论知识与实际应用相结合,提高解决实际问题的能力。
学生特点分析:学生已具备一定的电力系统基础知识,具有较强的学习能力和探究精神。
他们对电力系统设计感兴趣,但可能缺乏实际操作经验。
教学要求:1. 结合课本内容,注重理论与实践相结合,提高学生的实际操作能力。
2. 注重启发式教学,引导学生主动思考、分析问题,培养学生的创新能力。
3. 强化团队合作,提高学生的沟通与协作能力,培养具备综合素质的人才。
二、教学内容根据课程目标,教学内容分为以下三个部分:1. 电力系统基本理论- 研究电力系统的基本概念、组成部分和运行原理。
- 教材章节:第一章至第三章,包括电力系统概述、电力系统元件和电力系统运行原理。
2. 电力系统设计方法- 探讨电力系统设计的原则、流程和标准。
- 教材章节:第四章至第六章,涵盖电力系统设计基本要求、电力系统设计流程和电力系统设计标准。
3. 电力系统设计实践- 结合实际案例,运用所学知识进行电力系统设计。
- 教材章节:第七章至第九章,涉及电力系统设计软件应用、电力系统设计实例和电力系统优化。
电力系统分析课程设计本课程设计旨在通过潮流计算方法,对电力系统进行分析和优化。
设计要求包括了各元件参数计算、绘制等效电路、功率分布计算和调压计算等环节。
在设计过程中,我们采用了基于节点电压法的潮流计算方法,并结合实际情况进行了调整和优化。
通过本次课程设计,我们深入了解了电力系统的基本原理和潮流计算方法,同时也提高了我们的实际操作能力。
设计意义电力系统是现代社会不可或缺的基础设施之一,而潮流计算则是电力系统分析和优化的基础。
本课程设计旨在通过实践操作,加深对电力系统的理解和掌握潮流计算方法,为今后从事相关工作打下基础。
设计要求本课程设计要求对电力系统进行潮流计算,并进行相应的优化。
具体要求包括各元件参数计算、绘制等效电路、功率分布计算和调压计算等环节。
同时,还要结合实际情况进行调整和优化,确保计算结果的准确性和可靠性。
设计环节3.1 设计思路本次课程设计采用基于节点电压法的潮流计算方法,通过对电力系统各元件的参数计算和等效电路的绘制,得出系统中各节点的电压和功率分布情况,并进行调压计算和优化。
设计思路简单明了,操作难度适中,适合初学者进行实践操作。
3.2 潮流计算过程3.2.1 各元件参数计算在潮流计算过程中,需要对电力系统中各元件的参数进行计算。
这些参数包括电阻、电抗、导纳等,是潮流计算的基础。
在计算过程中,需要结合实际情况进行调整和优化,确保计算结果的准确性和可靠性。
3.2.2 绘制等效电路绘制等效电路是潮流计算过程中的重要环节。
通过等效电路的绘制,可以得出电力系统中各节点的电压和功率分布情况,为后续的调压计算和优化提供依据。
在绘制过程中,需要注意各元件的参数和连接方式,确保等效电路的准确性和可靠性。
3.2.3 功率分布计算功率分布计算是潮流计算过程中的关键环节。
通过功率分布计算,可以得出电力系统中各节点的功率分布情况,为后续的调压计算和优化提供依据。
在计算过程中,需要注意各节点的负荷情况和电力系统的运行状态,确保计算结果的准确性和可靠性。
摘要潮流计算是电力系统非常重要的分析计算,用以研究系统规划和运行中提出的各种问题。
对规划中的电力系统,通过潮流计算可以检验所提出的电力系统规划方案能否满足各种运行方式的要求;对运行中的电力系统,通过潮流计算可以预知各种负荷变化和网络结构的改变会不会危及系统的安全,系统中所有母线的电压是否在允许的范围以内,系统中各种元件(线路、变压器等)是否会出现过负荷,以及可能出现过负荷时应事先采取哪些预防措施等。
潮流计算是电力系统分析最基本的计算。
除它自身的重要作用之外,在《电力系统分析综合程序》(PSASP)中,潮流计算还是网损计算、静态安全分析、暂态稳定计算、小干扰静态稳定计算、短路计算、静态和动态等值计算的基础。
传统的潮流计算程序缺乏图形用户界面,结果显示不直接难与其他分析功能集成。
网络原始数据输入工作大量且易于出错。
本文采用MATLAB语言运行WINDOWS操作系统的潮流计算软件。
而采用MATLAB 界面直观,运行稳定,计算准确。
关键词:电力系统潮流计算;牛顿—拉夫逊法潮流计算;MATLAB目录一、课程设计任务书二、电力系统潮流计算概述2.1 电力系统简介2.2 潮流计算简介2.3 潮流计算的意义及其发展三、潮流计算课题3.1 潮流计算题目3.2 对课题的分析及求解思路四、牛顿拉夫逊法潮流计算4.1计算公式4.2 解题一般步骤4.3 手算部分4.4 计算机部分五、潮流计算流程图及源程序5.1 潮流计算流程图5.2 潮流计算源程序图总结参考文献一、设计内容及要求复杂网络牛顿—拉夫逊法潮流分析与计算的设计电力系统潮流计算是电力系统中一项最基本的计算,设计内容为复杂网络潮流计算的计算机算法——牛顿-拉夫逊法。
首先,根据给定的电力系统简图,通过手算完成计算机算法的两次迭代过程,从而加深对牛顿-拉夫逊法的理解,有助于计算机编程的应用。
其次,利用计算机编程对电力系统稳态运行的各参数进行解析和计算;编程完成复杂网络的节点导纳矩阵的形成;电力系统支路改变、节点增减的程序变化;编程完成各元件的功率损耗、各段网络的电压损耗、各点电压、功率大小和方向的计算。
安徽大学电气工程及其自动化电力系统分析课程设计目录一、概述。
3二、负荷计算的意义。
4三、发电机的选择。
5四、变压器容量的选择。
5五、变压器连接方式的选择。
7六、无功补偿装置的选择。
8七、潮流计算。
10八、电气主接线的初步设计及方案选择。
15九、短路电流计算的目的和结果。
21十、电气设备选择。
29十一、参考文献。
39十二、个人小结。
40一、概述电力自从应用于生产以来,已成为现代化生产、生活的主要能源,在工农业、交通运输业、国防、科学技术和人民生活等方面都得到了广泛的应用。
电力工业发展水平和电气化程度是衡量一个国家国民经济发展水平的重要标志。
变电站是电力系统的重要组成部分,是联系发电厂和用户的中间环节,起着变换和分配电能的作用,直接影响整个电力系统的安全与经济运行。
变电站按其分类的原则不同可划分出许多类型,比如按变电站容量和馈线的多少可以分为大、中、小型变电站;按供电对象的差异可以分为城镇变电站、工业变电站和农业变电站;按变电站在电力系统中的地位分为枢纽变电站、中间变电站、地区变电站和终端变电站;按电压等级可以分为超高压、高压、中压变电站和低压变电站;按是否有人正常运行值班可分为有人值班变电站,无人值班变电站等。
变电站的电气设备可划分为一次设备和二次设备两大类。
一次设备是直接进行电能生产转换和输配的设备,包括同步发电机、电力变压器、电动机、断路器、负荷开关、隔离开关、避雷器、互感器、消弧线圈、补偿电容器或调相机等,都是电压高、电流大的强电设备,它们的安全可靠性是变电站最关心的头等大事。
二次设备是对一次设备和系统进行检测、控制、调节、保护并与上级有关部门和电力用户进行联络通信的有关设备,主要包括各种继电保护装置和自动装置,测量与监控设备、直流电源和远动通信设备等。
1.1 设计的原因及必要性变电站是电力系统的一个重要环节 , 由电气设备及配电线路按一定的接线方式所组成;它从电力系统取得电能,通过其变换、分配、输送与保护等功能,将电能安全、可靠、经济地送到每一个用电设备的装设场所,并利用电气控制设备来决定用电设备的运行状态,最终使电能为国民经济和人民生活发挥巨大的作用。
1.2 设计原则变电站的设计应根据工程的 5~10 年发展规划进行,做到远近期结合,以近期为主,正确处理近期建设与远期发展的关系,适当考虑扩建的可能。
变电站的设计,必须从全局出发,统筹兼顾,按照负荷性质、用电容量、工程特点和地区供电条件,结合国情合理地确定设计方案;必须坚持节约用地的原则;同时还应符合现行的国家有关标准和规范的规定。
[ 关键词 ]变电站、变压器、接线、高压网络、配电系统二、负荷计算的意义2.1. 负荷计算的定义:我们用“计算负荷”来表示实际使用的总负荷。
计算负荷又称需要负荷或最大负荷。
计算负荷是一个假想的持续性负荷,其热效应应与同一时间内通过实际变动负荷所产生的最大热效应相等。
所以根据“计算负荷”选择导线和电气设备,在实际运行中的最高温升不会超过允许值,通常将以半小时平均负荷为依据所绘制的负荷曲线上的“最大负荷” 称为计算负荷,并把它作为按发热条件选择电气设备的依据,用 P ca(Q ca、S ca、I ca) 或 P30(Q30、S30、I 30) 表示。
规定取“半小时平均负荷”的原因。
一般中小截面导体的发热时间常数τ为 10min 以上,根据经验表明,中小截面导线达到稳定温升所需时间约为3τ=3×10= 30(min),如果导线负载为短暂尖峰负荷,显然不可能使导线温升达到最高值,只有持续时间在30min 以上的负荷时,才有可能构成导体的最高温升。
2.2 负荷计算的意义供电系统在正常条件下能够安全可靠地运行,有赖于科学合理的电力设计。
根据类型和负荷资料正确估算负荷所需的电力和电量,是电力设计的基础。
计算负荷是根据已知的电力用户的用电设备安装容量确定的预期不变的最大假想负荷。
计算负荷是确定供配电系统、选择变压器容量、导线截面、开关电器和互感器等额定参数的重要依据。
计算负荷的准确程度直接影响电气设备、导线、电缆的选择是否经济、合理。
计算负荷确定过大,电气设备及线缆的选择过大、造成投资增加,浪费有色金属;相反计算负荷确定过小,电气设备及线缆的选择偏小,导致供电系统承受较大的过负荷电流而过热,加速其绝缘老化,降低使用寿命,增大电能损耗,甚至造成事故,影响供电系统的正常可靠运行。
负荷计算意义重大。
计算负荷的确定涉及因素很多,负荷情况复杂。
虽然各类负荷的变化有一定的规则可循,但仍很难准确确定计算负荷。
实际上负荷并不是一成不变的,实际负荷与设备性能、生产组织与管理、操作者技能与素质,以及能源供应状况的诸多因素有关。
负荷计算只能力求接近实际并保留一定裕度。
三、发电机的选择根据此次设计要求,可选用 QFQ-50-2型发电机型号额定额定电额定电功率转速次暂态容量压(KV)流(A)因数(r/min )电抗 X d '' (MV)QFQ-50-25010.534400.830000.1239主变压器的选择变压器的功能主要有:电压变换;电流变换,阻抗变换;隔离;稳压(磁饱和变压器) ; 自耦变压器;高压变压器(干式和油浸式)等,变压器常用的铁芯形状一般有 E 型和 C型铁芯,XED型,ED型 CD型。
变压器按用途可以分为:配电变压器、电力变压器、全密封变压器、组合式变压器、干式变压器、单相变压器、电炉变压器、整流变压器、电抗器、抗干扰变压器、防雷变压器、箱式变电器试验变压器转角变压器大电流变压器励磁变压器。
3.1 变压器类型的选择一般正常环境的变电所,可选用油浸式变压器,且应优先选用SL11等系列低损耗电力变压器。
在多尘或有腐蚀性气体严重影响变压器安全运行的场所,应选用防尘型或者防腐蚀性变压器,例如SL15 等系列全密封式变压器,具有防霉、防尘、防腐蚀的性能,并可与爆炸性气体相隔离。
多层或高层主体建筑内变电所,宜选用干式变压器,例如环氧树脂浇注干式变压器。
多雷地区及土壤电阻率较高的山区,宜选用防雷型变压器。
供电电压偏低或电压波动严重而用电设备对电压质量又要求较高的场所,可选用有载调压型变压器,如SZ系列配合有载调压开关的变压器。
四、变压器容量的选择变压器的选择要考虑到负荷将来可能增加和改造的可能性,必要时最好留有一定的富余。
在负荷系数较低的场合,实际应用中一般都允许变压器超过额定负荷为峰值提供电力,而不必为短时的峰值负荷让变压器选择特别大的容量。
实际应用变压器的选择还要考虑到开关电器的电流容量和分断容量以及导体的载流量。
装有一台主变压器的变电所。
每台主变压器的容量应不小于总的计算负荷即SN T Sca装有两台主变压器的变电所。
每台主变压器的容量应不小于总的计算负荷的 60%,一般选取为 70%,即S NT0.7S ca同时每台主变压器的容量应不小于全部一、二级负荷之和,即SNT Sca(Ⅰ+Ⅱ)根据以上原则S NT S'*0.7 27.9MV A所以应选容量为 31.5MW的主变压器。
五、变压器连接方式的选择变压器的连接方式必须和系统电压相位一致,否则不能并列运行。
电力系统采用的绕组连接方式只有y 和△,高、中、低三侧绕组如何要根据具体情况来确定。
我国 110KV及以上电压,变压器绕组都采用 Y0 连接; 35KV亦采用 Y 连接,其中性点多通过消弧线接地。
35KV 及以下电压,变压器绕组都采用△连接。
有以上知,此变电站 110KV侧采用 Y0 接线主变中性点的接地方式:选择电力网中性点接送地方式是一个综合问题。
它与电压等级、单相接地短路电流、过电压水平、保护配置等有关,直接影响电网的绝缘水平、系统供电的可靠性和连续性、变压器和发电机的运行安全以及对通信线路的干扰。
主要接地方式有:中性点不接地、中性点经消弧线圈接地和直接接地。
电力网中性点的接地方式,决定了变压器中性点的接地方式。
电力网中性点接地与否,决定于主变压器中性点运行方式。
在本设计中 110KV采用中性点直接接地方式10KV采用中性点不接地方式主变的调压方式调压方式变压器的电压调整是用分解开关切换变压器的分接头,从而改变变压器比来实现的。
切换方式有两种:不带电切换,称为无励磁调压,调压范围通常在 +5%以内,另一种是带负荷切换,称为有载调压,调压范围可达到+30%。
对于 110KV及以下的变压器,以考虑至少有一级电压的变压器采用有载调压。
由以上知,此变电所的主变压器采用有载调压方式。
六、无功补偿装置的选择6.1 补偿装置的意义(1)根据用电设备的功率因数,可测算输电线路的电能损失。
通过现场技术改造,可使低于标准要求的功率因数达标,实现节电目的。
(2) 采用无功补偿技术,提高低压电网和用电设备的功率因数,已成为节电工作的一项重要措施。
(3) 无功补偿,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量,稳定设备运行。
(4) 减少电力损失、线损,一般工厂动力配线依据不同的线路及负载情况,其电力损耗约 2%--3%左右,使用电容提高功率因数后,总电流降低,可降低供电端与用电端的电力损失。
(5) 改善供电品质,提高功率因数,减少负载总电流及电压降。
于变压器二次侧加装电容可改善功率因数提高二次侧电压。
(6) 延长设备寿命。
改善功率因数后线路总电流减少,使接近或已经饱和的变压器、开关等机器设备和线路容量负荷降低,因此可以降低温升增加寿命(温度每降低 10°C,寿命可延长 1 倍)(7) 最终满足电力系统对无功补偿的监测要求,消除因为功率因数过低而产生的罚款。
(8) 无功补偿可以改善电能质量、降低电能损耗、挖掘发供电设备潜力、无功补偿减少用户电费支出,是一项投资少,收效快的节能措施。
(9) 无功补偿技术对用电单位的低压配电网的影响以及提高功率因数所带来的经济效益和社会效益,确定无功功率的补偿容量,确保补偿技术经济、合理、安全可靠,达到节约电能的目的(10)节能降耗,减少电力支出,经济效益明显,实现可持续发展。
(11)减少发电、供电设备的设计容量,减少投资,使有效投资最大化。
6.2 无功补偿装置容量的确定现场经验一般按主变容量的10%--30 %来确定无功补偿装置的容量。
根据此次设计要求补偿后功率因数应为0.92 。
Q Q ca P ca * tan12.67 20* tanarccos0.924.15MVar选用 BWF10.5-100-1W型并联电容器n Q / Q c4150 /10042个,每相装14个补偿后的实际功率因数cos P /P 2(Q Q )220 / 202(12.67 4.2)20.92 ca ca ca c满足设计要求七、潮流计算7.1 选择输电导线截面积导线计算电流为I ca S/3UN39.8*103/ 3*110 208.9A ca选用 LGJ-120 型号导线所选导线允许载流量I al307A 208.9A满足要求7.2 潮流计算A3+j6.6BS1S28.7+j10.514.5+j17.5C1.805+j40.333DS130j14.53MV .AS340j17.04MV .AZAB l AB (r1 jx1 ) 40*1/ 2*(0.15 j0.33) 3 j 6.6 Z BC l BC (r1 jx) 50*(0.29j 0.35) 14.5 j17.5 Z AC l AC (r1 jx) 30*(0.29j 0.35) 8.7 j10.5Z ZABZBCZAC26.2 j 34.6R PU2*103/S2148*110 2 *10 3 / 315002 1.805 T k N NT23X T U k %U N *10 /100 S NT23210.5*110 *10 /100*3150040.333计算运算负荷变压器空载损耗U D U D'/ K T101.712*10.5/110 9.7KV变压器负载损耗S P2 Q2/U2(R jXT )ZT33N T402 17.042 /110 2 (1.805j 40.333) 0.282j 6.301MV .A变压器总损耗S T ST0SZT0.3205j 6.553MV .AC点的运算负荷S C' S3S T(400.3205)j (17.04 6.553) 40.3205j23.593MV .AS2S1S C '(3040.3205)j (14.5323.593)(10.3205j 9.063)MV .A设 C点运行电压为 110KV不计功率损耗时网络的功率分布****SAB[ S2(Z BC Z AC ) S C 'Z AC ] / Z[(3040.3205) j (14.5323.593)(10.3205j9.063)(23.2j 28) (40.3205 j 23.593)(8.7 j10.5)] / (26.2 j 34.6) 4.03MV .AS AC S1S AB25.97j14.53MV .ASBC S C 'SAC14.3505 j 9.063MV .A精确功率分布计算SAC(P AC2Q AC2 )(R AC jX AC ) / U C2 (25.97214.532 )(8.7j10.5) /1102 0.637j 0.769MV .A线路首端功率S AC 'SAC S AC 26.607j15.299MV .ASBC( P BC2Q BC2 )( R BC jX BC ) / U C2(14.350529.0632 )(14.5j17.5) /110 20.345 j 0.417MV .A线路 BC首端功率为S BC ' S BC S BC14.696 j9.480MV .A线路 BC上的电压降落为U BC(P BC R BC Q BC X BC ) / U C j( P BC X BC Q BC R BC ) / U C (14.696*14.59.480*17.5) /110j (14.696*17.5 9.480*14.5) /110 3.445j1.088KV节点 B 的电压U B(U C U BC)2( U BC2 )(110 3.445) 2 1.0882113.45KV线路 AB末端功率为S AB''S BC'S2(14.696 10.3205) j (9.480 9.063)4.3775j 0.417MV .AS AB (P AB''Q AB'' )(R AB jX AB ) / U B2(4.377520.4172 )(3 j 6.6) /113.452 0.0045 j 0.0099MV .A线路 AB的首端功率为S AB'S AB''SAB 4.382j 0.427MV .A线路 AB上的电压降落为U AB(P''R Q''XAB ) / UBj ( P''XABQ''R )/UBAB AB AB AB AB AB(4.3775*30.417*6.6)/113.45 j (4.3775*6.60.417*3) /113.45 0.14j0.244KVA节点电压为U A(U B U AB)2( U AB)2(113.45 0.14) 20.2442113.59 KV 变压器支路的电压降落U T( P C' R T Q C' X T ) / U C j (P C' X T Q C' R T ) /U C(40.3205*1.805 23.593*40.333) /110 j(40.3205*40.333 23.593*1.805) /110 9.312j14.397MV .AU D'(U C U T )2( U T )2(110 9.312)214.3972101.712KVD节点电压为U D U D' / K T101.712*10.5/110 9.7KV网络的潮流分布如图A BCD八、电气主接线的初步设计及方案选择8.1 电气主接线的概况1、发电厂和变电所中的一次设备、按一定要求和顺序连接成的电路,称为电气主接线,也成主电路。