动量守恒能量守恒练习题
- 格式:docx
- 大小:10.73 KB
- 文档页数:3
第三章动量守恒定律和能量守恒定律1.如图所示,圆锥摆的摆球质量为m 速率为V,圆半径为R,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为2. 一物体质量为10 kg,受到方向不变的力F= 30+ 40t (SI)作用,在开始的两秒内,此力冲量的大小等于____________ ;若物体的初速度大小为10 m/s,方向与力F的方向相同,则在2s末物体速度的大小等于3. _____________________________ 如左图所示,A B两木块质量分别为m v77777^77777777777777777~和m,且m= 2m,两者用一轻弹簧连接后静止于光滑水平桌面上,如图所示•若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比E K A/E B为__ .4. ____________________ 质量m= 1kg 的物体,在坐标原点处从静止出 发在水平面内沿x 轴运动,其所受合力方向与运 动方向相同,合力大小为 F = 3 +2x (SI),那么当 x = 3m 时,其速率v= ,物体在开始运动的 3m 内,合力所作的功W ________ 。
5. 一质点在二恒力的作用下 ,位移为r = 3i + 8j(SI), 在此过程中,动能增量为24J,已知其中一 恒力F ! = 12 i - 3j (SI), 则另一恒力所作的功为1、计算题6.如图,质量为M=1.5kg 的物体,用 一根长为l =1.25m 的细绳悬挂在天 花板上,今有一质量为m=10g 的子弹 以v °=500m/s的水平速度射穿 物体,刚穿出物体时子弹的速度大小v =30m/s,设穿透时间极短,求:(1) 子弹刚穿出时绳中张力的大小;(2) 子弹在穿透过程中所受的冲量.V 0 l V _mi=> m M7.质量为M 的很短的试管,用长 度为L 、质量可忽略的硬直杆悬挂 如图,试管内盛有乙醚液滴,管 口用质量为m 的软木塞封闭.当 加热试管时软木塞在乙醚蒸汽的压力下飞出.如果试管绕悬点 0在竖直平面内作 一完整的圆运动,那么软木塞飞出的最小速度为 多少?若将硬直杆换成细绳,结果如何?答案: 一、填空题1. Rmg/ v2. , 24m/S3. 24. 18J , 6m/s5. 12J.二、计算题6. 子弹与物体组成的系统水平方向动量守恒,设子弹刚穿出物体时的物体速度为v ,有mv =mv+Mvv =n (v o v )/M (1)绳中张力 T = Mg+M v 2/l2 2 =Mg+ m ( v o v ) / ( Ml )=⑵子弹所受冲量 I = m ( v v °)= •s负号表示与子弹入射方向相反 .7.解:设V 1为软木塞飞出的最小速度的大小,软木塞和试管系统水平方向动量守恒,该试管速度的大小为 V 2, Mv 2 mv 1 0,贝Uv 1 Mv 2 / m 2 分(1)当用硬直杆悬挂时, M 到达最高点时速度须略大于零,由机械能守恒: 1 分•0 L I —^im M1 2 ______________________ Mv 2 Mg2L v 2 4gLv 1 2M gL/m1 即 v 、gL 1 分 由机械能守恒:^Mv f 2 1 5 Mg2L ^Mv 2 5MgL 2 2 2 应有v 2 5gL 故这时v 1 M . 5gL/m 1 分 即 (2)若悬线为轻绳,则试管到达最高点的速度 v 须满足。
大学物理练习题3:“力学—(角)动量与能量守恒定律”一、填空题1、一个质量为10kg 的物体以4m/s 的速度落到砂地后经0.1s 停下来,则在这一过程中物体对砂地的平均作用力大小为 。
2、t F x 430+=(式中x F 的单位为N ,t 的单位为s )的合外力作用在质量为kg m 10=的物体上,则:(1)在开始s 2内,力x F 的冲量大小为: ;(2)若物体的初速度1110-⋅=s m v ,方向与x F 相同,则当力x F 的冲量s N I ⋅=300时,物体的速度大小为: 。
3、一质量为kg 1、长为m 0.1的均匀细棒,支点在棒的上端点,开始时棒自由悬挂。
现以100N 的力打击它的下端点,打击时间为0.02s 时。
若打击前棒是静止的,则打击时棒的角动量大小变化为 ,打击后瞬间棒的角速度为 。
4、某质点最初静止,受到外力作用后开始运动,该力的冲量是100.4-⋅⋅s m kg ,同时间内该力作功4.00J ,则该质点的质量是 ,力撤走后其速率为 。
5、设一质量为kg 1的小球,沿x 轴正向运动,其运动方程为122-=t x ,则在时间s t 11=到s t 32=内,合外力对小球的功为 ;合外力对小球作用的冲量大小为 。
6、一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动。
已知在此力作用下质点的运动学方程为3243t t t x +-= (SI)。
则在0到4 s 的时间间隔内,力F 的冲量大小I = ,力F 对质点所作的功W = 。
7、设作用在质量为 2 kg 上的物体上的力x F x 6=(式中x F 的单位为N ,x 的单位为m )。
若物体由静止出发沿直线运动,则物体从0=x 运动到m x 2=过程中该力作的功=W ,m x 2=时物体的速率=v 。
8、已知质量kg 2=m 物体在一光滑路面上作直线运动,且0=t 时,0=x ,0=ν。
若该物体受力为x F 43+=(式中F 的单位为N ,x 的单位为m ),则该物体速率ν随 x 的函数关系=)(x ν ;物体从0=x 运动到2=x m 过程中该力作的功=W 。
高考物理《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。
大学物理练习题3:“力学—(角)动量与能量守恒定律”一、填空题1、一个质量为10kg 的物体以4m/s 的速度落到砂地后经停下来,则在这一过程中物体对砂地的平均作用力大小为 。
2、t F x 430+=(式中x F 的单位为N ,t 的单位为s )的合外力作用在质量为kg m 10=的物体上,则:(1)在开始s 2内,力x F 的冲量大小为: ;(2)若物体的初速度1110-⋅=s m v ,方向与x F 相同,则当力x F 的冲量s N I ⋅=300时,物体的速度大小为: 。
3、一质量为kg 1、长为m 0.1的均匀细棒,支点在棒的上端点,开始时棒自由悬挂。
现以100N 的力打击它的下端点,打击时间为时。
若打击前棒是静止的,则打击时棒的角动量大小变化为 ,打击后瞬间棒的角速度为 。
4、某质点最初静止,受到外力作用后开始运动,该力的冲量是100.4-⋅⋅s m kg ,同时间内该力作功,则该质点的质量是 ,力撤走后其速率为 。
5、设一质量为kg 1的小球,沿x 轴正向运动,其运动方程为122-=t x ,则在时间s t 11=到s t 32=内,合外力对小球的功为 ;合外力对小球作用的冲量大小为 。
6、一个力F ϖ作用在质量为 1.0 kg 的质点上,使之沿x 轴运动。
已知在此力作用下质点的运动学方程为3243t t t x +-= (SI)。
则在0到4 s 的时间间隔内,力F ϖ的冲量大小I = ,力F ϖ对质点所作的功W = 。
7、设作用在质量为 2 kg 上的物体上的力x F x 6=(式中x F 的单位为N ,x 的单位为m )。
若物体由静止出发沿直线运动,则物体从0=x 运动到m x 2=过程中该力作的功=W ,m x 2=时物体的速率=v 。
8、已知质量kg 2=m 物体在一光滑路面上作直线运动,且0=t 时,0=x ,0=ν。
若该物体受力为x F 43+=(式中F 的单位为N ,x 的单位为m ),则该物体速率ν随 x 的函数关系=)(x ν ;物体从0=x 运动到2=x m 过程中该力作的功=W 。
三大守恒练习题守恒定律是物理学中的重要概念,它描述了在封闭系统中某些物理量的守恒特性。
常见的守恒定律有能量守恒定律、动量守恒定律和角动量守恒定律。
这些守恒定律在解决物理问题时起着至关重要的作用。
为了更好地理解和应用守恒定律,下面将针对每个定律提出三道练习题。
一、能量守恒练习题1. 一个弹簧恢复力常数为k的弹簧,一端固定在墙上,另一端系有质量为m的物体。
初始时刻,物体与弹簧静止。
当把物体沿着弹簧的方向拉开距离l并释放时,求物体在压缩到弹簧原长时的速度。
解析:根据能量守恒定律,系统的机械能在运动过程中保持不变。
在初始时刻,物体的机械能只有重力势能;在物体压缩到弹簧原长时,机械能只有弹性势能。
因此,有重力势能转化为弹性势能,即mgL = (1/2)kL^2,解得物体在压缩到弹簧原长时的速度为v = √(2gL)。
2. 一个质量为m的物体从高度为h处自由下落,下落过程中与地面发生完全弹性碰撞,反弹后的高度为h'。
求弹性碰撞过程中物体与地面的动量变化。
解析:根据动量守恒定律,碰撞过程中系统的动量保持不变。
在自由下落阶段,物体的动量为mv,碰撞后竖直方向上的速度反向,动量为-mv。
因此,第一阶段动量变化量为Δp1 = -mv,第二阶段动量变化量为Δp2 = -(-mv) = mv。
整个弹性碰撞过程中,物体与地面的动量变化为Δp = Δp1 + Δp2 = 0。
3. 一个质量为m的火箭,以速度v0燃烧燃料喷出。
喷出速度为v,燃料的质量为m',燃烧时间为Δt。
求火箭燃烧过程中的平均推力。
解析:根据牛顿第二定律和动量守恒定律,火箭燃烧过程中的平均推力可以表示为火箭的质量变化率与喷出速度之积的相反数,即F = -Δ(mv)/Δt = v dm/Δt。
由质量守恒定律可知,燃烧过程中的质量变化率为dm/Δt = -m'/Δt。
因此,火箭燃烧过程中的平均推力为F = -v(m'/Δt)。
二、动量守恒练习题1. 一个质量为m1的小球在静止的水平面上,与一个质量为m2的小球发生碰撞,碰撞后两球的速度分别为v1'和v2'。
弹性碰撞练习题研究物体之间的动量守恒和动能守恒在物理学中,碰撞是研究物体之间相互作用的重要概念。
在许多碰撞问题中,动量守恒和动能守恒是常用的方法。
本文将通过几道弹性碰撞练习题,探讨物体间碰撞时动量和能量守恒的应用。
练习题一:两个物体A和B,质量分别为mA和mB,以速度vA和vB相对运动,它们碰撞后分别以v'A和v'B的速度继续运动。
假设碰撞为完全弹性碰撞,请计算碰撞前后物体的动量和能量。
解析:根据动量守恒定律,碰撞前后物体的总动量保持不变,即mA*vA + mB*vB = mA*v'A + mB*v'B。
根据动能守恒定律,碰撞前后物体的总动能保持不变,即0.5*mA*vA² + 0.5*mB*vB² = 0.5*mA*v'A² + 0.5*mB*v'B²。
通过以上两个方程,我们可以解得碰撞后物体的速度v'A和v'B。
通过动量和能量的计算,我们可以得到碰撞前后物体的状态。
练习题二:一个静止的物体A质量为mA,与一个运动物体B质量为mB发生完全弹性碰撞,碰撞后A和B的速度分别为v'A和v'B,请计算碰撞前物体B的速度vB。
解析:根据动量守恒定律,碰撞前后物体的总动量保持不变,即mA*0 + mB*vB = mA*v'A + mB*v'B。
根据以上方程,我们可以解得物体B的速度vB。
通过动量守恒定律,我们可以计算出碰撞前物体B的速度。
练习题三:两个相同质量的物体A和B以相反的方向以相同的速度v运动,它们发生完全弹性碰撞,碰撞后A和B的速度分别为v'A和v'B。
请计算碰撞前后系统的总动量和总动能。
解析:根据动量守恒定律,碰撞前后物体的总动量保持不变,即mA*v + mB*(-v) = mA*v'A + mB*v'B,即0 = mA*(v'A - v) + mB*(v'B + v)。
《大学物理》动量守恒定律和能量守恒定律练习题及答案解析一、选择题1.对动量和冲量,正确的是(B )(A)动量和冲量的方向均与物体运动速度方向相同。
(B)质点系总动量的改变与内力无关。
(C)动量是过程量,冲量是状态量。
(D)质点系动量守恒的必要条件是每个质点所受到的力均为0。
2如图所示,子弹入射在水平光滑地面上静止的木块后而穿出,以地面为参考系,下列说法中正确的是( C )(A)子弹减少的动能转变成木块的动能(B)子弹—木块系统的机械能守恒(C)子弹动能的减少等于子弹克服木块阻力所做的功(D)子弹克服木块阻力所做的功等于这一过程中产生的热。
3.对质点组有下列几种说法:(1)质点组总动量的改变与内力无关(2)质点组总动能的改变与内力无关(3)质点组机械能的改变与内力无关(4)质点组机械能的改变与保守内力无关正确的是( C )(A)(1)和(3)正确(B)(2)和(3)正确(C)(1)和(4)正确(D)(2)和(4)正确4.对于保守力,下列说法错误的是(C)(A)保守力做功与路径无关(B)保守力沿一闭合路径做功为零(C)保守力做正功,其相应的势能增加(D)只有保守力才有势能,非保守力没有势能。
5.对功的概念有以下几种说法:(1)保守力作正功时系统内相应的势能增加.(2) 质点运动经一闭合路径,保守力对质点作的功为零.(3)作用力与反作用力大小相等、方向相反,所以两者所作的功的代数合必为零.在上述说法中:(4)摩擦力一定做负功( C )(A) (1) 、(2)、(4)是正确的.(B) (2) 、(3) 、(4)是正确的.(C)只有(2)是正确的.(D)只有(3)是正确的.6.当重物减速下降时,合外力对它做的功( B )(A)为正值(B)为负值(C)为零(D)无法确定。
7、考虑下列四个实例,你认为哪一个实例中物体和地球构成的系统的机械能不守恒?(A)(A)物体在拉力作用下沿光滑斜面匀速上升(B)物体作圆锥摆运动(C)抛出的铁饼作斜抛运动(不计空气阻力)(D)物体在光滑斜面上自由滑下8.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,判断下列说法中正确的是( A )(A)重力和绳子的张力对小球都不作功。
大学物理练习题第三章动量守恒定律和能量守恒定律一、选择题1. 质量m=2kg的质点在力F⃗=12ti⃗ (SI)的作用下,从静止出发沿X轴正方向作直线运动,求它在3秒末的动量( )A. −54i⃗ kg∙m/sB. 54i⃗ kg∙m/sC.−27i⃗ kg∙m/sD. 27i⃗ kg∙m/s2. 一个质点同时在几个力作用下的位移为:∆r⃗=4i⃗−5j⃗+6k⃗⃗ (SI)其中一个力为恒力F⃗=−3i⃗−5j⃗+9k⃗⃗,则此力在该位移过程中所作的功为( )A. 67JB. 91JC. 17JD. -67J3. 对质点组有以下几种说法①质点组总动量的改变与内力无关②质点组总动能的改变与内力无关③质点组机械能的改变与保守内力无关在上述说法中( )A. 只有①是正确的B. ①、③是正确的C. ①、②是正确的D. ②、是正确的4. 质点系的内力可以改变( )A. 系统的总质量B. 系统的总动量C. 系统的总动能D. 系统的总角动量5. 质量为m的质点在外力作用下,其运动方程为r⃗=Acosωti⃗+bsinωtj⃗其中A,B,ω都是正的常数,则在t1=0到t2=π(2ω)⁄这段时间内所作的功( )A.mω2(A2+B2)2⁄B. mω2(A2+B2)C. mω2(A2−B2)2⁄D.mω2(B2−A2)2⁄6. 如图,一劲度系数为k的轻弹簧水平放置,左端固定,右端与桌面上一质量为m的木块相连,用一水平力F向右拉木块而使其处于静止状态。
若木块与桌面间的静摩擦系数为μ,弹簧的弹性势能为E,则下列关系中正确的是( )A. E=(F−μmg)22kB.E=(F+μmg)22kC. E=F22kD. (F−μmg)22k ≤E≤(F+μmg)22k二、填空题1. 设作用在质量为M=1kg的物体上的力F=6t+3 (SI)。
如果物体在这个力的作用下,由静止开始沿直线运动,在0到2.0s的时间间隔内,这个力作用在物体上的冲量大小I= 。
动量守恒能量守恒练习题
动量守恒和能量守恒是物理学中两个重要的守恒定律。
它们在解决物理问题中起着关键的作用,尤其在力学和能量转化的问题中应用广泛。
下面是一些关于动量守恒和能量守恒的练习题,让我们来一起进行练习,加深对这两个定律的理解。
练习题1:碰撞问题
两个相互靠近的物体质量分别为m1和m2,初始速度分别为v1和v2。
它们发生完全弹性碰撞,向相反方向运动后的速度分别为v1'和v2'。
根据动量守恒定律,我们可以得到以下式子:
m1v1 + m2v2 = m1v1' + m2v2'
对于给定的初始条件,求解碰撞后物体的速度。
练习题2:能量转化问题
一物体从高处自由下落,其高度为h,质量为m。
忽略空气阻力的影响,我们可以应用能量守恒定律,得到以下式子:mgh = 1/2mv^2
其中,g是重力加速度,v是物体的速度。
根据这个式子,给定初始条件,可以求解物体在到达地面时的速度v。
练习题3:弹簧振动问题
一质量为m的物体挂在一个弹簧上,弹簧的劲度系数为k。
当物体受到外力F推动后,它绕平衡位置做简谐振动。
根据动量守恒和能量守恒定律,我们可以得到以下式子:
mω^2A^2 = F^2
其中,A是振幅,ω是振动的角频率。
根据这个式子,可以求解物体的运动参数。
练习题4:线性势能转化为动能
一个弹簧压缩到长度为x,劲度系数为k。
当弹簧释放时,它将能量转化为物体的动能。
根据能量守恒定律,可以得到以下式子:1/2kx^2 = 1/2mv^2
其中,x是弹簧的长度,v是物体的速度。
根据这个式子,可以求解物体的速度。
练习题5:球体滚动问题
一个质量为m的球体从斜面上方的高度h滚动下来,斜面的倾角为θ。
忽略摩擦的影响,根据能量守恒定律,我们可以得到以下式子:
mgh = 1/2mv^2 + 1/2Iω^2
其中,g是重力加速度,v是球体的速度,I是球体关于通过球心的转动轴的转动惯量,ω是球体的角速度。
根据这个式子,可以求解球体在到达底部时的速度。
以上是一些关于动量守恒和能量守恒的练习题。
通过解决这些练习题,我们可以巩固对这两个定律的理解,并在实际问题中应用它们来解决物理问题。
无论是在力学还是能量转化的问题中,这两个定律都是非常有用的工具。
希望以上的练习题能帮助你提升对动量守恒和能量守恒的掌握程度。