2.7 二次根式 第一课时导学案
- 格式:doc
- 大小:94.50 KB
- 文档页数:2
二次根式导学案教案课程名称:二次根式导学案适用年级:高中数学(高一或高二)导学目的:1.理解二次根式的含义与性质;2.掌握二次根式的化简与运算规则;3.运用二次根式解决实际问题。
导学内容:1.二次根式的概念A.二次根式是形如√a(a≥0)的根式,其中a称为被开方数;B.当a为非负实数时,存在唯一的非负实数b,使得b²=a,即√a=b;C.若a为非负实数,而b为正实数,则√a记为±b,其中“±”表示正负号的取值。
2.二次根式的性质A.二次根式的值域为非负实数;B.二次根式满足乘方运算规律:(√a)²=a,√(a²)=,a,(,...,表示取绝对值);C. 二次根式满足四则运算规律:(1)加减运算:√a±√b =√(a±2√ab+b)(2)乘法运算:√a*√b = √(ab)(3)除法运算:√a/√b = √(a/b)。
3.二次根式的化简A.将二次根式化简为最简形式的方法:①提取公因数;②合并同类项;③分解因式。
导学任务:1.计算以下二次根式的值,并判断其是否为整数或无理数:A.√9;B.√16;C.√7;D.√15;2.将下面的二次根式化简为最简形式:A.√12;B.√32;C.√75;D.√98;3.通过合并同类项的方法,将以下二次根式进行化简:A.2√3+3√3;B.√6-3√2+4√2;4.解决以下实际问题:A.一个正方形的面积为128平方单位,求其边长;B.一个长方形的面积为72平方单位,宽是√2个单位,请求其长度。
导学提示:1.在计算二次根式的过程中,应注意,即使在被开方数前有系数,系数的平方根仍需要提取出来;2.化简二次根式时,注意合并同类项的原则,相同根号下的数值项可以进行合并;3.解决实际问题时,可以将问题转化为方程求解,或者利用几何性质进行解答。
导学总结:通过本次导学,我们学习了二次根式的概念与性质,掌握了二次根式的化简与运算规则,并通过实际问题的解决,巩固了所学知识。
八年级数学(上)导学案班级 姓名 学号2.7.3 二次根式教学目标:1.进一步理解二次根式的概念,进一步熟练二次根式的化简。
2. 了解根号内含有字母的二次根式的化简3.利用二次根式的化简解决简单的数学问题. 通过独立思考,能选择合理的方法解决问题.第一环节:复习引入(1)最简二次根式的概念; (2)二次根式化简过程中,你有哪些体会?(3)上节课课后作业:若414.12≈,732.13≈,449.26≈,求23.你是怎样解决的? 第二环节:知识巩固1.巩固提升 例4 计算: (1)3223-;(2)81818+-;(3)3)6124(÷-.当堂练习 化简:(1)10152-;(2)31312+-;(3)8)2118(⨯-.第三环节:问题解决如图所示,图中小正方形的边长为1,试求图中梯形的面积,你有哪些方法,与同伴交流.1.交流让学生充分发表意见.2.答案(1)直接求法.过点D 作AB 边上的高DE ,可发现边AB ,DC 及DE都是某一个小直角三角形的斜边.根据勾股定理可求得AB =25, CD =2,DE =23,面积梯形ABCD 的面积是23)225(21⨯+=18. (2)间接求法.将梯形ABCD 补成一个5×7长方形,用长方形的面积减去3个小三角形的面积,得梯形ABCD的面积是11212421552175⨯⨯-⨯⨯-⨯⨯-⨯=18.第四环节:知识提升1.知识探索问题:2a (0>a )等于多少?根据算术平方根的定义,可知a a =2(0>a ). 2.知识运用 例5 化简:(1)3325b a (0>a ,0>b );(2)3)(y x +(0≥+y x );(3)abb a(0>a ,0>b ).第五环节:课堂小结(1)二次根式的化简:二次根式的化简一定要化成最简二次根式.(2)利用式子a a =2(0>a )可将根号内含字母的二次根式化简,结果也要化成最简二次根式.。
《二次根式》教案(第一课时)一、内容和内容解析1.内容二次根式的概念.2.内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念.它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.本节课的教学重点是:根据算术平方根的意义了解二次根式的概念教学.二、目标和目标解析1.目标(1)根据算术平方根的意义了解二次根式的概念,明白被开方数必须是非负数原因.(2)会用二次根式表示实际问题中的数量和数量关系.2.目标解析达成目标(1)的标志是:学生能从具体数的算术平方根出发,过渡到含字母的情况,通过算术平方根的概念得到二次根式的概念,并根据算术平方根的意义得到二次根式被开方数和结果均为非负数的结论.达成目标(2)的标志是:学生能够根据实际问题,利用开平方运算的意义,列出二次根式.三、教学问题诊断分析二次根式概念的获得,要让学生经历其抽象的过程,借此培养学生的抽象概括能力,加深学生对二次根式概念的理解.教学时,要充分利用教材的“思考”栏目,从生活中的实际问题引入,以激发学生的学习兴趣,让学生体会由特殊到一般的过程,由此给出二次根式的定义.在二次根式的概念中,为什么要强调被开方数大于等于零?引导学生讨论,知道二次根式被开方数必须是非负数的理由以及二次根式的结果的非负性,所以二次根式的双重非负性是本节课的难点.四、教学过程设计(一)创设情景,提出问题电视塔越高,从塔顶发射的电磁波传得越远,从而能收看到电视节目的区域越广,电视塔高h(单位:km)与电视节目信号的传播半径r(单位:km)之间存在近似关系r=其中地球半径,R≈6400km.如果两个电视塔的高分别是h1km,h2km,那么它们的传播半径之.你能化简这个式子吗?问题1式子表示什么?公式中r=的课题.设计意图:让学生借助已学的数和式子的运算,从数与式子运算的完整性角度引出要研究的问题让学生知道本章将要学习的内容,让学生提前做到心中有数.问题2用带根号的式子填空,看看写出的结果有什么特点:(1)面积为3的正方形的边长为_______,面积为S的正方形的边长为_______.(2)一个长方形围栏,长是宽的2倍,面积为130m2,则它的宽为______m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h (单位:m)满足关系h=5t2.如果用含有h的式子表示t,则t为=_____.设计意图:让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.(二)合作探究,形成知识(1)这些式子分别表示什么意义?(2)这些式子有什么共同特征?教师引导学生说出各式的意义.)概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.(3)根据你的理解,请写出二次根式的定义.叫做二次根式.(学生总结)a≥0)的式子叫做二次根式,“”称为二次根号.(师生共同总结)(4)提醒学生注意二次根式定义包含的内容.②被开方数a≥0.③a可以是数,也可以是含有字母的式子.(5)在二次根式的定义中,为什么要有条件“a≥0”?教师引导学生回想4、0的算术平方根分别是什么?-4有没有算术平方根?最后总结只有非负数才有算术平方根.设计意图:采用具体到抽象的方式,通过归纳得出二次根式的概念.(三)初步应用,巩固知识练习:二次根式和算术平方根有什么关系?学生通过小组合作交流得出:二次根式都是非负数的算术平方根;带有根号的算术平方根是二次根式.【例1】当x在实数范围内有意义,则应满足被开方数x-2≥0.解:由x-2≥0,得x≥2.当x≥2在实数范围内有意义.【例2】当x解:因为2x≥0,所以,当x在实数范围内都有意义.由3x≥0,得x≥0.当x≥0在实数范围内有意义.设计意图:通过练习、例1、例2,加深概念理解.(四)比较辨别,探索性质0的大小.先让学生独立思考,然后教师引导学生根据概念,分a>0和a=0两种情况进行讨论.当a>0a>0;当a=0表示0=0;(a≥0)是一个非负数.设计意图:强化学生对二次根式双重非负性的认识.(五)综合应用,深化提高练习1判断下列各式哪些是二次根式:ax≥-(1(210);(3(4≤0).学生先独立完成,后小组展示确定二次根式有意义的条件(被开方数大于或等于零),所以(2)(3)(4)为二次根式.练习2当x是什么实数时,下列各式有意义.(1(2(3(4解:(1)由3-4x≥0,得x≤34.(2)由xx≥⎧⎨-≠⎩10,得≥0且1.x x≠(3)由x≤2-0,得x=0x≠0(4)由-2≥0且2-≥0x x ,得2x =.设计意图:辨析二次根式的概念,确定二次根式有意义的条件.(六)课堂小结(1)本节课你学到了哪一类新的式子?(a ≥0(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?中的a ≥0≥0. 二次根式的双重非负性.(3)二次根式与算术平方根有什么关系?二次根式都是非负数的算术平方根,带有根号的算术平方根是二次根式.设计意图:回顾本节课所学的二次根式的概念,再次确定二次根式有意义的条件;理解二次根式的双重非负性以及二次根式与算术平方根的关系.(七)布置作业1x 的取值范围是( )A .0x >B .2≥x -C .2≥xD .2≤x2.已知y 3,则2xy 的值为( )A .15-B .15C .152-D .1523.求使下列各式有意义的x 的取值范围? (1)2+x -x 23-;(2)x --11+x ; (3)y =;(4)2||12--x x . 4.已知12-a +a b 2-+c b a ++=0.求a 、b 、c 的值.作业答案:1.D 202≥得≤x x -.故选D .2.B 解析:要使有意义,则25≥052≥0x x -⎧⎨-⎩,解得x =25,故y =3,∴2xy =2×25×3=15.故选B . 3.(1)322≤≤x -;(2)0≤x 且1x ≠-;(3)0≥x 且1x ≠.(4)12≥x 且2x ≠. 4.∵12-a ≥0,a b 2-≥0,c b a ++≥012-a +a b 2-+c b a ++=0∴2a -1=0,b -2a =0,a +b +c =0 ∴13122,,a b c ===-五、目标检测设计1.指出下列哪些是二次根式?(134(5≥2);(6<).a a b设计意图:考查二次根式的概念.2.a 取何值时,下列根式有意义?(1 (23 (45 设计意图:考查二次根式的有意义的条件.3n 的值为___________.设计意图:考查二次根式的有意义的条件.目标检测答案:1.(1)(4)(5)是二次根式.2.解:(1)由a +1≥0,得a ≥-1;(2)由1-2a >0,得a <12;(3)由()2-1a ≥0,得a 为任何实数;(4)a 为任何实数;(5)a =1.3.0,3,4.。
二次根式第一课时教案[6篇]以下是网友分享的关于二次根式第一课时教案的资料6篇,希望对您有所帮助,就爱阅读感谢您的支持。
第一篇二次根式教学目标:(1) 了解二次根式的概念,初步理解二次根式有意义的条件.(2) 通过具体问题探求并掌握二次根式的基本性质:当a≥0时,a= a;能运用这个性质进行一些简单的计算。
(3) 通过观察一些特殊的情形,获得一般结论,使学生感受归纳的思想方法。
教学重点:二次根式的概念以及二次根式的基本性质教学难点:经历知识产生的过程,探索新知识.教学方法:讨论法教学过程:一.情景创设1.回顾:什么叫平方根? 什么叫算术平方根?2.计算:.(2)如图,在Rt∆ABC中,AB=50m,BC=am,则()2(3)圆的面积为S,则圆的半径是 .(4)正方形的面积为b-3,则边长为 .3.对上面(2)~(4)题的结果,你能发现它们有什么共同的特征吗?二、探索与实践1、二次根式的定义.__________________________________________________ ____ 说说对二次根式a 的认识,好吗?__________________________________________________ ______2、练习:说一说,下列各式是二次根式吗? (1)32 (2)6 (3)-12 (4)-m(m≤0) (5)xy(x、y异号) (6)a2+1 (7)53、例1: x是怎样的实数时,式子x-5在实数范围内有意义?4、二次根式性质的探索:22=4,即(4)2= 4;32=9,即(9)2= 9;…… 观察上述等式的两边,你得到什么启示?揭示:当a≥0时,5、例2。
计算:(1)(3)2;(2)((3)(a+b)2 (a+b≥0)6、练习.(1)(22)= (2)(-23)2 3a) = a。
222); 3 三、课堂练习P59页练习1、2.四、课堂小结引导学生总结1. 什么叫做二次根式?你们能举出几个例子吗?2. 二次根式有哪两个形式上的特点?3.当a≥0时,五、作业教后感:a) = ?2第二篇二次根式第一课时教学内容二次根式的概念及其运用教学目标1.a≥0)的意义解答具体题目.2.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1a≥0)的式子叫做二次根式;2a≥0)”解决具体问题.教学过程一、复习引入在第11章我们学习了平方根和算术平方根的意义,引进了一个符号a.这里的a表示什么?a应满足什么条件?当aa表示a的算术平方根,即正数a的正的平方根.当a是零时,a等于0,它表示零的平方根,也叫做零的算术平方根.当a是负数时,a没有意义.即:a(a≥0)表示非负数a的算术平方根.二、新知探究a≥0)•的式子叫做二次根式,注意:1. 其中的a可以是具体的数,也可以是含有字母的代数式.2.在二次根式a中,字母a必须满足a≥0,即被开方数必须是非负数.(这里可以让学生自己举几个二次根式的例子,有助于学生的理解)例1.下列式子,哪些是二次根式,11x>0)x≥0,y•≥0).xx+y分析二,被开方数是正数或0,即非负数.;第x>0)x≥0,y≥0)1x1.x+y例2.x是怎样的实数时,二次根式x-1在实数范围有意义?分析要使二次根式有意义,必须且只须被开方数是非负数.解被开方数x-1≥0,即x≥1.所以,当x≥1时,二次根式x-1有意义.例3.当x在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.解:由3x-1≥0,得:x≥当x≥三、巩固练习1313教材P练习第2题.四、应用拓展例4.当x分析:要使+0和1在实数范围内有意义?x+11在实数范围内有意义,必须同时满足x+11中的x+1≠0.x+1解:依题意,得⎨由①得:x≥-由②得:x≠-1 32⎧2x+3≥0 ⎩x+1≠0当x≥-且x≠-1+321在实数范围内有意义.x+1例5. (1) 已知,求的值.(答案: )(2)=0,求a2004+b2004的值.(答案:2)五、归纳小结(学生活动,老师点评)本节课要掌握:1a≥0)的式子叫做二次根式,号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业xy251.教材习题中的对应题目.2.导学案中的对应习题. 教学反思:第三篇16.1 二次根式(一)骆诗龙学习目标:1、知道什么叫二次根式,理解被开方数是非负数;2、掌握二次根式在实数范围内有、无意义的条件。
二次根式小结与思考(1)学习目标:理解二次根式概念,掌握二次根式的性质及基本运算法则,能运用二次根式知识解决相关问题。
学习过程:一、复习回顾1、我们把式子_____________________叫二次根式,二次根式有意义的条件是_____________________。
2、二次根式主要有以下性质: ⑴()2a =________(________) ⑵2a =________3、二次根式乘除法法则: ⑴a b = ________(________),反之_____________________ ⑵ab =________(__________),反之______________________4、二次根式化简,就是使二次根式满足:⑴___________________________________________________⑵___________________________________________________⑶___________________________________________________5、_______________________________________________叫同类二次根式。
6、二次根式相加减,先________________,然后___________________。
7、二次根式运算与整式的运算比较,相同点是___________,不同点是_________。
二、典型例题例1、在函数34x y x +=-中,自变量x 的取值范围是____________。
例2、若化简2|1|816x x x ---+的结果为2x -5,则x 的取值范围是( )A 、x 为任意实数B 、1≤x ≤4C 、x ≤1D 、x ≥4例3、下列根式中,与3是同类二次根式的是( )A 、8B 、0.3C 、23D 、12例4、若一个三角形三边长为a 、b 、c ,设1()2P a b c =++,则这个三角形的面积 ()()()S P P a P b P c =---(海伦——秦九韶公式),当a =4,b =5,c =6时,求S 值。
第二章 实数2.7二次根式导学案(2)学习目标1.掌握二次根式的运算法则2.会进行(根号下仅限于数)二次根式简单四则运算.并解决实际问题3.经过观察,比较,总结和应用等数学活动,感受和体验发现的快乐,并提高应用意识。
学习重难点:二次根式的简单四则运算。
学习过程:1.复习:1、二次根式的性质:)0,0______(≥≥=b a ab ,)0,0____(>≥=b a ba 2、在二次根式的运算中,最后结果中的二次根式一般要写成______的形式。
2.自主探究:1、计算下列各式,观察计算结果:(1)94⋅=______ 94⋅=_______(2)2516⋅=_______ 2516⋅=_______(3)36100⋅=_______ 36100⋅=_______2、用“>”、“<”或“=”填空:(1)94⋅=______94⋅(2)2516⋅=______2516⋅(3)36100⋅=_____36100⋅问题:(1)你们发现了什么规律?(2)你能用数学表达式表示发现的规律吗?教师点评:(1)被开方数都不是负数(2)两个二次根式相乘等于一个二次根式。
(3)把两个二次根式中的被开方数相乘,作为等号另一边二次根式中的被开方数。
(4)表达式a ·b =ab (a ≥0,b ≥0) 由此可知:)0,0(≥≥⋅=b a b a ab )0,0(>≥=b a b a b a这两个公式倒过来就可以成为二次根式的乘除法运算公式。
)0,0(≥≥=⋅b a ab b a )0,0(>≥=b a ba b a三、例3:计算:⨯2.巩固练习:⨯÷18278÷⋅四、同样二次根式也可以进行加减运算,这时,以前学习的实数运算法则、运算律仍然适用。
当然,如果运算结果中出现某些项,她们各自化简后的被开方数相同,那么应当将这些项合并。
五、例4:计算:3 ×2 ×-5 (-1)2(+4)(-4) (-)2.巩固练习:× 1362-⨯ 6)6532(⋅-22)3223()3223(+-- (-3)2 (+2)(-2) (-) 2312348⋅÷ 2532112÷⋅⨯六、例5:计算- + (-)2.巩固练习:10827753+- 2215448÷- 3)18282(÷-+)2418)(122(--⨯⨯3.若一个长方体的长为cm 62,宽为cm 3,高为cm 2,则它的体积为_______3cm 。
子洲三中 “双主”高效课堂 数学 导学案2014-2015学年第一学期 姓名: 组名: 使用时间2014年 月 日年 级科 目课 题主 备 人 备 课 方 式负责人(签字) 审核领导(签字) 序号 八(3) 数学第七节 二次根式 第1课时乔智一、【学习目标】1.理解二次根式的概念,明确它的限制条件。
2.理解二次根式的性质,并能运用其性质进行相关计算。
3.理解二次根式的乘除法则,会运用法则进行二次根式的运算。
二、【学习过程】 (一)、学习准备1、算术平方根的概念:一般地,如果一个_______x 的平方等于,a 即,a x 2=那么这个_______x 就叫做,a 的________________,记为“a ”,读作“根号a ”。
2、常用的乘法公式:(1)平方差公式: ________________________;(2)完全平方公式:________________________。
3、乘法对加法的分配律:________________________。
4、阅读教材:第七节《二次根式》(一) (二)、教材精读5、二次根式的概念例1求下列各数的算术平方根,并用符号表示出来: (1)24.7; (2)29.3)(-; (3)2.25;(4).412归纳:形如)0(≥a a 的式子叫做________________,其中____________叫做被开方数。
6、例2下列各式,哪些是二次根式? (1);6 (2);18- (3)12+x ; (4);83-归纳:对二次根式概念的理解应注意以下四点:(1)二次根式中都含有_______________________________;(2)在二次根式中,被开方数a 必须满足__________,当________时,二次根式无意义; (3)在二次根式中,a 可以是一个____也可以是含字母的__________; (4)二次根式)0(≥a a 是a 的_______________,所以0______a 。
第十六章 二次根式第一课时 二次根式一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程(一)复习回顾:(1)已知a x =2,那么a 是x 的______;x 是a 的________ 记为______,a 一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)自主学习(1)16的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。
如果用含h 的式子表示t ,则t = ;(3)圆的面积为S ,则圆的半径是 ;(4)正方形的面积为3-b ,则边长为 。
思考:16,5h ,πs ,3-b 等式子的实际意义.说一说他们的共同特征. 4定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x 2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式a 中,字母a 必须满足 , a 才有意义。
3、根据算术平方根意义计算 : (1) 2)4((2) (3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a , 4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
二次根式课题 2.7 二次根式〔1〕 活动安排 例2 化简:〔1〕50;〔2〕72;〔3〕31;〔1〕你怎么发现50含有开得尽方的因数的?你怎么判断714是最简二次根式的? 〔2〕将二次根式化成最简二次根式时,你有哪些经验与体会或步骤,与同伴交流〔步骤〕。
达标小测:化简:(1)32;(2)72;(3)712;(4)5.1;(5)51新知拓展:如图,方格纸中每个小格的边长为1,画一条长为20的线段。
总结升华:1、本节课知识上你有哪些收获?2、在学法和解题方法上你有什么经验与大家分享?3、本节课是否还有疑惑?达标反应:1、化简: (1)489⨯; (2)716⨯; (3)2512; (4)27;(5)18; (6)133; (7)509(8)21。
2、一个直角三角形的斜边长为15cm ,一条直角边长为10cm ,求另一条直角边长。
3、如图,两个正方形的边长分别是多少?你能借助这个图形解释228=吗?学习目标 1、理解二次根式和最简二次根式的概念. 2、掌握二次根式的性质. 3、能用二次根式的性质将二次根式化为最简二次根式探究任务三:独学3分钟 组学2分钟 抽展〔展台展示〕2分钟评价归纳2分钟新知拓展:独立探索3分钟;小组交流、板展〔展台展示〕3分钟;讲评总结2分钟总结升华 3分钟 达标反应 活动安排 探究任务一:明晰二次根式的概念 请同学们围绕以下问题进行新知探索: 问题:5,11,2.7,12149,))((b c b c -+〔其中b=24,c=25〕,上述式子有什么共同特征?归纳小结:〔1〕都含有 运算,并且被开方数都是 。
〔2〕一般地,式子)0(≥a a 叫做 。
a 叫做 .强调条件:0≥a 〔3〕对于 二次根式概念的理解应注意哪些方面?〔从写法,被开方数的形式要求等〕 达标小测:以下哪些式子是二次根式,哪些不是二次根式? (1)6 〔2〕18- 〔3〕12+x 〔4〕38- 〔5〕122++x x 〔6〕2)12(--x 〔7〕x 〔8〕x 21+〔x<-21) 探究任务二:探究性质〔特殊到一般〕问题1:94⨯= ,94⨯= ; 94= ,94= ; 2516= ,2516= .问题2:用计算器计算:76⨯= ,76⨯= ;76= ,76= . 问题3:〔1〕观察上面的结果你可得出什么结论?试用自己的语言复述。
课题 二次根式1 【学】【学习目标】1a ≥0)的意义解答具体题目.2.提出问题,根据问题给出概念,应用概念解决实际问题.【复习引入】 1.知识回顾:(1)4的平方根是____ _;0的平方根是______ ;-16 ____ 平方根.(2)5的平方根是 ;5的算术平方根是____ .(3)-1有算术平方根吗?(4)0的算术平方根是多少?(5)当a <0有意义吗?2.完成课本p2的思考3. 叫做二次根式.【探究新知】1.对二次根式概念的理解: (1)从形式上看,必须有二次根号;(2)被开方数不能小于0,只能取非负数.探究1下列式子满足什么条件时是二次根式?12+m ,2n -,2a ,2-a ,y x -探究2 (1)当x 是多少时,在实数范围内有意义?(2)当x 11x +在实数范围内有意义?练习:x 取什么实数时,下列各式有意义.(1)x 43-; (2)23-x ; (3)2)3(-x ; (4)x x 3443-+-.(a ≥0)具有双重非负性探究3 (1)已知y ,求x y值.(2),求a 2004+b 2004的值.【巩固练习】1.填空题:(1)25的平方根是 ,4的算术平方根为 ,8的立方根是 ,25-的算术平方根是 ;38的立方根是 .(2)若32+a 有意义,则a 的取值范围是 .(3)若x 21-有意义,则x .若321-x 有意义,则x .(4x 有 个2.下列各式①y ; ②2+a ; ③52+x ; ④a 3;⑤962++y y ; ⑥3其中一定是二次根式的有( ) A .4个 B.3个 C.2个 D.1个3.若式子32--x x 有意义,则x 的取值范围是( )A 、x ≥2B 、x ≠3C 、x >2且x ≠3D 、x ≥2且x ≠34.若2y =+,则x =_______ ,y =___________.5x 的取值范围是 ;x 的取值范围是 ;③要使式子2x -有意义,则x 的取值范围是 .6.7.已知x ,y 2440y y -+=,则xy = .8.x 是怎样的实数时,下列各式在实数范围内有意义?(1)2)1(+x ;(2)11-x ;(3)1+x ; (4)x 211-;(5)2)3(-x ;(6)x --31;(7)12+x ;(8)x9. 已知a 、b =b +4,求a 、b 的值.10.若,013322=--+-y x x 求y x +的值;中午作业1. 若3x -+3x -有意义,则2x -=_______.2.要使1213-+-x x 有意义,则x 应满足 ( ) A .12≤x ≤3 B .x ≤3且x ≠12 C . 12<x <3 D . 12<x ≤3 3.若代数式21--x x 有意义,则x 的取值范围是 ( ) A .x >1且x ≠2 B .x ≥1 C .x ≠2 D .x ≥1且x ≠2 4.若a 、b 为实数,且满足│a -2│+2b -=0,则b -a 的值为 ( )A .2B .0C .-2D .以上都不对5. 若0)3(12=++-+y y x ,则y x -的值为 ( )A .1B .-1C .7D .-76.根式3-x 中x 的取值范围是 ( )A .x ≥ 3B .x ≤ 3C .x < 3D .x > 37.若二次根式12x +有意义,则的取值范围为 ( )A. x ≥12 B. x ≤12 C. x ≥12 D. x ≤128.下列式子中,是二次根式的是 () A .-7 B .37 C .x D .x9. 下列说法中,正确的是 () A .带根号的式子一定是二次根式 B .代数式x 2+1一定是二次根式C .代数式x +y 一定是二次根式D .二次根式的值必是无理数10.使41x -有意义的x 的取值范围是 .11. 要使式子a +2a 有意义,则a 的取值范围为_____________________.12. 若等式1)23(0=-x成立,则x 的取值范围是 .13. ()2120x y -+=,则x +y = ;化简x x -+-22 =_______.14. 要使下列式子有意义,x 的取值范围是什么?(151x + (2210x -(3210x +; (42x -15. 若二次根式26x -+有意义,化简│x -4│-│7-x │.16.已知△ABC 是等边三角形,AB =6,将一块含有30°角的直角三角板DEF 如图所示放置,让等边△ABC 向右平移(BC 只能在EF 上移动).如图1,当点E 与点B 重合时,点A 恰好落在三角板DEF 的斜边DF 上.在等边△ABC 向右平移的过程中,AB ,AC 与三角板斜边的交点分别为G ,H ,连接EH 交AB 于点P ,如图2(1)求证EB =AH ;(2)PG 的长度在等边△ABC 平移的过程中是否会发生变化?如果不变,请求出PG 的长;如果变化,请说明理由.。
丹东市二十四中学八年级数学上2.7二次根式(1)
主备:曹玉辉 副备:李春贺 孙芬 审核: 2016/8/4 一、学习准备:
1、计算:=16 =9 =4
2、说出下列各式的意义:b a +,121
49
,
2.7,11,5 二、学习目标:1、了解二次根式和最简二次根式的概念,能将简单的二次根式化简为最
简二次根式。
2、掌握积的算术平方根与商的算术平方根的运算法则。
三、学习提示:
1、活动一:自主探究, (1)、观察课前准备2中的式子,找出它们的共同特征: (2)、一般地,形如 的式子叫做二次根式,a 叫做 。
2、活动二:合作探究: (1)、计算下列各式:
=⨯94 ,4=⨯416 ,=⨯416 ;
94= ,=9
4 ;=4925
;
(2)、观察上面各式及计算结果:想一想下列各组式子是否相等?并回答问题:
76⨯与76⨯
76与76 b a ⨯与b a ⨯ (a ≥0,b ≥0),
b a 与b
a
(a ≥0,b >0) 积的算术平方根,等于 ,
商的算术平方根,等于 。
3、活动二:合作探究: (1)、自学P42例1,例2并讨论什么样二次根式叫最简二次根式, (2)、仿造例1,例2完成P42随堂练习1 练习
1、判断下列各式是不是二次根式。
①、3- ②、2+x (x 为有理数) ③、122++x x ④、x -(x >0)⑤、34x - 2、P43习题2.9知识技能2,3
四、学习小结:你有哪些收获? 五、夯实基础:
1、下列二次根式:a 54,22a ,a 8,
31,2
1
中,最简二次根式的个数是( ) A 、4 B 、3 C 、2 D 、1
2、下列二次根式中,是最简二次根式的是( )
A 、
3
1 B 、18 C 、y x
2 D 、22y x + 3、化简:
(1)、945 (2)、14412581⨯ (3)、2
2
16121a b
六、能力提升:
已知实数x ,y 满足()0122
=++-y x ,求x-y 的值。
评价反思 :
书海浩瀚,扑进去其乐无穷。
叶辛。