中考数学复习 第四单元 图形的初步认识与三角形相似三角形的常见基本模型练习
- 格式:doc
- 大小:246.70 KB
- 文档页数:5
4.3 相似三角形知识点一相似三角形的定义对应角________,对应边________的两个三角形,叫做相似三角形.相似三角形对应边的比叫做________.相似用符号________表示,读做“相似于”.1.下列图形一定相似的是( )A.两个锐角三角形 B.两个等腰三角形C.两个等边三角形 D.两个直角三角形知识点二相似三角形的性质相似三角形的对应角________,对应边________.2.△ABC中,AB=12,BC=18,CA=24,另一个和它相似的三角形最长的一边长是36,则最短的一边长是( )A.27 B.12 C.18 D.203.如图4-3-1,△ABC∽△ACP.若∠A=75°,∠APC=65°,则∠B的度数为________.图4-3-1类型利用相似三角形的性质计算例1 [教材补充例题] 如图4-3-2,E是AD边上的一点,△ABE∽△ADB,且BEDB =35,∠AEB=110°,∠A=40°.(1)求∠ABD与∠D的度数;(2)写出△ABE与△ADB的对应边成比例的比例式,并求出相似比.图4-3-2【归纳总结】找对应边或角的技巧(1)抓住某一相等的量;(2)找对应边,对应角(长对长,短对短,对边对对边).例2 [教材例2针对练] 如图4-3-3,D,E分别是AB,AC上的点,且AE=4,EC=2,AB=8.若△AED∽△ABC,∠AED=∠B.求AD的长.图4-3-3如果两个三角形都与第三个三角形相似,那么这两个三角形相似吗?详解详析【学知识】知识点一相等成比例相似比∽1.[解析] C 根据相似三角形的定义对各选项分析判断即可.知识点二相等成比例2.[解析] C 设另一个三角形最短的一边长是x.∵△ABC中,AB=12,BC=18,CA=24,另一个和它相似的三角形最长的一边长是36,∴x12=3624,解得x=18.3.[答案] 40°[解析] ∵∠A=75°,∠APC=65°,∴∠ACP=40°.∵△ABC∽△ACP,∴∠B=∠ACP=40°.【筑方法】例1[解析] 利用相似三角形的性质,可以知道∠ABD=∠AEB=110°,∠D=∠ABE=30°,BE∶DB的值就是相似比.解:(1)∵△ABE∽△ADB,∴∠ABD=∠AEB=110°,∠D=∠ABE.∵∠AEB=110°,∠A=40°,∴∠ABE=30°,∴∠D=30°.(2)∵△ABE∽△ADB,∴ABAD=AEAB=BEDB=35,∴相似比为35. 例2 [解析]△AED∽△ABC,则AE 与AB ,AD 与AC 是对应边,根据已知条件求出相似比,而AD 与AC 之比也是相似比.解:∵△AED∽△ABC,∴AD AC =AE AB .∵AE =4,EC =2,AB =8,∴AD4+2=48,∴AD =3.【勤反思】[小结]∽[反思] 相似.。
相似三角形一、知识概述1.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截得的线段也相等。
2.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例。
3.相似三角形的定义对应边成比例、对应角相等的两个三角形叫做相似三角形.4.相似三角形的基本性质①相似三角形的对应边成比例、对应角相等.②相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
③相似三角形的周长比等于相似比④面积比等于相似比的平方温馨提示:①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当且仅当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.5. 相似三角形的判定定理①平行于三角形一边的直线和其他两边或其延长线相交,所得的三角形与原三角形相似;②三边对应成比例的两个三角形相似;③两角对应相等的两个三角形相似;④两边对应成比例且夹角相等的两个三角形相似。
温馨提示:(1)判定三角形相似的几条思路:①条件中若有平行,可采用判定定理1;②条件中若有一对角相等(包括隐含的公共角或对顶角),可再找一对角相等或找夹边对应成比例;③条件中若有两边对应成比例,可找夹角相等;但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.④条件中若有等腰关系,可找顶角相等或底角相等,也可找腰和底对应成比例。
(2)在综合题中,注意相似知识的灵活运用,并熟练掌握线段代换、等比代换、等量代换技巧的应用,培养综合运用知识的能力。
(3)运用相似的知识解决一些实际问题,要能够在理解题意的基础上,把它转化为纯数学知识的问题,要注意培养当数学建模的思想。
方法技巧训练(三) 相似三角形的常见基本模型模型1 X 字型及其变形(1)如图1,对顶角的对边平行,则△ABO∽△DCO;(2)如图2,对顶角的对边不平行,且有另一对角相等,则△ABO∽△CDO.图1 图21.(2018·恩施)如图,在正方形ABCD 中,G 为CD 边的中点,连接AG 并延长交BC 边的延长线于点E ,对角线BD 交AG 于点F ,已知FG =2,则线段AE 的长度为(D )A .6B .8C .10D .122.如图,已知AB 是⊙O 的直径,弦CD 与直径AB 相交于点F.若∠BAC=30°,BC =4,cos ∠BAD=34,CF =103,求BF的长.解:连接BD.∵AB 是⊙O 的直径, ∴∠ACB=∠ADB=90°.在Rt △ACB 中,∠BAC=30°, ∴AB=2BC =2×4=8.由勾股定理,得AC =82-42=4 3.在Rt △ADB 中,cos ∠BAD=34=ADAB ,∴34=AD8,∴AD =6. ∴BD=82-62=27.∵∠BDC=∠BAC,∠DFB=∠AFC, ∴△DF B∽△AFC. ∴BF CF =BD CA ,即BF 103=2743,解得BF =5219.模型2 A 字型及其变形(1)如图1,公共角的对边平行,则△ADE∽△ABC;(2)如图2,公共角的对边不平行,且有另一对角相等,则△ADE∽△ABC;(3)如图3,公共角的对边不平行,两个三角形有一条公共边,且有另一对角相等,则△ACD∽△ABC.常见的结论有:AC 2=AD·AB.,图1) ,图2) ,图3)3.如图,正五边形ABCDE 的对角线AD 与BE 相交于点G ,AE =2,求EG 的长.解:在⊙O 的内接正五边形ABCDE 中,∠AEB=∠ABE=∠EAG=36°, ∴∠BAG=∠AGB=72°, ∴AB=BG =AE =2.∵∠AEG=∠AEB,∠EAG=∠EBA, ∴△AEG∽△BEA.∴AE 2=EG·EB,即22=EG·(EG +2).解得EG =-1+5或-1-5(不合题意,舍去). ∴EG=5-1.模型3 双垂直型直角三角形被斜边上的高分成的两个直角三角形与原三角形相似,即△ACD∽△ABC∽△CBD.4.(2018·南通)正方形ABCD 的边长AB =2,E 为AB 的中点,F 为BC 的中点,AF 分别与DE ,BD 相交于点M ,N ,则MN 的长为(C )A .556 B .253-1 C .4515 D .335.(2018·娄底改编)如图,已知半圆O 与四边形ABCD 的边AD ,AB ,BC 都相切,切点分别为D ,E ,C ,半径OC =1,求AE·BE 的值.解:连接OE.∵半圆O 与四边形ABCD 的边AD ,AB ,BC 都相切,切点分别为D ,E ,C , ∴OE⊥AB,A D⊥CD,BC⊥CD,∠OAD=∠OAE,∠OBC=∠OBE. ∴AD∥BC.∴∠DAB+∠ABC=180°. ∴∠OAB+∠OBA=90°. ∴∠AOB=90°.∵∠OAE+∠AOE=90°,∠AOE+∠BOE=90°, ∴∠EAO=∠EOB.∵∠AEO=∠OEB=90°,∴△AEO∽△OEB. ∴AE OE =OE BE,即AE·BE=OE 2=OC 2=1.模型4 一线三等角型(1)如图1,AB⊥BC,CD⊥BC,AP⊥PD,垂足分别为B ,C ,P ,且三个垂足在同一直线上,则有△ABP∽△PCD;(此图又叫作“三垂图”)图1 图2(2)如图2,∠B=∠APD=∠C,且B ,P ,C 在同一直线上,则①△ABP∽△PCD;②连接AD ,当点P 为BC 的中点时,△ABP∽△PCD∽△APD.6.如图,矩形纸片ABCD ,将△AMP 和△BPQ 分别沿PM 和PQ 折叠(AP>AM ),点A 和点B 都与点E 重合;再将△CQD 沿DQ 折叠,点C 落在线段EQ 上点F 处.(1)判断△AMP,△B PQ ,△CQD 和△FDM 中有哪几对相似三角形?(不需说明理由)(2)如果AM =1,sin ∠DMF=35,求AB 的长.解:(1)有三对相似三角形:△AMP∽△BPQ∽△CQD .(2)设AP =x ,由折叠的性质,得BP =AP =EP =x.∴AB=DC =2x. 由△AMP∽△BPQ,得AM BP =AP BQ,∴BQ=x 2.由△AMP∽△CQD,得AP CD =AMCQ ,∴CQ=2.AD =BC =BQ +CQ =x 2+2,MD =AD -AM =x 2+2-1=x 2+1.在Rt △FDM 中,sin ∠DMF=35,DF =DC =2x ,∴2x x 2+1=35. 解得x 1=3,x 2=13(不合题意,舍去).∴AB=2x =6.7.如图,在△ABC 中,AB =AC ,点P ,D 分别是BC ,AC 边上的点,且∠APD=∠B.(1)求证:AC·CD=CP·BP ;(2)若AB =10,BC =12,当PD∥AB 时,求BP 的长.解:(1)证明:∵AB=AC ,∴∠B=∠C. ∵∠APD=∠B, ∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠CPD, ∴∠BAP=∠CPD. ∴△ABP∽△PCD. ∴BP CD =AB PC. ∴AB·CD=PC·BP. ∵AB=AC ,∴AC·CD=CP·BP.(2)∵PD∥AB,∴∠APD=∠BAP. ∵∠APD=∠C,∴∠BAP=∠C. ∵∠B=∠B, ∴△BAP∽△BCA. ∴BA BC =BP BA . ∵AB=10,BC =12, ∴1012=BP 10. ∴BP=253.。
模型构建专题:相似三角形中的基本模型——熟知需要用相似来解决的图形◆模型一“A”字型1.(2017·湘潭中考)如图,△ABC中,D、E分别为AB、AC的中点,则△ADE与△ABC 的面积比为________.第1题图第2题图2.如图,△ABC中,点D、E分别在边AB、AC上,请添加一个条件:____________,使△ABC∽△AED.3.如图,在△ABC中,DE∥BC,ADAB=23,M为BC上一点,AM交DE于N.(1)若AE=4,求EC的长;(2)若M为BC的中点,S△ABC=36,求S△ADN的值.◆模型二“X”字型4.(2016·哈尔滨中考)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.ADAB=AEAC B.DFFC=AEEC C.ADDB=DEBC D.DFBF=EFFC第4题图第5题图第6题图5.(2016·贵港中考)如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB 于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①∠ACD=30°;②S ▱ABCD=AC·BC;③OE∶AC=3∶6;④S△OCF=2S△OEF,其中成立的有()A.1个B.2个C.3个D.4个6.如图,已知AD、BC相交于点O,AB∥CD∥EF,如果CE=2,EB=4,FD=1.5,那么AD=________.7.如图,四边形ABCD中,AD∥BC,点E是边AD的中点,连接BE并延长交CD的延长线于点F,交AC于点G.(1)若FD=2,EDBC=13,求线段DC的长;(2)求证:EF·GB=BF·GE.◆模型三旋转型8.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是()A.∠C=∠E B.∠B=∠ADE C.ABAD=ACAE D.ABAD=BCDE第8题图第9题图第10题图9.★如图,△ABC≌△DEF(点A、B分别与点D、E对应),AB=AC=5,BC=6,△ABC 固定不动,△DEF运动,并满足点E在BC边从B向C移动(点E不与B、C重合),DE始终经过点A,EF与AC边交于点M,当△AEM是等腰三角形时,BE=__________.◆模型四“子母”型(大三角形中包含小三角形)10.(2016·毕节中考)如图,在△ABC中,D为AB边上一点,且∠BCD=∠A,已知BC =22,AB=3,则BD=________.11.(2016·云南中考)如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B,如果△ABD的面积为15,那么△ACD的面积为()A.15 B.10 C.152D.5第11题图第12题图◆模型五垂直型12.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A .1对B .2对C .3对D .4对13.如图,四边形ABCD 中,AD ∥BC ,∠B =90°,E 为AB 上一点,分别以ED 、EC 为折痕将两个角(∠A 、∠B )向内折起,点A 、B 恰好落在CD 边上的点F 处.若AD =3,BC =5,则EF 的长是( )A.15 B .215 C.17 D .217第13题图 第14题图14.如图,在平面直角坐标系中,点P 的坐标为(0,4),直线y =34x -3与x 轴、y 轴分别交于点A 、B ,点M 是直线AB 上的一个动点,则PM 的最小值为________.15.如图,在△ABC 中,AD ⊥BC ,BE ⊥AC ,垂足分别为D ,E ,AD 与BE 相交于点F .(1)求证:△ACD ∽△BFD ;(2)当AD =BD ,AC =3时,求BF 的长.◆模型六 一线三等角型16.(2017·潮阳区模拟)如图,在边长为9的等边△ABC 中,BD =3,∠ADE =60°,则CE 的长为________.17.如图,在△ABC 中,AB =AC ,点P 、D 分别是BC 、AC 边上的点,且∠APD =∠B . (1)求证:AC ·CD =CP ·BP ;(2)若AB =10,BC =12,当PD ∥AB 时,求BP 的长.参考答案与解析1.1∶42.∠ADE =∠C (答案不唯一)3.解:(1)∵DE ∥BC ,∴AE AC =AD AB =23.∵AE =4,∴AC =6,∴EC =6-4=2.(2)∵M 为BC 的中点,∴S △ABM =12S △ABC =18.∵DE ∥BC ,∴△ADN ∽△ABM ,∴S △ADN S △ABM=⎝⎛⎭⎫AD AB 2=49,∴S △ADN =8.4.A5.D 解析:∵四边形ABCD 是平行四边形,∠ABC =60°,∴∠BCD =120°.∵CE 平分∠BCD ,∴∠DCE =∠BCE =60°,∴△CBE 是等边三角形,∴BE =BC =CE ,∠CEB =60°.∵AB =2BC ,∴AE =BE =BC =CE ,∴∠CAE =30°,∴∠ACB =180°-∠CAE -∠ABC =90°.∵AB ∥CD ,∴∠ACD =∠CAB =30°,故①正确;∵AC ⊥BC ,∴S ▱ABCD =AC ·BC ,故②正确;在Rt △ACB 中,∵∠ACB =90°,AB =2BC ,∴AC =3BC .∵AO =OC ,AE =BE ,∴OE ∥BC ,∴OE =12BC ,∴OE ∶AC =12BC ∶3BC =3∶6,故③正确;∵OE ∥BC ,∴△OEF ∽△BCF ,∴CF EF =BC OE =2,∴S △OCF ∶S △OEF =CFEF =2,∴S △OCF =2S △OEF ,故④正确.故选D.6.4.5 解析:∵AB ∥EF ,∴FO AF =EO EB ,则FO EO =AF EB .又∵EF ∥CD ,∴FO FD =EO EC ,则FOEO =FD EC ,∴AF EB =FD EC ,即AF 4=1.52,解得AF =3,∴AD =AF +FD =3+1.5=4.5. 7.(1)解:∵AD ∥BC ,∴△DEF ∽△CBF ,∴FD FC =ED BC =13,∴FC =3FD =6,∴DC =FC -FD =4.(2)证明:∵AD ∥BC ,∴△DEF ∽△CBF ,△AEG ∽△CBG ,∴EF BF =DE BC ,AE BC =GEGB .∵点E 是边AD 的中点,∴AE =DE ,∴EF BF =GEGB,∴EF ·GB =BF ·GE .8.D9.1或116 解析:∵△ABC ≌△DEF ,AB =AC ,∴∠AEF =∠B =∠C .∵∠AEC =∠AEF+∠MEC =∠B +∠BAE ,∴∠MEC =∠EAB .∵∠AEF =∠B =∠C ,且∠AME >∠C ,∴∠AME >∠AEF ,∴AE ≠AM .当AE =EM 时,则△ABE ≌△ECM ,∴CE =AB =5,∴BE =BC -EC =6-5=1.当AM =EM 时,则∠MAE =∠MEA ,∴∠MAE +∠BAE =∠MEA +∠CEM ,即∠CAB =∠CEA .又∵∠C =∠C ,∴△CAE ∽△CBA ,∴CE AC =AC CB ,∴CE =AC 2CB =256,∴BE =6-256=116,∴BE =1或116.10.8311.D解析:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA.∵AB=4,AD=2,∴S△ACD∶S△ABC=(AD∶AB)2=1∶4,∴S△ACD∶S△ABD=1∶3.∵S△ABD=15,∴S△ACD=5.故选D.12.C13.A14.285解析:根据“垂线段最短”,得PM的最小值就是当PM⊥AB时PM的长.∵直线y=34x-3与x轴、y轴分别交于点A、B,∴令x=0,得y=-3,∴点B的坐标为(0,-3),即OB=3.令y=0,得x=4,∴点A的坐标为(4,0), 即OA=4,∴PB=OP+OB=4+3=7.在Rt△AOB中,根据勾股定理得AB=OA2+OB2=42+32=5.在Rt△PMB与Rt△AOB中,∵∠PBM=∠ABO,∠PMB=∠AOB,∴Rt△PMB∽Rt△AOB,∴PMOA=PBAB,即PM4=75,解得PM=285.15.(1)证明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠C+∠DBF =90°,∠C+∠DAC=90°,∴∠DBF=∠DAC,∴△ACD∽△BFD.(2)解:∵AD=BD,△ACD∽△BFD,∴ACBF=ADBD=1,∴BF=AC=3.16.217.(1)证明:∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC =∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴BPCD=ABCP,∴AB·CD=CP·BP.∵AB=AC,∴AC·CD=CP·BP.(2)解:∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.又∵∠B=∠B,∴△BAP∽△BCA,∴BABC=BPBA.∵AB=10,BC=12,∴1012=BP10,∴BP=253.数学选择题解题技巧1、排除法。
相似证明中的基本模型A 字形图①A 字型,结论:AD AE DE AB AC BC ==,图②反A 字型,结论:AE AD DEAC AB BC== 图③双A 字型,结论:DF BG EF GC =,图④内含正方形A 字形,结论AH a aAH BC-=(a 为正方形边长)IH G FED CB AGFEDC BAEDCB A ED C BA图① 图② 图③ 图④8字型图①8字型,结论:AO BO AB OD CO CD ==,图②反8字型,结论:AO BO AB CO DO CD==、四点共圆 图③双8字型,结论:AE DF BE CF=,图④A 8字型,结论:111AB CD EF += 图⑤,结论:EF EG =、AED BEC ABE CDE S S S S ⋅=⋅△△△△EFD C BA F ED C BAOD C BAODC BAGFED CB A图① 图② 图③ 图④ 图⑤一线三等角型结论:出现两个相似三角形HE DC B AE DC BAEDCBAC60°F E DCB AFED CB A图① 图② 图③ 图④角分线定理与射影定理图①内角分线型,结论:AB BD AC DC =,图②外角分线型,结论:AB BDAC CD= 图③斜射影定理型,结论:2AB BD BC =⋅,图④射影定理型,结论:1、2AC AD AB =⋅,2、2CD AD BD =⋅,3、2BC BD BA =⋅D C BD BCAEDB AD B A梅涅劳斯型常用辅助线G FEDCBAGFEDCBA G E DC B ADEFCBA四、相似证明中的面积法面积法主要是将面积的比,和线段的比进行相互转化来解决问题. 常用的面积法基本模型如下:如图:1212ABC ACDBC AHS BCS CD CD AH ⋅⋅==⋅⋅△△. 图1:“山字”型H DC B A如图:1212ABC BCDBC AHS AH AO S DG OD BC DG ⋅⋅===⋅⋅△△. 图2:“田字”型G HODCBA如图:ABD ABD AED ACE AED ACE S S S AB AD AB ADS S S AE AC AE AC⋅=⋅=⋅=⋅△△△△△△.图3:“燕尾”型CDEB A考点一:相似三角形【例1】 如图,D 、E 是ABC ∆的边AC 、AB 上的点,且AD AC ⋅=AE AB ⋅,求证:ADE B ∠=∠.EDCBA【答案】∵AD AC AE AB ⋅=⋅ ∴AD ABAE AC=∵DAE BAC ∠=∠∴DAE ∆∽BAC ∆∴ADE B ∠=∠ 【例2】 如图,在ABC ∆中,AD BC ⊥于D ,CE AB ⊥于E ,ABC ∆的面积是BDE ∆面积的4倍,6AC =,求DE 的长.ED CB A【答案】∵AD BC ⊥,CE AB ⊥,ABD CBE ∠=∠ ∴ABD ∆∽CBE ∆∴BE BCBD AB=∵EBD CBA ∠=∠ ∴BED ∆∽BCA ∆∴11322DEDE AC AC===⇒== 【例3】 如图,ABC △中,60ABC ∠=︒,点P 是ABC △内一点,使得APB BPC CPA ∠=∠=∠,86PA PC ==,,则PB =________.PCBA【解析】120APB BPC ∠=∠=︒,60BAP ABP ABC ABP CBP ∠=︒-∠=∠-∠=∠,故ABP BCP △∽△,2PB PA PC =⋅.【例4】 如图,已知三个边长相等的正方形相邻并排,求EBF EBG ∠+∠.HGFED CB A【答案】45︒ 【解析】连接DF 、CG ,则45EDF EBF DFB ∠=∠+∠=︒,若DFB EBG ∠=∠,则EBF EBG ∠+∠可求,问题的关键是证明BCG FDB △∽△.考点二:相似三角形与边的比例☞考点说明:可运用相似三角形模型,常用A 字形与8字形【例5】 在ABC ∆中,BD CE =,DE 的延长线交BC 的延长线于P , 求证:AD BP AE CP ⋅=⋅.PE D CBA MPED C BA【答案】过C 作CM AB ∥交DP 于M ,∵CM AB ∥,∴PCM PBD ∆∆∽, ∴CM PC BD PB =, ∵CM AB ∥,∴CEM AED ∆∆∽, ∴CM AD CE AE =, ∵BD CE =, ∴CM CM CE BD =, ∴PC AD PB AE=, ∴AD BP AE CP ⋅=⋅【例6】 如图,在ABC ∆的边AB 上取一点D ,在AC 取一点E ,使AD AE =,直线DE 和BC 的延长线相交于P ,求证:BP BDCP CE= PEDCBA4321MPE D CBA【答案】过C 作CM AB ∥交DP 于M ,∵CM AB ∥,∴PCM PBD ∆∆∽, ∴BP BD CP CM =, ∵CM AB ∥, ∴14∠=∠, 又∵AD AE =,∴12∠=∠,∴24∠=∠, ∵23∠=∠, ∴34∠=∠, ∴CM CE = ∴BP BD CP CE= 【例7】 如图,M 、N 为ABC △边BC 上的两点,且满足BM MN NC ==,一条平行于AC 的直线分别交AB 、AM 和AN 的延长线于点D 、E 和F .求证:3EF DE =.F NMED CBAK HF N MG ED CBA【答案】过M ,N 分别作AC 的平行线交AB 于H ,G 两点,NH 交AM 于K ,∵BM MN NC ==, ∴BG GH HA ==,易知12HK GM =,12GM HN =,∴14HK HN =,即13HK KN =,又∵DF HN ∥, ∴13DE HK EF KN ==,即3EF DE =. 考点三:相似三角形与内接矩形☞考点说明:内接矩形问题是相似三角形中比较典型的问题,考查了相似三角形对应高的比等于相似比【例1】 一块直角三角形木板的一条直角边AB 长为1.5米,面积为1.5平方米,工人师傅要把它加工成一个面积最大的正方形桌面,请甲、乙两位同学进行设计加工方案。
模型探究相似三角形考查范围广,综合性强,其模型种类多,其中有关一线三垂直模型在前面的专题已经很详细的讲解,这里就不在重复.模型一、A字型相似模型A字型(平行)反A字型(不平行)模型二、8字型与反8字型相似模型模型三、AX型相似模型(A字型及X字型两者相结合)模型四、共边角相似模型(子母型)模型五、手拉手相似模型考点一、A 字相似模型【例1】.如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .➢变式训练 【变式1-1】.如图,在△ABC 中,DE ∥BC ,AH ⊥BC 于点H ,与DE 交于点G .若,则= .例题精讲【变式1-2】.如图,在△ABC中,M是AC的中点,E是AB上一点,AE=AB,连接EM 并延长,交BC的延长线于D,则=__________.【变式1-3】.如图,在△ABC中,点D在边AB上,AD=9,BD=7.AC=12.△ABC的角平分线AE交CD于点F.(1)求证:△ACD∽△ABC;(2)若AF=8,求AE的长度.考点二、8字与反8字相似模型【例2】.如图,AG∥BD,AF:FB=1:2,BC:CD=2:1,求的值➢变式训练【变式2-1】.如图,AB∥CD,AE∥FD,AE、FD分别交BC于点G、H,则下列结论中错误的是()A.B.C.D.【变式2-2】.如图,在平行四边形ABCD中,E为边AD的中点,连接AC,BE交于点F.若△AEF的面积为2,则△ABC的面积为()A.8B.10C.12D.14【变式2-3】.如图,锐角三角形ABC中,∠A=60°,BE⊥AC于E,CD⊥AB于D,则DE:BC=.考点三、AX型相似模型(A字型及X字型两者相结合)【例3】.如图,在△ABC中,点D和E分别是边AB和AC的中点,连接DE,DC与BE交于点O,若△DOE的面积为1,则△ABC的面积为()A.6B.9C.12D.13.5➢变式训练【变式3-1】.如图,DE是△ABC的中位线,F为DE中点,连接AF并延长交BC于点G,若S△EFG=1,则S△ABC=.【变式3-2】.如图:AD∥EG∥BC,EG交DB于点F,已知AD=6,BC=8,AE=6,EF =2.(1)求EB的长;(2)求FG的长.【变式3-3】.如图,已知AB∥CD,AC与BD相交于点E,点F在线段BC上,,.(1)求证:AB∥EF;(2)求S△ABE:S△EBC:S△ECD.模型四、子母型相似模型【例4】.如图,点C,D在线段AB上,△PCD是等边三角形,且∠APB=120°,求证:(1)△ACP∽△PDB,(2)CD2=AC•BD.➢变式训练【变式4-1】.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.D.【变式4-2】.如图,在△ABC中,点D在AC边上,连接BD,若∠ABC+∠BDC=180°,AD=2,CD=4,则AB的长为()A.3B.4C.D.2【变式4-3】.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则P A+PB 的最小值为.模型五、手拉手相似模型【例5】.如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为.➢变式训练【变式5-1】.如图,在△ABC与△ADE中,∠BAC=∠DAE,∠ABC=∠ADE.求证:(1)△BAC∽△DAE;(2)△BAD∽△CAE.【变式5-2】.如图,点D是△ABC内一点,且∠BDC=90°,AB=2,AC=,∠BAD=∠CBD=30°,AD=.【变式5-3】.如图,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),则BD的长为.(用含k的式子表示)实战演练1.如图,已知DE∥BC,EF∥AB,则下列比例式中错误的是()A.=B.C.D.2.如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为()A.2:3B.2:5C.4:9D.:3.如图,菱形ABCD中,E点在BC上,F点在CD上,G点、H点在AD上,且AE∥HC ∥GF.若AH=8,HG=5,GD=4,则下列选项中的线段,何者长度最长?()A.CF B.FD C.BE D.EC4.如图,在△ABC中,BC=6,E,F分别是AB,AC的中点,动点P在射线EF上,BP 交CE于点D,∠CBP的平分线交CE于点Q,当CQ=CE时,EP+BP的值为()A.6B.9C.12D.185.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若BB′=2,则AA′等于()A.B.2C.D.6.如图,已知,△ABC中边AB上一点P,且∠ACP=∠B,AC=4,AP=2,则BP=.7.如图,在▱ABCD中,AC、BD相交于点O,点E是OA的中点,联结BE并延长交AD 于点F,如果△AEF的面积是4,那么△BCE的面积是.8.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为.9.如图,已知Rt△ABC中,两条直角边AB=3,BC=4,将Rt△ABC绕直角顶点B旋转一定的角度得到Rt△DBE,并且点A落在DE边上,则sin∠ABE=.10.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=6,AD平分∠BAC,交边BC于点D,过点D作CA的平行线,交边AB于点E.(1)求线段DE的长;(2)取线段AD的中点M,联结BM,交线段DE于点F,延长线段BM交边AC于点G,求的值.11.如图,在菱形ABCD中,∠ADE、∠CDF分别交BC、AB于点E、F,DF交对角线AC 于点M,且∠ADE=∠CDF.(1)求证:CE=AF;(2)连接ME,若=,AF=2,求ME的长.12.[问题背景](1)如图①,已知△ABC∽△ADE,求证:△ABD∽△ACE.[尝试应用](2)如图②,在△ABC和△ADE中,∠BAC=∠DAE=90°∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,①填空:=;②求的值.13.如图,在正方形ABCD中,AB=4,E、F分别是BC、CD上的点,且∠EAF=45°,AE、AF分别交BD于点M、N,连接EN、EF.(1)求证:△ABN∽△MBE;(2)求证:BM2+ND2=MN2;(3)①求△CEF的周长;②若点G、F分别是EF、CD的中点,连接NG,则NG的长为.14.问题背景如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,求的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB =4,AC=2,直接写出AD的长.15.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG、线段DE的数量关系BG=DE及所在直线的位置关系BG⊥DE;②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断;(2)将原题中正方形改为矩形(如图4﹣6),且AB=a,BC=b,CE=ka,CG=kb(a ≠b,k>0),则线段BG、线段DE的数量关系=及所在直线的位置关系BG ⊥DE;(3)在第(2)题图5中,连接DG、BE,且a=4,b=3,k=,直接写出BE2+DG2的值为.。
专题04 相似三角形的四种基本模型模型一、A字型(8字型)AN NC的值.例1.(基本模型)如图,已知D是BC的中点,M是AD的中点.求:例2.(培优)如图,ABC V 中,点D 在AC 边上,且1902BDC ABD Ð=+Ðo .(1)求证:DB AB =;(2)点E 在BC 边上,连接AE 交BD 于点F ,且AFD ABC Ð=Ð,BE CD =,求ACB Ð的度数.(3)在(2)的条件下,若16BC =,ABF V 的周长等于30,求AF 的长.【变式训练1】如图,点O是△ABC边BC上一点,过点O的直线分别交AB,AC所在直线于点M,N,且AB AM=m,ACAN=n.(1)若点O是线段BC中点.①求证:m+n=2;②求mn的最大值;(2)若COOB=k(k≠0)求m,n之间的关系(用含k的代数式表示).【变式训练2】矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.(1)如图①,若点P恰好在边BC上,连接AP,求APDE的值;(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.模型二、X (8)字型X 字型(平行) 反X 字型(不平行)例1.(基本模型)已知:如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,点F 在边AB 上,BC 2=BF•BA ,CF 与DE 相交于点G .(1)求证:DF•AB=BC•DG ;(2)当点E 为AC 中点时,求证:2DF•EG=AF•DG .【答案】(1)证明见解析;(2)证明见解析.【详解】证明:(1)∵BC 2=BF•BA ,∴BC :BF=BA :BC ,而∠ABC=∠CBF ,∴BAC BCF V V ∽,例2.(培优)如图1,ΔABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F是DE 与AC的交点.(1)求证:∠BDE=∠ACD;(2)若DE=2DF,过点E作EG//AC交AB于点G,求证:AB=2AG;(3)将“点D在BA的延长线上,点E在BC上”改为“点D在AB上,点E在CB的延长线上”,“点F是DE 与AC的交点”改为“点F是ED的延长线与AC的交点”,其它条件不变,如图2.①求证:AB·BE=AD·BC;②若DE=4DF,请直接写出SΔABC:SΔDEC的值.【答案】(1)见解析;(2)见解析;(3)①见解析;②16:15.【详解】(1)证明:∵AC=AB,∴∠ACB=∠B,∵DC=DE,【变式训练1】 如图,正方形ABCD 的边长为12,点E 是射线BC 上的一个动点,连接AE 并延长,交射线DC 于点F ,将ABE △沿直线AE 翻折,点B 落在点B ¢处.(1)当1BE CE=时,如图1,延长AB ¢,交CD 于点M ,①CF 的长为________;②求证:AM FM =.(2)当点B ¢恰好落在对角线AC 上时,如图2,此时CF 的长为________;BE CE=________; (3)当3BE CE =时,求DAB ¢Ð的正弦值.【变式训练2】如图1,在矩形ABCO中,OA=8,OC=6,D,E分别是AB,BC上一点,AD=2,CE=3,OE与CD相交于点F.(1)求证:OE⊥CD;(2)如图2,点G是CD的中点,延长OG交BC于H,求CH的长.【变式训练3】已知:矩形ABCD中,AB=6,BC=8,点P是线段AD上一点,连接CP,点E在对角线AC上(不与点A,C重合),∠CPE=∠ACB,PE的延长线与BC交于点F.(1)如图1,当AP=2时,求CF的长;(2)如图2,当PF⊥BC时,求AP的长;(3)当△PFC是等腰三角形时,求AP的长.模型三、子母型已知:∠ 1=∠2;结论:△ACD ∽△ABCDAC B 12例1.(基本模型)如图,在△ABC中,点D在BC边上,点E在AC边上,且AD=AB,∠DEC=∠B.(1)求证:△AED∽△ADC;(2)若AE=1,EC=3,求AB的长.例2.(培优)在Rt△ABC中,∠ACB=90°,点D为AB上一点.(1)如图1,若CD⊥AB,求证:AC2=AD·AB;(2)如图2,若AC=BC,EF⊥CD交CD于H,交AC于F,且49FHHE=,求ADBD的值;(3)如图3,若AC=BC,点H在CD上,∠AHD=45°,CH=3DH,则tan∠ACH的值为________.【变式训练1】在矩形ABCD 中,4AB =,3BC =,E 是AB 边上一点,EF CE ^交AD 于点F ,过点E 作AEH BEC Ð=Ð,交射线FD 于点H ,交射线CD 于点N .(1)如图a ,当点H 与点F 重合时,求BE 的长.(2)如图b ,当点H 在线段FD 上时,设BE x =,DN y =,求y 与x 之间的函数关系式,并写出它的定义域.△相似时,求线段DN的长.(3)连接AC,当FHEV与AEC2Ð=Ð,设②若FHE ECA【变式训练2】如图,锐角△ABC中,CD,BE分别是AB,AC边上的高,垂足为D,E.(1)求证:△ACD∽△ABE;(2)若将点D,E连接起来,则△AED和△ABC能相似吗?说说你的理由.【答案】(1)见详解;(2)相似,理由见详解;【详解】证明:(1)∵CD,BE分别是AB,AC边上的高,∴∠ADC=∠AEB=90°.∵∠A=∠A,∴△ACD∽△ABE(2)连接DE,∵△ACD∽△ABE,∴AD:AE=AC:AB.∴AD:AC=AE:AB.∵∠A=∠A.∴△AED∽△ABC,【变式训练3】已知正方形ABCD的边长为4,点E在边BC上,点F在边CD上,且CF BE=,AE和BF交于点G.(1)如图,求证:①AE BF=^②AE BF(2)连接CG并延长交AB于点H,①若点E为BC的中点(如图),求BH的长.②若点E在BC边上滑动(不与点,B C重合),当CG取得最小值时,求BE的长.模型四、旋转型例1.(基本模型)在同一平面内,如图①,将两个全等的等腰直角三角形摆放在一起,点A 为公共顶点,90BAC AED Ð=Ð=°.如图②,若△ABC 固定不动,把△ADE 绕点A 逆时针旋转,使AD 、AE 与边BC 的交点分别为M 、N 点M 不与点B 重合,点N 不与点C 重合.【探究】求证:BAN CMA ∽△△.【应用】已知等腰直角三角形的斜边长为4.(1)BN CM ×的值为______.(2)若BM CN =,则MN 的长为______.例2.(培优)【问题发现】如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为斜边BC上一点(不与点B,C重合),将线段AD绕点A顺时针旋转90°得到AE,连接EC,则线段BD与CE的数量关系是______,位置关系是______;【探究证明】如图2,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,将△ADE绕点A旋转,当点C,D,E在同一条直线上时,BD与CE具有怎样的位置关系,说明理由;【拓展延伸】如图3,在Rt△BCD中,∠BCD=90°,BC=2CD=4,过点C作CA⊥BD于A.将△ACD绕点A顺时针旋转,点C的对应点为点E.设旋转角∠CAE为a(0°<a<360°),当C,D,E在同一条直线上时,画出图形,并求出线段BE的长度.根据题意可知,Rt△ABC∽AB AC AB AE在Rt△ACD中,CD边上的高【变式训练1】如图,等腰三角形ABC和等腰三角形ADE,其中AB=AC,AD=AE.(1)如图1,若∠BAC=90°,当C、D、E共线时,AD的延长线AF⊥BC交BC于点F,则∠ACE=______;(2)如图2,连接CD、BE,延长ED交BC于点F,若点F是BC的中点,∠BAC=∠DAE,证明:AD⊥CD;(3)如图3,延长DC到点M,连接BM,使得∠ABM+∠ACM=180°,延长ED、BM交于点N,连接AN,若∠BAC=2∠NAD,请写出∠ADM、∠DAE它们之间的数量关系,并写出证明过程.【答案】(1)22.5°;(2)见解析(3)∠DAE+2∠ADM=180°,详见解析【解析】(1)解:∵△ABC为等腰三角形,∠BAC=90°,∴∠ABC=∠ACB=45°,由三角形外角性质知,∠ADE=∠ACE+∠DAC,∠AED=∠ECB+∠B,∵AD=AE,∴∠ADE=∠AED,∴∠ACE+∠DAC=∠ECB+∠B,∵AF⊥BC,∴∠BAF=∠CAD=45°,∴∠ACE=∠BCE,又∠ACB=45°,∴∠ACE=22.5°,故答案为:22.5°.(2)解:连接AF,过A作AH⊥EF于H,如图所示,∵∠BAC=∠DAE,AD=AE,AB=AC,∴∠CAF=∠BAF=∠DAH=∠EAH,∵∠BAC =∠QAN ,∴∠QAC =∠BAN ,∵∠ABM +∠ACM =180°,∠ACM +∠ACQ =180°【变式训练2】[问题发现](1)如图1,在Rt △ABC 中,AB AC =,90BAC Ð=°,点D 为BC 的中点,以CD 为一边作正方形CDEF ,点E 与点A 重合,已知ACF BCE D D ∽.请直接写出线段BE 与AF 的数量关系;[实验研究](2)在(1)的条件下,将正方形CDEF绕点C旋转至如图2所示的位置,连接BE,CE,AF.请猜想线段BE 和AF的数量关系,并证明你的结论;[结论运用]D的面积为8,当正方形CDEF旋转到B,E,F三点共线时,请求出线(3)在(1)(2)的条件下,若ABC段AF的长.模型五、一线三垂直型例1.(模型探究)【感知】如图①,在四边形ABCD 中,点P 在边AB 上(点P 不与点A 、B 重合),90A B DPC Ð=Ð=Ð=°.易证DAP PBC △△∽.(不需要证明)【探究】如图②,在四边形ABCD 中,点P 在边AB 上(点P 不与点A 、B 重合),A B DPC Ð=Ð=Ð.若4PD =,8PC =,6BC =,求AP 的长.【拓展】如图③,在ABC V 中,8AC BC ==,12AB =,点P 在边AB 上(点P 不与点A 、B 重合),连结EDC B AED C B AE D C B ACP ,作CPE A Ð=Ð,PE 与边BC 交于点E ,当CPE △是等腰三角形时,直接写出AP 的长.例2.(培优)问题提出(1)如图1,在矩形ABCD 中,4cm AB =,点E 为AB 的中点,点F 在BC 上,过点E 作//EG BC 交FD 于点G .若5cm EG =,则EFD △的面积为_________.问题探究(2)如图2,在矩形ABCD 中,6cm,9cm AB BC ==,点P 是AD 边上一动点,点Q 是CD 的中点将.ABP △沿着BP 折叠,点A 的对应点是A ¢,将QDP △沿着PQ 折叠,点D 的对应点是D ¢.请问是否存在这样的点P ,使得点P 、A ¢、D ¢在同一条直线上?若存在,求出此时AP 的长度;若不存在,请说明理由.问题解决(3)某精密仪器厂接到生产一种特殊四边形金属部件的任务,部件要求:如图3,在四边形ABCD 中,4cm BC =,点D 到BC 的距离为5cm,AD CD ^,且CD =.若过点D 作//BC MN ,过点A 作MN 的垂线,交MN 于点E ,交CB 的延长线于点H ,过点C 作CF MN ^于点F ,连接AC .设AE 的长为(cm)x ,四边形ABCD 的面积为()2cm y .①根据题意求出y 与x 之间的函数关系式;②在满足要求和保证质量的前提下,仪器厂希望造价最低.已知这种金属材料每平方厘米造价60元,请你帮忙求出这种四边形金属部件每个的造价最低费用. 1.73)»由题意得:5CF EH ==.∵AD CD ^,∴90EDA CDF Ð+Ð=°.∵CF MN ^,【变式训练1】问题提出:(1)如图①,矩形ABCD中,AD=6.点E为AD的中点.点F在AB上,过点E作EG//AB交FC于点G.若EG=7.则S△EFC= .问题探究:(2)如图②.已知矩形ABCD纸片中.AB=9,AD=6,点P是CD边上一动点.点Q是BC的中点.将△ADP沿着AP折叠,在纸片上点D的对应点是D¢,将△QCP沿着PQ折叠.在纸片上点C的对应点是C¢.请问是否存在这样的点P.使得点P、D¢、C¢在同一条直线上?若存在,求出此时DP的长度.若不存在,请说明理由.问题解决:(3)某精密仪器厂接到生产一种特殊四边形金属部件的任务.部件要求:如图③,四边形ABCD中,AB=4厘米,点C到AB的距离为5厘米,BC⊥CD.且BC.在满足要求和保证质量的前提下,仪器厂希望造价最低,已知这种金属材料每平方厘米造价50元.请问这种四边形金属部件每个的造价最低是多少)【答案】(1)21;(2)存在,6或3;(3)802.75元【变式训练2】如图,矩形ABCD中,AB=1,BC=3,点E是边BC上一个动点(不与点B、C重合),AE的垂线AF交CD的延长线于点F,点G在线段EF上,满足FG∶GE=1∶2,设BE=x.(1)求证:AD DF AB BE=;(2)当点G在△ADF的内部时,用x的代数式表示∠ADG的余切;(3)当∠FGD=∠AFE时,求线段BE的长.【变式训练3】如图1和图2,在平面直角坐标系中,点C的坐标为(0,4),A是x轴上的一个动点,M是线段AC的中点.把线段AM以A为旋转中心、按顺时针方向旋转90°得到AB.过B作x轴的垂线、过点C 作y轴的垂线,两直线交于点D,直线DB交x轴于点E.设A点的横坐标为m.(1)求证:△AOC∽△BEA;(2)若m=3,则点B的坐标为 ;若m=﹣3,则点B的坐标为 ;(3)若m>0,△BCD的面积为S,则m为何值时,S=6?(4)是否存在m,使得以B、C、D为顶点的三角形与△AOC相似?若存在,求此时m的值;若不存在,请说明理由.。
⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎨⎨⎪⎪⎩⎪⎪⎪⎪⎪⎩比例的性质平行线分线段成比例成比例线段平行线分线段成比例定理相似三角形定义相似三角形的基本判定相似三角形判定相似三角形性质位似一、比例的性质1.a cad bc b d=⇔=,这一性质称为比例的基本性质,由它可推出许多比例形式; 2.a c b db d ac =⇔=(反比定理); 3.a c a bb dcd =⇔=(或d c b a =)(更比定理);4.a c a b c db d b d ++=⇔=(合比定理); 5.ac a b cd b d b d --=⇔=(分比定理); 6.a c a b c d b d a b c d++=⇔=--(合分比定理); 7.(0)a c m a c m a b d n b d n b d n b++⋅⋅⋅+==⋅⋅⋅=++⋅⋅⋅+≠⇔=++⋅⋅⋅+(等比定理).二、 黄金分割如图,若线段AB 上一点C 把线段AB 分成两条线段AC 和BC (AC BC >),且使AC 是AB 和BC 的比例中项(即2AC AB BC =⋅)则称线段AB 被点C 黄金分割,点C 叫线段AB 的黄金分割点,其中510.6182AC AB AB -=≈,相似三角形知识精讲知识网络图0.382BC AB AB =≈,AC 与AB 的比叫做黄金比.三、平行线分线段成比例定理1.定理:三条平行直线截两条直线,截得的对应线段成比例.2.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边. 4.三角形一边的平行线性质平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例. 如图,AB CD EF ∥∥,则AC BD CE DF AC BD CE DFCE DF AC BD AE BF AE BF====,,,.若将AC 称为上,CE 称为下,AE 称为全,上述比例式可以形象地表示为====上上下下上上下下,,,下下上上全全全全.当三条平行线退化成两条的情形时,就成了“A ”字型,“X ”字型.则有 AE AF AE AF EFBC EF EB FC AB AC BC⇔===∥,.四、相似三角形的定义1.相似三角形:形状相同的两个三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.AAB C D E FFEDC B A A BE F F ECBA2.相似三角形的相似比:相似三角形对应边的比叫做相似比;全等三角形的相似比是1,“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”。
方法技巧训练(三) 相似三角形的常见基本模型
模型1 X 字型及其变形
(1)如图1,对顶角的对边平行,则△ABO∽△DCO;
(2)如图2,对顶角的对边不平行,且有另一对角相等,则△ABO∽△CDO.
图1 图2
1.(2018·恩施)如图,在正方形ABCD 中,G 为CD 边的中点,连接AG 并延长交BC 边的延长线于点E ,对角线BD 交AG 于点F ,已知FG =2,则线段AE 的长度为(D )
A .6
B .8
C .10
D .12
2.如图,已知AB 是⊙O 的直径,弦CD 与直径AB 相交于点F.若∠BAC=30°,BC =4,cos ∠BAD=34,CF =10
3,求BF
的长.
解:连接BD.
∵AB 是⊙O 的直径, ∴∠ACB=∠ADB=90°.
在Rt △ACB 中,∠BAC=30°, ∴AB=2BC =2×4=8.
由勾股定理,得AC =82-42
=4 3.
在Rt △ADB 中,cos ∠BAD=34=AD
AB ,
∴34=AD
8
,∴AD =6. ∴BD=82-62
=27.
∵∠BDC=∠BAC,∠DFB=∠AFC,
∴△DF B∽△AFC. ∴
BF CF =BD CA ,即BF 103
=27
43
, 解得BF =521
9.
模型2 A 字型及其变形
(1)如图1,公共角的对边平行,则△ADE∽△ABC;
(2)如图2,公共角的对边不平行,且有另一对角相等,则△ADE∽△ABC;
(
3)如图3,公共角的对边不平行,两个三角形有一条公共边,且有另一对角相等,则△ACD∽△ABC.常见的
结论有:AC 2
=AD·AB.
,图1)
,图2) ,图3)
3.如图,正五边形ABCDE 的对角线AD 与BE
相交于点G ,AE =2,求EG 的长.
解:在⊙O 的内接正五边形ABCDE 中,∠AEB=∠ABE=∠EAG=36°, ∴∠BAG=∠AGB=72°, ∴AB=BG =AE =2.
∵∠AEG=∠AEB,∠EAG=∠EBA, ∴△AEG∽△BEA.
∴AE 2=EG·EB,即22
=EG·(EG +2).
解得EG =-1+5或-1-5(不合题意,舍去).
∴EG=5-1.
模型
3
双垂直型
直角三角形被斜边上的高分成的两个直角三角形与原三角形相似,即△ACD∽△ABC∽△CBD.
4.(2018·南通)正方形ABCD 的边长AB =2,E 为AB 的中点,F 为BC 的中点,AF 分别与DE ,BD 相交于点M ,N ,则MN 的长为(C )
A .
556 B .253-1 C .4515 D .3
3
5.(2018·娄底改编)如图,已知半圆O 与四边形ABCD 的边AD ,AB ,BC 都相切,切点分别为D ,E ,C ,半径OC =
1,求AE·BE 的值.
解:连接OE.
∵半圆O 与四边形ABCD 的边AD ,AB ,BC 都相切,切点分别为D ,E ,C , ∴OE⊥AB,A D⊥CD,BC⊥CD,∠OAD=∠OAE,∠OBC=∠OBE. ∴AD∥BC.
∴∠DAB+∠AB C =180°. ∴∠OAB+∠OBA=90°. ∴∠AOB=90°.
∵∠OAE+∠AOE=90°,∠AOE+∠BOE=90°, ∴∠EAO=∠EOB.
∵∠AEO=∠OEB=90°,∴△AEO∽△OEB. ∴
AE OE =OE BE
,即AE·BE=OE 2=OC 2
=1.
模型4 一线三等角型
(1)如图1,AB⊥BC,CD⊥BC,AP⊥PD,垂足分别为B ,C ,P ,且三个垂足在同一直线上,则有△ABP∽△PCD;(此图又叫作“三垂图”)
图1 图2
(2)如图2,∠B=∠APD=∠C,且B ,P ,C 在同一直线上,则①△ABP∽△PCD;②连接AD ,当点P 为BC 的中点时,△ABP∽△PCD∽△APD.
6.如图,矩形纸片ABCD ,将△AMP 和△BPQ 分别沿PM 和PQ 折叠(AP>AM ),点A 和点B 都与点E 重合;再将△CQD 沿DQ 折叠,点C 落在线段EQ 上点F 处.
(1)判断△AMP,△BPQ,△CQD 和△FDM 中有哪几对相似三角形?(不需说明理由)
(2)如果AM =1,sin ∠DMF=3
5
,求AB 的长.
解:(1)有三对相似三角形:△AMP∽△BPQ∽△CQD .
(2)设AP =x ,由折叠的性质,得BP =AP =EP =x.∴AB=DC =2x. 由△AMP∽△BPQ,得AM BP =AP BQ ,∴BQ=x 2
.
由△AMP∽△CQD,得AP CD =AM
CQ ,∴CQ=2.
AD =BC =BQ +CQ =x 2
+2,
MD =AD -AM =x 2+2-1=x 2
+1.
在Rt △FDM 中,sin ∠DMF=3
5,DF =DC =2x ,
∴
2x x 2
+1=3
5
. 解得x 1=3,x 2=1
3
(不合题意,舍去).
∴AB=2x =6.
7.如图,在△ABC 中,AB =AC ,点P ,D 分别是BC ,AC 边上的点,且∠APD=∠B.
(1)求证:AC·CD=CP·BP ;
(2)若AB =10,BC =12,当PD∥AB 时,求BP 的长.
解:(1)证明:∵AB=AC ,∴∠B=∠C. ∵∠APD=∠B, ∴∠APD=∠B=∠C.
∵∠APC=∠BAP+∠B,∠APC=∠APD+∠CPD, ∴∠BAP=∠CPD. ∴△ABP∽△PCD. ∴BP CD =AB PC
. ∴AB·CD=PC·BP. ∵AB=AC ,
∴AC·CD=CP·BP.
(2)∵PD∥AB,∴∠APD=∠BAP. ∵∠APD=∠C,∴∠BAP=∠C. ∵∠B=∠B, ∴△BAP∽△BCA. ∴BA BC =BP BA . ∵AB=10,BC =12, ∴
1012=BP 10
.
25 3.
∴BP=。