A biocatalytic synthesis of diosgenyl-β-D-glucopyranoside by the use of four
- 格式:pdf
- 大小:308.28 KB
- 文档页数:3
薯蓣皂苷元衍生物的合成及生物活性研究摘要:薯蓣皂苷元具有多种药理活性,根据薯蓣皂苷元表现出不同的生物活性,以薯蓣皂苷元为起始原料采取酯化、还原等化学反应进行适当结构修饰,得到多种类型的薯蓣皂苷元衍生物,可减少薯蓣皂苷元的毒副作用,增加其抗血栓、抗炎及松弛支气管平滑肌的药理活性,使薯蓣皂苷元在临床的应用更加广泛,为薯蓣皂苷元更进一步的研究及利用提供一些新的思路。
关键词:薯蓣皂苷元衍生物合成生物活性抗血栓抗炎薯蓣皂苷元(diosgenin,简称Dio)主要是从薯蓣科植物穿龙薯蓣[1]Dioscorea nipponica Makino中得到的甾体皂苷元,俗称皂素。
它是由C螺甾27烷皂苷组成的一类具有广泛生物活性的中药,在临床中常用作一些药物的半合成原料,在制药工业中常用作合成甾体激素类药物和甾体避孕药[2]。
薯蓣皂苷元主要通过促进细胞凋亡、降低氧化应激、抑制促炎因子等来发挥抗肿瘤、抗炎、保护心血管、松弛平滑肌等作用[3]。
然而,薯蓣皂苷元的脂溶性强,口服生物利用度较低,几乎很难吸收入血,很大程度上影响了药理作用的发挥。
在C-3位置引入酯或醚键可显著增大薯蓣皂苷元的极性及溶解度,同时保持其原有的优势[4,5]。
因此有必要对其进行适当的结构改造,使薯蓣皂苷元的溶解性及溶出度在一定程度上增加,从而增强其生物活性。
本文就近年来以薯蓣皂苷元为基础原料进行适当结构改造,得到一系列薯蓣皂苷元衍生物并对其相应的生物活性进行了归纳总结,以期提供更有意义的参考来进一步研究及利用薯蓣皂苷元。
1 薯蓣皂苷元的结构修饰及其抗血栓形成活性乙酰水杨酸即阿司匹林,在临床上常作为解热镇痛药使用,研究表明其小剂量使用时具有防止血栓形成作用,可作为预防血管疾病的药物在临床上使用,但其会造成出血风险、胃黏膜损害和耐药性等不良反应[6,7]。
据报道,薯蓣皂苷元具有保护胃肠道黏膜的功能,但其不溶于水导致吸收差影响了其应有的疗效,因此要采取适当增溶措施,以增强薯蓣皂苷元抗血栓形成活性,并减轻胃肠道不良反应。
天津科技大学《食品酶学》本科生课程论文酶的非水相催化及其应用non-aqueous enzymatic catalysis technology and its applications学生姓名:学号:专业:任课教师:摘要非水相酶催化反应是酶催化反应中的一个重要方面。
非水相溶剂通常可增加底物溶解度, 减少水相中的副反应, 加快生物催化的速率和效率, 在药物及药物中间体和食品等方面具有较大的应用价值。
以下主要分析了在非水介质中酶促反应的几个重要影响因素; 介绍了非水介质中酶催化反应的应用,以及其前景发展。
关键词:非水相催化,影响因素,实际应用,发展前景Abstract It is well known that non-aqueous enzymatic catalysis has emerged as animportant area of enzyme engineering with the advantages of highersubstrate solubility, increased stereoselectivity, modified substratespecificity and suppression of unwanted water-dependent side reactions.As a result, non-aqueous enzymatic catalysis has been applied in thebiocatalytic synthesis of important pharmaceuticals and nutriceuticals.The following main analyzed several important factors in non-aqueousenzymatic catalysis:introduced in non-aqueous enzymatic catalysis infront of the catalytic reaction,introduced the bright future ofnon-aqueous enzymatic catalysis technologyKey words:non-aqueous enzymatic catalysis;important factors;applications,Development prospect目录1 前言 (5)2酶非水相催化的几种基本类型介绍 (6)3 非水介质中酶促反应的几个重要影响因素3.1 反应溶剂的影响 (7)3.2 反应时间、温度和pH 值的影响 (8)3.3 不同反应试剂的影响 (8)3.4 反应时的物理因素 (9)3.5 超声对非水介质中酶促反应的影响 (9)4 非水介质中酶促反应的应用4.1 非水介质中酶促反应基本应用范畴4.1.1 在有机相中的应用 (10)4.1.2 低共熔多相混合物体系中的酶促反应 (10)4.1.3 固定化酶催化反应 (11)4.2 非水介质中酶促反应的具体应用进展4.2.1 微生物酶法拆分环氧丙醇丁酸醋 (11)4.2.2 非水相酶催化拆分外消旋2-辛醇 (12)4.2.3 固定化脂肪酶合成鲸蜡油工艺和设备 (13)4.2.4 酶法生产类可可醋的开发和中试 (14)4.2.5 非水相酶催化生产类可可脂技术 (15)4.2.6 非水相酶法单甘醋生产专用脂肪酶 (15)5 前景展望 (16)6 参考文献 (17)1、前言酶已经在医药、食品轻工、化工能源、环保等领域广泛应用。
24. The following medications can cause conjunctival pigmentation:A. betaxololB. dipivefrineC. azetazolamideD. pilocarpineE. bromonidine29. The blood pressure of a 65-year-old male is well controlled by a Ca2+ channel blocker that is used to treat his essential hypertension. When placed on cimetidine to control symptoms related to gastroesophageal reflux disease (GERD), he has episodes of dizziness. How does cimetidine’s effect on Ca2+ channel blockers account for the dizziness?A. It increases their rate of intestinal absorptionB. It decreases their plasma protein bindingC. It decreases their volume of distributionD. It decreases their metabolism by cytochrome P450E. It decreases their tubular renal secretion30. Which of the following best describes diltiazem’s effect on digoxin?A. It decreases digoxin metabolismB. It decreases digoxin renal excretionC. It decreases digoxin plasma protein bindingD. It decreases digoxin intestinal absorptionE. It decreases digoxin sensitivity at its site of action29. Formed by sequential enzymatic cleavage by rennin and then peptidyl dipeptidase (kinase Ⅱ)A. Angiotensin IB. Angiotensin ⅡC. ClonidineD.LosartanE. Captopril30. Lowers blood pressure in hypertensive patients by inhibition of peptidyl dipeptidaseA. IndapamideB. AmlodipineC. ClonidineD. LosartanE. Captopril41. Significant relaxation of smooth muscle of both venules and arterioles is produced by which of the following drugs?F. HydralazineG. MinoxidilH. DiazoxideI. Sodium nitroprussideJ. Nifedipine42. In a hypertensive patient who is taking insulin to treat diabetes, which of the following drugs is to be used with extra caution and advice to the patient?E. HydralazineF. PrazosinG. GuanethidineH. PropranololI. Methyldopa41. It is customary today to classify antiarrhythmic drugs according to their mechanism of action. This is best defined by intracellular recordings that yield monophasic action potentials. For the following drugs, choose the best appropriate drug to moderate phase 0 depression, slow conduction and prolong repolarizationA. NifedipineB. PropranololC. VerapamilD. DisopyramideE. Amiodarone42. A drug affects mainly action potential phase 3 and prolongs repolarization, which of the follows is the best chooseA. AmiodaroneB. DigoxinC. VerapamilD. PropafenoneE. Lidocaine41. The preferred agent to combat extreme digoxin overdose isA. K+B. Ca2+C. PhenytoinD. Fab fragments of digoxin antibodiesE. Magnesium(Mg2+)42. A 65-year-old female receives digoxin and furosemide for congestive heart failur (CHF). After several months, she develops nausea snd vomiting. Serum K+ is 2.5 mEq/L. Electrocardiogram (EKG) reveals an AV conduction defect. What cellular effect id causing these new findings?A. Increased intracellular K+B. Increased intracellular cyclic guanosine 5’-monophosphate (cGMP)C. Increased intracellular Ca2+D. Increased intracellular norepinephrineE. Increased intracellular nitric oxide (NO)31. A 69-year-old male with angina develops severe constipation following treatment withA. PropranoldB. VerapamilC. CaptoprilD. DobutamineE. Nitroglycerin32. Which of the following drugs is considered to be most effective in relieving and preventing ischemic episodes in patients with variant angina?A. PropranololB. NitroglycerinC. Sodium nitroprussideD. NifedipineE. Isosorbide dinitrate25. Which of the following drugs recommended for the lowering of blood cholesterol inhibits the synthesis of cholesterol by blocking 3-hydroxy-3-methylglutaryl- coenzyme A (HMG-CoA) reductase?A. LovastatinB. ProbucolC. ClofibrateD. GemfibrozilE. Nicotinic acid (NA)26. A 44-year-old obese male has a significantly high level of plasma triglycerides. Following treatment with one of the following agents, his plasma triglyceride levels decrease to almost normal. Which agent did he receive?A. NeomycinB. LovastatinC. CholestyramineD. GemfibrozilE. Probucol40. A patient with compromised renal hemodynamics is given a trial of mannitol. Of the following, which is the least likely to be associated with the effect of mannitol?A. Retention of water in the tubular fluidB. Ability to be metabolically altered to an active formC. Capacity to be freely filteredD. Ability to resist complete reabsorption by the renal tubuleE. Effectiveness as nonelectrolytic, osmotically active particles41. Of the following agents, which is best avoided when a patient is being treated with an aminoglycoside?A. MetolazoneB. TriamtereneC. FurosemideD. SpironolactoneE. Acetazolamide22. Which is wrong about the mechanism of action of antibacterials?A. Inhibition of bacterial cell-wall synthesisB. Inhibition of bacterial protein synthesisC. Inhibition of bacterial folic acid synthesisD. Inhibition of bacterial growthE. Inhibition of bacterial DNA polymerase23. Which of the following drugs is more safe to use?A. LD50=30mg/kg,ED50=10mg/kgB. LD50=40mg/kg,ED50=15mg/kgC. LD50=160mg/kg,ED50=40mg/kgD. LD50=85mg/kg,ED50=17mg/kgE. LD50=300mg/kg,ED50=50mg/kg36. Which of the following antibacterial can inhibit bacillus pyocyaneus?A. CeftazidineB. AmpicillinC. Penicillin GD. CephalothinE. Cephalexine37. In the treatment of bacterial meningitis in child, the drug of choice isA. Penicillin GB. Penicillin VC. ErythromycinD. Procaine penicillinE. Ceftriaxone38. Which of the following drugs can secrete by renal tubule?A. Penicillin GB. TetracyclineC. RifampicinD. IsoniazidE. Streptomycin39. Clavulanic acid is important because itA. Easily penetrates Gram-negative microorganismsB. Is specific for Gram-positive microorganismsC. Is a potent inhibitor of cell-wall transpeptidaseD. Inactivates bacterial 尾-lactamasesE. Has a spectrum of activity similar to that of penicillin G28. A drug primarily used in pneumonia caused by mycoplasm isA. ErythromycinB. VancomycinC. ClindamycinD. StreptomycinE. Fluoroquinolones29. Which of the following antibacterial isn’t belong to macrolides?A. ErythromycinB. MidecamucinC. AcetylspiromycinD. SulfadiazineE. Roxithromycin30. In the treatment of acute or chronic osteomyelitis, the drug of choice isA. ErythromycinB. VancomycinC. ClindamycinD. StreptomycinE. Fluoroquinolones31. The use of chloramphenicol may result inA Bone marrow stimulationB PhototoxicityC Aplastic anemiaD Staining of teethE Alopecia32. The most effective agent in the treatment of Rickettsia,Mycoplasma,and Chlamydia infections isA Penicillin GB TetracyclineC VancomycinD GentamicinE Bacitracin41. Which of the following may cause damage to growing cartilage?A FluoroquinolonesB SulfonamidesC AminoglycosidesD CephalosporinsE Tetracyclines42. What is the mechanism of action of Fluoroquinolones?A Inhibition of bacterial cell-wall synthesisB Inhibition of bacterial protein synthesisC Inhibition of bacterial folic acid synthesisD Inhibition of bacterial DNA gyraseE Inhibition of bacterial DNA polymerase43. Of the following ,which one can inhibit of bacterial folic acid synthesisA SulfonamidesB FluoroquinolonesC FurazolidoneD TMPE Gentamicin31. Why is vitamin B6 usually prescribed with isoniazid(INH)?A It acts as a cofactor for INHB It prevents some adverse effects of INH therapyC Like INH, it has tuberculostatic activityD It prevents metabolism of INHE It inhibits cell-wall synthesis in mycobacteria32. Which drugs does induce microsomal cytochrome P450 enzymes in the liver?A IsoniazidB RifampinC PyrazinamideD EthambutolE Vitamin B633. What is the mechanism of action of isoniazid?A Inhibition of bacterial cell-wall synthesisB Inhibition of bacterial protein synthesisC Inhibition of bacterial folic acid synthesisD Inhibition of bacterial DNA gyraseE Inhibition of bacterial DNA polymerase34. The drug used in all types of TB isA EthambutolB CycloserineC PASD IsoniazidE Streptomycin。
Tianjing polytechnic universityPharmaceutical engineering单克隆抗体技术免疫分析检测食品残留检测常用的技术手段研究领域和兴趣(1)小分子抗原的合成和多克隆/单克隆抗体制备. The syntheses of antigens of small molecules and preparation of corresponding polyclonal and monoclonal antibodies(2)生物免疫技术药物残留检测方法的研究和开发. Research and development of immunotechnical methods to detect drug residues(3)纳米免疫磁珠的合成和在疾病检测和药残检测中的应用. Preparation of nanomagnetic bead and explore its application in diagnoses of diseases and drug residues(4)抗体的分离纯化和性质研究. Purification and characterization of antibodies1.Meng Meng, Rimo Xi*. Establishment of immunoassays to detect harmful residues in foods and food products. Current Analytical Chemistry, 2011 (invited review in preparation)2.Yabin Wang, Fangyang He, Yuping Wan, Meng Meng, Jing Xu, Yuanyang Zhang, Jian Yi, Caiwei Feng, Shanliang Wang, Rimo Xi*. An Indirect Competitive Enzyme-Linked Immuno-Sorbent Assay (ELISA) to Detect Nitroimidazoles in Food Products, Food Additives & Contaminants: Part A, 2011 (in press).3.Meng Meng, Rimo Xi*. Current development in analyzing drug residue in foods and food products. Analytical Letters, 2011 (review article in press)4.Zhaozhen Cao, Shengxin Lu, Jinting Liu, Jinhua Zhan, Meng Meng, Rimo Xi*. Preparation of anti-Lomefloxacin Antibody and Development of an Indirect Competitive Enzyme-Linked Immunosorbent Assay for Detection of Lomefloxacin Residue in Milk. Analytical Letters, 2011 (in press)5.Zhaozhen Cao, Meng Meng, Shengxin Lu, Rimo Xi*. Development of an Indirect Chemiluminescent Competitive ELISA to Detect Danofloxacin Residues in Milk, Analytical Letters, 2011 (in press).6.Zhang, Yuanyang, He, Fangyang, Wan, Yuping , Meng, Mengb, Xu, Jing, Yi, Jian, Wang, Yabin, Feng, Caiwei, Wang, Shanliang, Xi, Rimo, Generation of anti-trenbolone monoclonal antibody and establishment of an indirect competitive enzyme-linked immunosorbent assay for detection of trenbolone in animal tissues, feed and urine, Talanta, 2011, 83, 732-737.7.Jing Xu, Yuanyang Zhang, Jian Yi, Meng Meng, Rimo Xi*. Preparation of anti-Sudan Red monoclonal antibody and development of an indirect competitive enzyme-linked immunosobent assay for detection of Sudan Red in Chili Jam and Chili Oil, Analyst, 2010,135(10), 2566-2572.8.Yin, Weiwei; Liu, Jinting; Li, Weihua; Liu, Wei; Meng, Meng; Wan, Yuping; Feng, Caiwei; Wang, Shanliang; Lu, Xiao; Xi, Rimo. Preparation of Monoclonal Antibody for Melamine and Development of an Indirect Competitive ELISA for Melamine Detection in Raw Milk, Milk Powder and Animal Feeds, J. Agric. Food Chem. 2010, 58, 8152-8157.9.Wei Liu, Meng Meng, Yuping Wan, Caiwei Feng, Shanliang Wang, Rimo Xi*. Preparation of monoclonal antibody and development of an indirect competitive ELISA for the detection of chlorpromazine residue in chicken and swine liver, Journal of the Science of Food and Agriculture, 2010, 90, 1789-1795.10.Yongchao Lai, Weiwei Yin, Jinting Liu, Rimo Xi, Jinhua Zhan, One-Pot Green Synthesis and Bioapplication of L-Arginine-Capped Superparamagnetic Fe3O4 Nanoparticles, Nanoscale Res. Lett., 2010, 5, 302–30711.Meng Meng, Yulan Zhang, Shengxin Lu, Jinting Liu, Jinhua Zhan, Rimo Xi*. Preparation of anti-Salbutamol Antibody Based on a New Designed Immunogen and Development of a Heterologous Indirect cELISA for Detectionof Salbutamol Residue in Swine Liver, Acta Pharmaceutica Sinica, 2010, 45 (4), 442-450.12.Kai Ding, Cuihua Zhao, Zhaozhen Cao, Zhongqiu Liu, Jinting Liu, Jinhua Zhan, Chen Ma, and Rimo Xi*. Chemiluminescent Detection of Gatifloxacin Residue in Milk. Analytical Letters, 2009, 42, 505.13.Zhongqiu Liu, Shengxin Lu, Cuihua Zhao, Zhaozhen Cao, Yanshuai Wang, Yulan Zhang, Chengbiao Zhao, Wei Liu, Jinhua Zhan, Jinting Liu, and Rimo Xi*. Preparation of anti-Danofloxacin Antibody and Development of an Indirect Competitive Enzyme-Linked Immunosorbent Assay for Detection of Danofloxacin Residue in Chicken Liver. Journal of the Science of Food and Agriculture, 2009, 89, 1115.14.Zhao, C.; Liu, W.; Ling, H.; Lu, S.; Zhang, Y.; Liu, J.; Xi, R*. Preparation of anti-Gatifloxacin Antibody and Development of an Indirect Competitive Enzyme-Linked Immunosorbent Assay for Detection of Gatifloxacin Residue in Milk. J. Agric. Food Chem. 2007, 55, 6879. 15.Liu, W.; Zhao, C.; Zhang, Y.; Lu, S.; Liu, J.; Xi, R*. Preparation of Polyclonal Antibodies to a Derivative of 1-Aminohydantoin (AHD) and Development of an Indirect Competitive ELISA for Detection of Nitrofurantoin Residue in Water. J. Agric. Food Chem. 2007, 55, 6829.16.Xu, P.; Qiu, J.; Zhang, Y.; Chen, J.; Wang, G. P.; Yan, B.; Song, J.; Xi, R.; Deng, Z.; Ma, C. Efficient whole-cell biocatalytic synthesis of N-acetyl-D-neuraminic acid, Adv. Synth. Catal. 2007, 349, 1614.17.Zhang, Y. L.; Lu, S. X.; Liu, W.; Zhao, C. B.; Xi, R*. Preparation of anti-Tetracycline Antibodies and Development of an Indirect Heterologous cELISA Assay to Detect Residue of Tetracycline in Milk. J. Agric. Food Chem. 2007, 55, 211.18.Lu, S. X.; Zhang, Y. L.; Liu, J. T.; Zhao, C. B.; Liu, W.; Xi, R*. Preparation of anti-pefloxacin antibody and development of an indirectcompetitive enzyme-linked immunosorbent assay for detection of pefloxacin residue in chicken liver. J. Agric. Food Chem. 2006, 54, 6995.19.Zhang, X.; Xi, R.; Liu, J.; Jiang, J.; Wang, G.; Zeng, Q. Molecular and electronic structures as well as vibrational spectra assignment of biphenyl, 2,20- and 4,40-dichlorobiphenyl from density functional calculations, J. Mol. Struc-Theochem. 2006, 763, 67.20.Xi R, Wang B, Abe M, Ozawa Y, Kinoshita I, and Isobe K. Tetranuclear Mo2Rh2 Complexes Obtained from Reactions between Triple Cubane-Type Oxide Cluster [(RhCp*)4Mo4O16] (Cp* =η5-C5Me5) and Methanethiol:[{Cp*Rh(μ-SMe)3MoO2}2(μ-O)] and [{Cp*Rh(μ-SMe)3 MoO}2 (μ-X)(μ-Y)] (X, Y = O and X=O, Y=S). Synthesis, X-ray Crystal Structures and Dynamic Behavior in Non-Aqueous Media, Bulletin of the Chemical Society of Japan, 1999, 72, 1985.21.Sita LR, Xi R, Yap GPA, Liable-Sands LM, and Rheingold AL. High Yield Synthesis and characterization of Sn6(μ3-O)4(μ3-OSiMe3)4: A Novel Main Group Cluster for the Support of Multiple Transition Metal Centers, J. Am. Chem. Soc., 1997, 119, 756.22.Sita LR, Babcock JR, and Xi R. Facile Metathetical Exchange Between Carbon Dioxide and the Divalent Group 14 Bisamides, M[N(SiMe3)2]2 (M = Ge and Sn), J. Am. Chem. Soc., 1996, 118, 10912.23.Xi R, Babcock JR, and Sita LR. A. Thermal Reductive Elimination Route to Perbutylated Cyclopolystannanes, Organometallics, 1996, 15, 2849. 24.Xi R, Abe M, Suzuki T, Nishioka T, and Isobe K. Synthesis and Characterization of Pentamethylcyclopentadienylrhodium (III) and–iridium(III) Complexes with 1,2-Benzenedi- thiolate:[(Cp*Rh)2(μ(S)-1,2-C6H4S2-S,S’)2], [(Cp*Rh)2(μ(S)-1,2-C6H4S2-S,S’) (μ(S)-1,2- C6H4S(SO)-S,S’) 2] and [(Cp*Ir)(1,2-C6H4S2-S,S’)](Cp*=η5-C5Me5), J. Organomet. Chem., 1997, 549, 117.25.Xi R and Sita LR. Mechanistic Details for Metathetical Exchange between XCO (X = O and RN) and the Tin(II) Dimer,{Sn[N(SiMe3)2](μ-OBut)}2, Inorg. Chim. Acta, 1997, 270, 118.26.Xi R, Wang B, Isobe K, Nishioka T, Toriumi K, and Ozawa Y. Isolation and X-ray Crystal Structure of a New Octamolybdate:[(RhCp*)2(μ-SCH3)3]4[Mo8O26] 2CH3CN (Cp*=η5-C5Me5), Inorg. Chem., 1994, 33, 833.27.Xi R, Wang B, Abe M, Ozawa Y, and Isobe K. Fragmentation of Triple Cubane- Framework in [(RhCp*)4Mo4O16] (Cp*=η5-C5Me5) by MeSH into Tetranuclear Parts in [{Cp*Rh(μ-SMe)3MoO}2(μ-O)2] and[{Cp*Rh(μ-SMe)3MoO}2(μ-O)(μ-S)] Providing a Novel System for Studying Stereodynamics of Thiolate Complexes Chem. Lett., 1994, 1177.28.Xi R, Wang B, Abe M, Ozawa Y, and Isobe K. New Linear-Type Tetranuclear Complexes, [{Cp*Rh(μ-SMe)3MoO2}2(μ-O)] (Cp*=η5-C5Me5), Chem. Lett., 1994, 323.授权或申报的专利1.郗日沫,张太昌,孟萌,薛虎寅,徐静,张元阳(2011)一种叶酸的酶联免疫检测试剂盒,国家发明专利,国家知识产权局,201110004107.X。
2,5-呋喃二甲酸在水-醋酸、水-乙腈二元体系中的溶解度郭霞;王晓辉;卢美贞【摘要】2,5-呋喃二甲酸(FDCA)的溶解度数据是研究5-HFM催化氧化过程中催化剂失活和产品结晶分离的重要依据.本工作测定了40~90 ℃温度下,FDCA在水-醋酸、水-乙腈二元体系中的溶解度.实验结果表明:随着温度的升高,FDCA的溶解度增大;在单组分体系中,FDCA溶解度的大小顺序为:醋酸>水>乙腈;二元体系中,随着水在体系中摩尔分数的增大,FDCA的溶解度先增大后减小,存在一个最大值;引入温度矫正系数后,λh方程能较好的关联FDCA的溶解度数据.%The solubility data of 2,5-furandicarboxylic acid (FDCA) is an important basis for the study of catalytic deactivation and crystallization separation product in the catalytic oxidation of 5-HMF. At the temperature range of 40 ℃ to 90 ℃, the solubility of FDCA in water-acetic acid, water-acetonitrile binary systems was determined. The experiment results showed that the solubility of FDCA increased with the increase of temperature. In the single component system, the solubility order from large to small was: aciticacid>water>acetonitrile. In the binary systems, as the molar fraction of water increased in the system, the solubility of FDCA first increased then decreased, there was a maximum value. With the introduction of temperature correction coefficient,λh equation can better correlate the solubility data of FDCA.【期刊名称】《化学反应工程与工艺》【年(卷),期】2017(033)006【总页数】5页(P554-558)【关键词】2,5-呋喃二甲酸;5-羟甲基糠醛;溶解度;λh方程【作者】郭霞;王晓辉;卢美贞【作者单位】赞宇科技集团股份有限公司,浙江杭州 310009;赞宇科技集团股份有限公司,浙江杭州 310009;浙江省生物燃料利用技术研究重点实验室,浙江杭州310014【正文语种】中文【中图分类】TQ013.12,5-呋喃二甲酸(FDCA)是一种重要的基于生物质的化工产品,其分子结构与对苯二甲酸(PTA)相似,FDCA与多元醇制得的聚酯产品具有优良的性质[1]。
文章编号:0253-9837(2007)11-0993-06研究论文:993~998收稿日期:2007-04-20. 第一作者:梅建凤,男,1973年生,博士研究生.联系人:闵 航.Tel /Fax :(0571)88206279;E -mail :minhang @zju .edu .cn . 利用酵母细胞生物催化合成2-苯乙醇梅建凤1,2, 闵 航1, 吕镇梅1(1浙江大学生命科学学院,浙江杭州310058;2浙江工业大学药学院,浙江杭州310032)摘要:比较了13个酵母菌株催化合成2-苯乙醇的活性,确定酿酒酵母菌株的催化活性较高.通过单因素和正交实验对酵母催化合成2-苯乙醇的培养基组成进行了优化,采用优化后的催化合成培养基,2-苯乙醇浓度可达4.654g /L ,摩尔产率为0.63.实验进一步采用Bo x -Behnken 中心组合设计和响应面分析,建立了2-苯乙醇合成浓度与培养基主要组分之间的二次多项式回归模型,该模型具有较高的准确性,可作为生物催化法合成2-苯乙醇培养基的最优化预测模型.由响应面分析及实验验证得出,在最优培养基条件下,2-苯乙醇浓度可达4.815g /L .关键词:2-苯乙醇;生物催化;酿酒酵母;香料中图分类号:O643/TQ 65 文献标识码:ABiocatalytic Synthesis of 2-Phenylethanol by Yeast CellsMEI Jianfeng 1,2,MIN Hang 1*,L ¨U Zhenmei 1(1College of L ife Science ,Zhejiang University ,Hangzhou 310058,Zhejiang ,China ;2College of Pharmaceutical Science ,Z hejiang University of T echnology ,Hangzhou 310032,Zhejiang ,China )A bstract :The biocatalytic activity of 13yeast strains w as compared for the sy nthesis of 2-phenylethanol ,and a Sac charomyc es cerev isiae strain that had high biocataly tic activity w as screened out .The experiments of sing le factor and orthogonal design were carried out to optimize the composition of the medium for the biosy nthesis of 2-phenylethanol .The results showed that the conc entration of 2-pheny lethanol could reach 4.654g /L with a molar yield of 0.63in the optimized medium .Furthermore ,a model of polynomial reg ressive equation between the 2-phenylethanol concentration and main components in the medium was established after the Box -Behnken central composite desig n and response surface methodology were put into practice .The model exhibited fine ex -actitude and provided a predictive model for optimizing the medium in the biocataly tic synthesis of 2-phenylethanol .Response surface analy sis w as applied to optimize the medium constituents ,and upon applying the optimized medium ,the maxim um 2-phenylethanol concentration of 4.815g /L w as achieved in testing ex -periment .Key words :2-phenylethanol ;biocatalysis ;Saccharomyc es cerev isiae ;perfume 2-苯乙醇是一种具有柔和细腻玫瑰气味的芳香醇,自然界中许多植物因含2-苯乙醇而芳香怡人,如玫瑰、茉莉、黄兰和百合等.2-苯乙醇的香气颇受人们欢迎,是国际香精香料的主流风格,大量应用于玫瑰型及其他类型的香精配方中,在食品和日化用品等领域中也应用广泛.目前,2-苯乙醇主要采用苯-环氧乙烷合成法或氧化苯乙烯加氢法生产,存在诸如原料毒性高、产品纯度低、合成过程污染大等弊端[1~3].随着生活水平的提高和对健康的关注,人们越来越崇尚绿色和天然产品.在欧美国家,能标记为天然的产品必须是采用物理方法从天然材料中提取、酶催化或微生物发酵法生产[4].从玫瑰等植第28卷第11期催 化 学 报2007年11月Vol .28No .11Chinese Journal of CatalysisN ovember 2007物精油中提取天然2-苯乙醇,由于原料来源和提取成本等原因而难以满足市场需求,而生物技术迅猛发展,为天然2-苯乙醇的生产提供了新的途径[5,6]. 发酵食品气味芳香,其香味物质主要是酵母菌在生长过程中合成的2-苯乙醇.酵母菌可以自身合成2-苯乙醇,也可以通过艾氏代谢途径催化胞外的L-苯丙氨酸合成2-苯乙醇[7].因酵母自身合成2-苯乙醇浓度比较低,直接发酵法生产2-苯乙醇的工业化前景不大,而以L-苯丙氨酸为底物,由酵母细胞生物催化合成2-苯乙醇则具有很大的可行性.目前,市场上L-苯丙氨酸多是采用酶法或微生物发酵法生产,属天然产品,且价格低廉,可满足大规模生物催化法生产2-苯乙醇的需要[8].由此可见,采用生物催化法合成2-苯乙醇,产品具有天然属性,气味纯正,还有发酵周期短,生产过程污染小等优点,目前已成为国内外研究的热点. 本文研究了酵母细胞生物催化合成天然2-苯乙醇,首先对多个酵母菌株催化合成2-苯乙醇的活性进行比较,从中筛选作为生物催化剂的酵母菌株,对其催化合成2-苯乙醇的培养基进行优化,旨在提高2-苯乙醇的合成浓度,并采用中心组合设计和响应面分析(response surface analysis)建立2-苯乙醇合成浓度与培养基主要组分之间的回归方程,为生物催化合成2-苯乙醇最优化生产提供预测模型.1 实验部分1.1 2-苯乙醇催化合成 L-苯丙氨酸购自浙江康普达生物科技有限公司,纯度为99.5%;2-苯乙醇标准品购自Sigma公司,纯度为98.0%;其它试剂均为市售分析纯或生物试剂. 酵母斜面和种子培养基:葡萄糖10g/L,蛋白胨5g/L,酵母浸出粉3g/L,pH5.7.生物催化合成初始培养基:蔗糖30g/L,(NH4)2SO46.0g/L,酵母浸出粉2.5g/L,KH2PO45.0g/L,MgSO40.4 g/L,L-苯丙氨酸8.0g/L,pH5.5.培养基pH均为自然状态,121℃灭菌20min. 酵母斜面菌种经活化培养后,挑2~3环菌苔接入种子培养基,于30℃,200r/min的恒温振荡摇床(上海智城分析仪器制造有限公司,HWY2112型)中培养24h.按10%接种量移取新鲜种子液到催化合成培养基中,再加入实验设计浓度的L-苯丙氨酸,三角瓶用8层纱布扎口,于30℃,200r /min 恒温振荡摇床内催化反应40h.1.2 分析方法 生物催化反应结束后,取10ml反应液于5000 r/min的转速下离心20min,取0.5ml上清液到10 ml具塞试管中,再加入0.1ml浓度为20g/L的苯甲醇作内标物,用蒸馏水稀释到10ml,振荡混匀,用微量进样器取2μl进行气相色谱分析.气相色谱仪(上海精密科学仪器有限公司,GC112A型)分析条件为:色谱柱为PEG20M(30m×0.53mm×1.0nm),FID检测器,载气为N2;柱箱温度采用程序控温,初始温度为80℃,初始温度保持时间2min,升温速率为10℃/min,终止温度为220℃,终止温度保持时间为5min;进样口和检测器温度均为250℃[9]. 除菌株筛选和响应面实验外,实验数据均为3次重复的平均值,响应面实验设计和分析采用The SAS System for Window s8.0软件.表1 不同酵母菌株催化合成2-苯乙醇的浓度Table1 The concentration of2-phenylethanol(2-PE)bios ynthesized by different yeast strainsYeast strain2-PE concentration(g/L) Rhdotoru lar Glutinis NH0.557Pichia pas toris BC0.408Cand ida arbovea S J0.241Candida guillier mond M J0.456Can dida tr opica lis AS2.6170.279S por idiobolus johns onii ZB0.262 Kluyveromyces m ar xian us GIM2.1191.310Saccharom yces cerevisiae3141.871Saccharom yces cerevisiae3151.201Saccharomyces cerevisiae BD1.879Saccharomyces cerevisiae BR1.628 Saccharomyces cerevisiae GIM2.351.0512 结果与讨论2.1 高催化活性酵母菌株的筛选 高催化活性酵母菌种是提高催化反应效率的关键.我们收集了多个酵母菌株,特别收集了较多的酿酒酵母(Saccharomyces cerev isiae)菌株,用催化合成反应初始培养基对这些菌株进行筛选,结果见表1.可以看出,不同酵母菌株催化合成2-苯乙醇的活性有很大差异,酿酒酵母的催化活性普遍较高,但不同菌株也有一定的差别,其中酿酒酵母BD菌株催化合成2-苯乙醇浓度相对较高,达到1.879g/L;而其它酵母菌株中,除马克斯克鲁维酵母994催 化 学 报第28卷(K luyveromyces marxianus )外,催化活性都相对较低.因此我们选择酿酒酵母BD 菌株作为实验菌株.2.2 碳源种类及浓度对2-苯乙醇合成的影响 碳源是构成微生物细胞以及代谢产物的物质基础,是发酵培养基的主要成分,其种类和浓度均会影响作为催化剂的酵母细胞的数量.酵母细胞一般容易利用的碳源有葡萄糖、乳糖和蔗糖等,乳糖价格较高,一般不宜用作工业规模的培养基成分,因此实验考察了不同浓度的葡萄糖和蔗糖对2-苯乙醇合成的影响,结果见图1.可以看出,随着培养基中葡萄糖或蔗糖浓度增大,2-苯乙醇合成浓度有所提高,在糖浓度达到100g /L 时,2-苯乙醇浓度达到最大,过高浓度的葡萄糖或蔗糖则不利于酵母催化活性的提高.相同浓度的葡萄糖较蔗糖催化合成2-苯乙醇的浓度高,但差异并不显著,所以我们确定以价格低廉的100g /L 蔗糖为培养基组成的碳源.图1 葡萄糖和蔗糖浓度对2-苯乙醇合成的影响Fig 1 Effect of glucos e and sucrose concentrationon biocatal y tic synthesis of 2-PE(1)Glucose ,(2)Sucros e2.3 (NH 4)2SO 4浓度对2-苯乙醇合成的影响 氮源是微生物培养基的另一主要成分,为微生物细胞合成蛋白质及氨基酸类含氮代谢物提供氮素.实验考察了培养基中(NH 4)2SO 4浓度对2-苯乙醇合成的影响,结果见图2.由图可以看出,在培养基中不加(NH 4)2SO 4的情况下,合成2-苯乙醇的浓度最高,达到了3.749g /L .分析其原因,应该是在酵母以L -苯丙氨酸底物催化合成2-苯乙醇过程中,第一步反应中转氨酶作用下释放的NH 3最终足够作为酵母细胞生长的氮源,因此后续实验中培养基不再添加(NH 4)2SO 4.图2 (NH 4)2S O 4浓度对2-苯乙醇合成的影响Fig 2 Effect of (NH 4)2SO 4concentration onbiocatalytic synthesis of 2-PE2.4 酵母浸出粉浓度对2-苯乙醇合成的影响 酵母浸出粉中含有大量的氨基酸、维生素和微量元素等物质,是微生物培养基常用组分之一,可为微生物细胞生长提供多种生长因子和微量元素.实验考察了培养基中的酵母浸出粉浓度对2-苯乙醇合成的影响,结果见图3.可以看出,培养基中不添加酵母浸出粉,反应液中2-苯乙醇也能达到3.196g /L ,但适量添加酵母浸出粉对2-苯乙醇合成浓度有明显的促进作用,酵母浸出粉添加浓度为5.0g /L 时最高,进一步增加酵母浸出粉浓度,2-苯乙醇浓度开始降低.其原因是酵母浸出粉浓度过高时,培养基中氮素过多,进而影响酵母细胞利用L -苯丙氨酸转氨作用所释放的NH 3.图3 酵母浸出粉浓度对2-苯乙醇合成的影响Fig 3 Effect of yeast extract concentration onbiocatal ytic s ynthesis of 2-PE2.5 磷酸钾盐浓度及pH 对2-苯乙醇合成的影响 磷酸钾盐可以满足酵母生长对磷和钾的需要,实验先考察了KH 2PO 4浓度对2-苯乙醇合成的影响,结果见图4.可以看出,在KH 2PO 4浓度为15g /L (0.11mol /L )时,2-苯乙醇合成浓度达到最高.在此KH 2PO 4浓度下,培养基pH 为5.3,酵母细胞生995第11期梅建凤等:利用酵母细胞生物催化合成2-苯乙醇长时产生的酸可使培养基pH 进一步下降,而过低的pH 必然不利于2-苯乙醇的催化合成.图4 KH 2PO 4浓度对2-苯乙醇合成的影响Fig 4 Effect of KH 2PO 4concentration on biocatalyticsynthes is of 2-PE 在摩尔浓度不变的条件下,我们将KH 2PO 4改为KH 2PO 4和K 2HPO 4两种磷酸盐的混合液,改变两者比例以调节培养基的pH ,不同pH 对2-苯乙醇合成的影响见图5.可以看出,培养基pH 为6.8时,2-苯乙醇合成浓度最高,此时KH 2PO 4和K 2HPO 4浓度均为0.055mol /L (质量浓度分别为7.5和9.6g /L ).培养基中加入等摩尔浓度的KH 2PO 4和K 2HPO 4,不仅可满足酵母细胞生长所需的磷酸盐,还可作为缓冲溶液调节pH ,有利于酵母细胞催化活性的发挥.图5 培养基pH 对2-苯乙醇合成的影响Fig 5 Effect of medium pH on biocatalytic s ynthesis of 2-PE2.6 无机盐浓度对2-苯乙醇合成的影响 实验先后考察了M gSO 4,FeSO 4,ZnSO 4和CaCl 2等无机盐对2-苯乙醇合成的影响.结果表明,仅有M gSO 4对酵母细胞催化合成2-苯乙醇有促进作用,其他几种无机盐都不能明显促进2-苯乙醇的生物催化合成.MgSO 4浓度对2-苯乙醇合成的影响见图6.可以看出,在其浓度高于0.4g /L 时,有利于2-苯乙醇催化合成,但0.4g /L 以上浓度时对2-苯乙醇的催化合成几乎与0.4g /L 时完全相同.图6 MgSO 4浓度对2-苯乙醇合成的影响Fig 6 Effect of M gSO 4concentration on biocatalytics ynthesis of 2-PE图7 底物L -苯丙氨酸浓度对2-苯乙醇合成的影响Fig 7 Effect of substrate concentration on biocatalyticsynthesis of 2-PE2.7 底物浓度对2-苯乙醇合成浓度的影响 作为2-苯乙醇催化合成的底物L -苯丙氨酸浓度至关重要,浓度过低不能充分利用酵母菌的催化能力,浓度过高势必造成转化率低,底物浪费.实验在优化培养基组成后,考察了底物L -苯丙氨酸浓度对2-苯乙醇合成的影响,结果见图7.可以看出,在L -苯丙氨酸浓度低于6.0g /L 时,2-苯乙醇的浓度随底物浓度增加而增加,之后,2-苯乙醇合成浓度几乎不再增加,而摩尔转化率则呈下降趋势.在L -苯丙氨酸浓度为8.0g /L 时,2-苯乙醇浓度达到最高值4.204g /L ,底物浓度继续增加则不能提高2-苯乙醇的浓度,说明酿酒酵母BD 菌株催化合成2-苯乙醇的能力已达到最大.996催 化 学 报第28卷2.8 生物催化法合成2-苯乙醇其它条件优化 经单因素实验对培养基成分进行优化后,2-苯乙醇合成浓度由菌种筛选时的1.879g/L提高到4.204g/L.在此基础上,实验进一步优化了种子培养基组成、反应液装量、振荡转速、催化温度和时间等,并对催化反应培养基中的蔗糖、酵母浸出粉和L-苯丙氨酸浓度进行了正交优化.结果表明,在种子培养基组成为葡萄糖40g/L,蛋白胨20g/L,酵母浸出粉10g/L,反应培养基装量30ml(250ml 三角瓶),振荡转速200r/min,温度30℃,催化反应18h,催化合成培养基中的蔗糖、酵母浸出粉和L-苯丙氨酸的浓度分别为120,5和10g/L时,2-苯乙醇的合成浓度提高到4.654g/L.2.9 蔗糖、酵母浸出粉和L-苯丙氨酸浓度的响应面实验 采用优化后的催化合成培养基,2-苯乙醇的合成浓度有了较大提高,进一步采用响应面分析法考察了2-苯乙醇合成浓度与培养基主要成分间的关系,旨在建立它们之间的回归方程模型,并对模型进行分析,确定最佳培养基组成.实验采用Box-Behnken中心组合设计,以对2-苯乙醇合成有显著影响的蔗糖、酵母浸出粉和L-苯丙氨酸3个因素为自变量,以2-苯乙醇浓度为响应值,设计了3因素3水平响应面分析实验[10],实验的因素与水平选取见表2,15个实验点得出的实验结果见表3.表2 中心组合设计的因素与水平取值Table2 Variables and levels for central composite des ignLevel X1/(g/L)X2/(g/L)X3/(g/L)-1802.5601205.01011607.514 X1S ucrose;X2Yeast extracts;X3L-phenylalanine.表3 中心组合设计及其实验结果Table3 Central composite design and its experiment results Run X1X2X32-PE(g/L) 1-1-104.2472-1103.95731-104.563 41104.37350-1-13.97260-114.631 701-13.748 80114.7469-10-13.509 1010-13.76411-1014.359 121014.795 130004.624 140004.629 150004.679 以2-苯乙醇浓度为响应值,运用响应面分析程序进行回归拟合,各实验因子和响应值之间的关系可用函数表示为:Y=4.644+0.178X1-0.074X2 +0.442X3-0.263X21+0.025X1X2+0.045X1X3 -0.096X22+0.085X2X3-0.274X23. 实验结果的方差分析表明,用上述二次多项式回归方程描述各因子与响应值之间的关系,其应变量与自变量之间的线性关系极为显著(Prob>F= 0.0002,线性相关系数R2=0.9895),表明模型与实际实验值拟合较好,该模型可用于分析和预测生物催化法合成2-苯乙醇的浓度. 对上述回归方程取一阶偏导等于零,得三元一次方程组,求解方程组得X1=0.412,X2=0.044, X3=0.847,即培养基中的蔗糖、酵母浸出粉和L-苯丙氨酸的浓度分别为136.5,5.1和13.4g/L时, 2-苯乙醇浓度有最大值.将各因素值代入回归方程,解得预测2-苯乙醇的最优浓度Y=4.867g/L.为了证实预测的结果,用以上得到的最优配方重复实验3次,得2-苯乙醇平均浓度为4.815g/L,实验值与预测值之间良好的拟合性证实了模型的有效性,回归方程为2-苯乙醇催化合成提供了一个科学的模型.3 结论 利用未优化的培养基筛选出的酿酒酵母BD菌株,其合成2-苯乙醇初始浓度可达1.879g/L,而培养基经单因素和正交实验优化后,2-苯乙醇浓度提高到4.654g/L,再经响应面法优化,最高可达到4.815g/L.这是目前利用半合成培养基,非补料法生物催化合成2-苯乙醇达到的最高浓度.诚然,由于采用的菌种、培养基和培养条件有所不同,不同研究者取得的结果之间没有确切的可比性.本文采用的培养基组成相对简单,便于培养基的配制,但其中的碳源和磷酸钾盐浓度都比较高,这无疑会增加生物催化法合成2-苯乙醇的生产成本,不利于该技术的工业化应用.进一步研究可考虑催化合成过程的技术控制,如采用分批补料和产物原位分离等技术[11,12],降低培养基原料的消耗,提高2-苯乙醇的摩尔产率,探索有利于该技术工业化应用的途径.997第11期梅建凤等:利用酵母细胞生物催化合成2-苯乙醇参考文献1 Fabre C E,Blanc P J,Goma G.Per fum Flavor,1998, 23(3):432 梅建凤,陈虹.微生物学通报(Mei J F,Chen H.Micro-biology),2005,32(2):1143 Clark G S.Per fum Flavor,1990,15(5):374 U S Food and Drug A dministration.Code of Federal Regula-tions,21CFR101,2001.225 K ring s U,Berg er R G.Appl Microbiol Biotechnol,1998, 49(1):16 Savina J P,K ohler D,Brunerie 5965780.19997 Etschmann M M W,Bluemke W,Sell D,Schrader J.Ap-pl Micro biol Biotechnol,2002,59(1):18 Cheetham P S J.Case Studies in the Application of Biocata-ly sts for the Production of(Bio)Chemicals.In:Straathof A J J,A dlercreutz P eds.Applied Biocatalysis.Amsterdam: Harwood,2000.939 Huang C J,Lee S L,Chou C C.J Biosci Bioeng,2000,90(2):14210 Box G E P,Draper N R.Empirical M odel-Building and Response Surfaces.New York:John Wiley&Sons Inc.198711 Stark D,Mǜnch T,Sonnleitner B,M arison I W,von Stockar U.Biotechnol Progr,2002,18(3):51412 Stark D,Ko rnmann H,Mǜnch T,Sonnleitner B,M ari-son I W,von Stockar U.Biotechnol Bio eng,2003,83(4):376(Ed ChRH)《催化学报》2006年影响因子在国内化学类期刊中的排名N o.期刊名称影响因子总被引频次No.期刊名称影响因子总被引频次1燃料化学学报1.106871(16)18化学通报0.5571129(13) 2化学进展0.978737(17)19应用化学0.5201454(7) 3催化学报0.9771462(6)20分析科学学报0.517669(19) 4化学学报0.9682510(3)21结构化学0.508557(20) 5分析化学0.9603423(2)22感光科学与光化学0.503281(29) 6物理化学学报0.9571587(5)23高分子通报0.469516(21) 7分子科学学报0.925251(30)24分子催化0.408457(24) 8高分子学报0.8651452(8)25电化学0.373332(27) 9无机化学学报0.8511597(4)26合成化学0.366414(26)10高等学校化学学报0.7854192(1)27化学研究与应用0.340685(18)11有机化学0.7151175(10)28化学研究0.329190(32)12分析测试学报0.712979(15)29化学试剂0.287498(22)13中国科学B辑0.7051276(9)30Chin J Polym Sci0.263149(34)14分析试验室0.6981113(14)31Chem Res Chin Univ0.250179(33)15环境化学0.6921173(11)32化学与黏合0.242315(28)16煤炭转化0.614469(23)33化学与生物工程0.206223(31)17色谱0.6081130(12)34Chin Chem Lett0.151448(25) 上表数据来自中国科学技术信息研究所2007年11月15日发布的《2007年版中国科技期刊引证报告(核心版)》,括号中的数字为总被引频次的排名.另外,同时发布的还有中国科学技术信息研究所和万方数据股份有限公司编写的《2007年版中国期刊高被引指数》报告,该报告统计了5287种期刊2001~2005年发表的论文在2006年被引用的各项指数,其中化学类期刊共39种.《催化学报》的主要被引指数如下:五年影响因子为1.214,五年被引频次为1144,被引率为0.55,单篇文章最高被引次数为14次,学科高被引文章分布数为8.上述五个指数在39种化学类期刊中的排名分别为第3,第8,第3,第6和第3名.998催 化 学 报第28卷。
精细化学品的生物合成林建平;吴坚平;杨立荣【期刊名称】《生物产业技术》【年(卷),期】2016(000)005【总页数】10页(P7-16)【作者】林建平;吴坚平;杨立荣【作者单位】工业生物催化国家地方联合工程实验室浙江,浙江大学化学工程与生物工程学院,杭州 310027;工业生物催化国家地方联合工程实验室浙江,浙江大学化学工程与生物工程学院,杭州 310027;工业生物催化国家地方联合工程实验室浙江,浙江大学化学工程与生物工程学院,杭州 310027【正文语种】中文SCOTT A. Fine and specialty chemical optimism rises. Chem Week, 2004,166(22):37.2 参考文献SCOTT A. Market boost for specialty and fine chemicals producers. Chem Week, 2007, 169(23):32.3 参考文献WHITESIDES G M. Reinventing Chemistry. Angew Chem Int Ed, 2015, 54(11):3196-3209.4 参考文献REETZ M T. Biocatalysis in organic chemistry and biotechnology: past,present, and future. J Am Chem Soc, 2013, 135(34):12480-12496.5 参考文献BORNSCHEUER U T, HUISMAN G W,KAZLAUSKAS R J, et al. Engineering the third wave of biocatalysis. Nature, 2012, 485(7397):185-194.精细化工是当今世界化学工业的发展重点,是国家综合国力和技术水平的重要标志之一,精细化率(精细化工在整个化学工业中所占的比重)的高低已经成为衡量一个国家或地区化工发展水平的主要标志之一。
野油菜黄单胞菌胞内粗酶液催化合成α-熊果苷张欣英;严伟;李群良;姚评佳;魏远安;唐纪良【摘要】Biocatalytic synthesis of α-arbutin by the intracellular crude enzyme from Xanthomonas campes-tris pv. campestris 8004 was studied. The effects of hydroquinone concentration,reactant molar ratio,buffer solution pH value,reaction time and cell concentration on the reaction were investigated. The results showed that the optimum reaction conditions were as follows: the reaction temperature was 35℃ ,the rotational speed was 180 r·min-1,hydroquinone concentration was 40 mmol· L-1 ,the molar ratio of hydroquinone to sucrose was 1:30,the buffer solution pH value was 7.0,the reaction time was 36 h,the cell concentration was 80 mg·mL-1 . Under above conditions,α-arbutin content reached 6. 58 mg·mL-1 ,the selectivity of hydroquinone was 66%,and the conversion rate of hydroquinone was 91%.%利用野油菜黄单胞菌(Xanthomonas campestris pv.campestris) 8004胞内粗酶液生物催化合成α-熊果苷,察了对苯二酚浓度、反应物摩尔比、缓冲溶液pH值、反应时间、菌体浓度等因素对反应的影响.确定最佳反应条件为:应温度35℃、摇床转速180 r·min-1、对苯二酚浓度40mmol·L-1、对苯二酚与蔗糖的摩尔比1∶30、缓冲溶液pH7.0、反应时间36 h、菌体浓度80 mg·mL-1,在此条件下,α-熊果苷含量达到6.58mg· mL-1、对苯二酚选择性为66 %对苯二酚转化率为91%.【期刊名称】《化学与生物工程》【年(卷),期】2012(029)004【总页数】4页(P64-67)【关键词】胞内粗酶液;α-熊果苷;选择性;转化率【作者】张欣英;严伟;李群良;姚评佳;魏远安;唐纪良【作者单位】广西大学化学化工学院,广西南宁 530004;广西大学化学化工学院,广西南宁 530004;广西大学化学化工学院,广西南宁 530004;广西大学亚热带农业生物资源保护与利用国家重点实验室,广西南宁 530004;广西大学亚热带农业生物资源保护与利用国家重点实验室,广西南宁 530004;广西大学亚热带农业生物资源保护与利用国家重点实验室,广西南宁 530004【正文语种】中文【中图分类】TQ658.5熊果苷(Arbutin),又名熊果甙、熊果素、熊果叶甙、熊果酚甙或杨梅甙,是一种源于杜鹃花科熊果属的多年生常绿小灌木植物熊果的叶子的成分。
发酵科技通讯Bulletin of Fermentation Science and Technology Vol.50No.1 Mar2021第50卷第1期2021年3月生物催化法制备低聚半乳糖的研究进展何乃莹,竺胜权,黄金(浙江工业大学药学院,浙江杭州310014)摘要:低聚半乳糖(Galactooligosaccharide,GOS)是一种倍受关注的功能性低聚糖益生元,能显著促进肠道益生菌的增殖,维持肠道菌群平衡,增强肌体免疫力。
随着国内外研究的不断深入,GOS 作为典型的非消化性低聚糖逐渐显示出其不可小觑的市场价值。
笔者针对低聚半乳糖的理化性质、生理功效、用途、生物催化法制备机理、产物纯化及提取等方面的研究进展和工业化生产现状及其存在的问题进行了综述,并对低聚半乳糖产业未来发展前景进行了展望。
关键词:低聚半乳糖;0-半乳糖苷酶;生物催化法制备;纯化中图分类号:TQ464.8文献标志码:A文章编号:1674-2214(2021)01-0020-08 Recent research progress on biocatalytic production of galactooligosaccharidesHE Naiying,ZHU Shengquan,HUANG Jin(College of Pharmaceutical Science,Zhejiang University of Technology,Hangzhou310014,China)Abstract:Galactooligosaccharides(GOS)is a functional oligosaccharide that has attracted mucha t entioninrecentyears Itisanoutstandingprebioticwithmeritsofpromotingtheproliferationof beneficial intestinal bacteria,such as Bifidobacteria,maintaining the balance of intestinal flora,and enhancing the body immunity Although the GOS has those advantages and overwhelming marketvalue,studies on the GOS encounter several cha l enges Focusingonthe industrial manufacturing processes,this review summarizes the functions and applications of GOS,aswe l asbiocatalyticsynthesismethodsandpurificationmethods Fina l y,weoutlookthe futuredevelopmentprospectsofthegalactooligosaccharideindustrializationKeywords:galactooligosaccharides;0-galactosidase;biocatalytic production;purification随着社会发展和人类膳食结构的变化,人们对肉类、乳制品摄入量不断增加,而谷物类食品的摄入量却渐次减少。
A biocatalytic synthesis of diosgenyl-b -D -glucopyranoside by the use of four recombinant enzymes in one potQing Dong a ,Li-Ming Ouyang a,*,Hui-Lei Yu a ,Jian-He Xu a,*,Guo-Qiang Lin baLaboratory of Biocatalysis and Bioprocessing,State Key Laboratory of Bioreactor Engineering,East China University of Science and Technology,130Meilong Road,Shanghai 200237,China bInstitute of Organic Chemistry,Chinese Academy of Sciences,354Fenglin Road,Shanghai 200032,Chinaa r t i c l e i n f o Article history:Received 6November 2009Revised 29December 2009Accepted 22January 2010Available online 28January 2010Keywords:One-pot synthesisDiosgenyl-b -D -glucopyranoside (trillin)DiosgeninEnzymatic synthesisa b s t r a c tA system for the one-pot synthesis of diosgenyl-b -D -glucopyranoside (trillin)using multiple recombinant enzymes is developed.The enzymes maltodextrin phosphorylase (E1),glucose-1-phosphate thymidylyl-transferase (E2),inorganic pyrophosphatase (E3),and solanidine glucosyltransferase (E4)involved in the work have been cloned and expressed in Escherichia coli .Under the optimized reaction conditions,the yield of trillin reached 28%(ca.15.8mg/l).The recovery yield of trillin after purification was 89%.Ó2010Elsevier Ltd.All rights reserved.The majority of drugs used in therapeutics are inspired by,or de-rived from natural products,many of which are glycosylated by organisms in vivo.1–3A group of plant secondary metabolites which are glycosides is named steroidal saponins.Diosgenin,an example of a typical steroid,is an important industrial material for the synthesis of many steroidal saponins that have a broad range of activation including androgenic,contraceptive,anti-inflammatory,estrogenic and so on.Furthermore,these compounds are reported to possess cytotoxic,antitumor,antifungal,immunoregulatory,hypoglycemic,and cardiovascular properties.4,5Although it can be isolated from plants,this is extremely difficult and uneconomic,especially in large amounts,due to the lack of plant stuffs.Thus,glycosylations in vitro are important for the synthesis of steroidal saponins for the pharma-ceutical industry.Chemical synthesis would provide a feasible route to obtain homogeneous saponins,however,the protection and deprotection of hydroxy groups are unavoidable and requires organ-ic solvents.6A more economic and cleaner route is enzymatic synthesis.The genes of maltodextrin phosphorylase (E1),glucose-1-phos-phate thymidylyltransferase (E2),and inorganic pyrophosphatase (E3)were cloned from a genome of Escherichia coli K12and ex-pressed in E.coli BL21(DE3).The solanidine glucosyltransferase (E4)gene was cloned from a genome of Solanum tuberosum and ex-pressed in E.coli (DH5a ).SDS–PAGE revealed that E2and E3weremainly expressed in soluble form,while E1and E4were expressed in insoluble form.The crude powders of the expressed enzymes were prepared and stored at 4°C.To increase the yield of trillin (Fig.1),the reaction conditions were optimized.Due to the poor solubility of diosgenin and trillin in water,10cosolvents (10%,v/v)were tested to improve the sol-ubility of substrate and the relative yield of product.Although the cosolvents improved the solubility of the substrate,the yield of product in the water-organic solvent reaction systems did not exceed that in the simple aqueous system.The enzymes were inac-tivated by the cosolvent,a visible flocculent precipitates appeared during the reaction on the addition of the cosolvent.Thus a phos-phate buffer free of organic solvent was used to keep the enzymes active and stable in subsequent experiments.A study of the effect of pH revealed that the yield of trillin exhibited a maximum at pH 9.The optimum temperature for the enzymatic reaction was 40°C.The maximum yield of trillin was observed when the reaction was run for 48h.These data are displayed in Figures 2–5.0040-4039/$-see front matter Ó2010Elsevier Ltd.All rights reserved.doi:10.1016/j.tetlet.2010.01.077*Corresponding authors.Tel./fax:+862164252250.E-mail addresses:ouyanglm@ (L.-M.Ouyang),jianhexu@ (J.-H.Xu).Tetrahedron Letters 51(2010)1603–1605Contents lists available at ScienceDirectTetrahedron Lettersj o ur na l h om e pa ge :w ww.e ls e v ie r.c o m/lo c at e/t et l e tAll the substrates in this system played critical roles in the syn-thesis of trillin.An orthogonal experiment (L34)was designed to investigate the influence of substrate concentration on the trillin yield.Phosphate buffer (A),maltodextrin (B),UTP (uridine triphos-phate)(C),and diosgenin (D)as four variables were studied and each variable was investigated at three levels (Table 1).The arrangements of each variable are displayed in Table 2.Under the optimum conditions,the reaction mixture containing 6.58mU/ml E1,125mU/ml E2,7U/ml E3,0.75mU/ml E4,5mM MgCl 2,100mMphosphate buffer (pH 9),maltodextrin (5%,m /v ),10mM UTP,0.1mM diosgenin was placed in a thermomixer at 1100rpm at 40°C for 48h.The milligram-scale synthesis of trillin was conducted in a mix-ture (100ml)containing maltodextrin (5%,m /v ),10mM UTP,5mM MgCl 2,0.1mM diosgenin,100mM phosphate buffer (pH 9),and 3U E1,20U E2,70U E3,and 3U E4at 200rpm and 40°C for 48h in shake flasks.The analytical yield of trillin relative to diosgenin in reaction was 28%,as analyzed by HPLC.The recovered yield of trillin after purification was 89%.The production of trillin was confirmed by high-resolution mass spectrum (m /z :599.3540,[M+Na]+).The chemical constitution of the product was verified by 1H NMR and 13C NMR spectroscopies.In summary,the steroidal saponins which are glucosides with pharmacological properties are a topic of current interest.The pre-sented system for the synthesis of diosgenin glucoside in vitro is successful,and benefits from enzyme-catalyzed reactions (mild conditions,high selectivity and so on)and reduces the cost of the enzymatic synthesis cost of trillin,due to the fact that the cheap maltodextrin was used to replace the expensive sugar donor UDP-Glc (uridine diphosphate glucose).This study significantly ex-tends the technique for in vitro glycosylation of natural products.This one-pot bioconversion represents an efficient method for the synthesis of natural glycosides for the pharmaceutical industry.20406080100102030405060Y i e i d (%)Temperature (ºC)Figure 4.Effect of temperature on the yield of trillin.The temperature was optimized in a reaction mixture that contained maltodextrin (5%,m /v ),5mM UTP,5mM MgCl 2,0.1mM diosgenin,100mM phosphate buffer (pH 9),and 6.58mU E1,125mU E2,7U E3,0.75mU E4for 8h.Table 1The variables and levels for orthogonal substrate concentration optimization VariableLevel123A:Phosphate (pH 9)50mM 100mM 200mM B:Maltodextrin 1%5%10%C:UTP1mM 5mM 10mM D:Diosgenin 0.1mM0.2mM 0.5mMTable 2Results of orthogonal experiments to optimize the substrate concentration in the one-pot enzyme reaction EntryVariable(Trillin yield %)AB C D 1111112.8(±0.043)212229.07(±1.48)31333 2.21(±0.16)42123 1.08(±0.19)5223120.6(±4.17)623127.56(±1.87)73132 3.86(±1.17)832130.81(±0.06)9332114.3(±1.57)1604Q.Dong et al./Tetrahedron Letters 51(2010)1603–1605Cloning,expression,and preparation of enzymes.The genes coding for malpase,7–10g1pttase11–15,and ppase16–20were cloned from E.coli K12genomic DNA by PCR(polymerase chain reaction).The gene of sgt1.121–25was amplified from the total RNA of potato by RT-PCR(reverse transcription polymerase chain reaction).RNA extraction from the fresh buds of potato and RT-PCR were executed according to the instructions of the RNA extraction kit and the PrimeScript™One-Step RT-PCR Kit(TaKaRa,Japan),respectively. Plasmid and strain construction are displayed in Table3.All the experimental procedures are referred to in Molecular Cloning (3rd edition).26E.coli BL21(DE3)or E.coli DH5a with exogenous recombinant plasmids was grown in LB medium(10g/l tryptone, 5g/l yeast extract,10g/l NaCl)at37°C,200rpm.When the OD600of culture broth reached about0.7,IPTG(isopropyl-b-D-thi-ogalactoside)was added and the cultivation was continued at a suitable temperature to induce the expression of the target enzyme protein.Cell disruption was carried out by sonication.After collect-ing the supernatant,the protein solution wasfinally lyophilized to give the crude enzyme powder.Analytical procedures.The product(trillin)was extracted with n-BuOH(1:1,v/v)and analyzed using HPLC equipment(Shimadzu, 10AT,Japan)with a Hypersil BDS column(250mmÂ4.6mmÂ5l m,Elitehplc,China).The mobile phase consisted of H2O and methanol(1:9,v/v).Theflow rate was0.8ml/min and UV detection was performed at210nm.Milligram-scale synthesis,purification,and characterization of tril-lin.The product was isolated from the reaction system by extrac-tion with n-BuOH(1:1,v/v).The n-BuOH phase was combined and concentrated by rotary evaporation.The powder was dissolved in methanol–H2O(9:1,v/v)and the solution was centrifuged at 8000g for10min.After removing the precipitate,the supernatant was collected and concentrated by rotary evaporation.The concen-trate was then separated by HPLC(250mmÂ4.6mmÂ5l m, Hypersil BDS)to isolate the target product.The eluate containing the product was collected and dried by rotary evaporation.The product was analyzed using high-resolution MS(quadrupole time offlight)and NMR spectroscopy.AcknowledgmentsThis research was supportedfinancially by the National Natural Science Foundation of China(Grant No.20672037)and the Minis-try of Science and Technology(Grant Nos.2009CB724706and 2009ZX09501-016).We are grateful to Dr.Wen-Ya Lu at Shanghai Institute of Organic Chemistry(SIOC),Chinese Academy of Sci-ences,who kindly provided standard samples of diosgenin and trillin.Supplementary dataSupplementary data(spectrumoscopy(NMR and MS),HPLC and experimental details)associated with this article can be found,in the online version,at doi:10.1016/j.tetlet.2010.01.077. References and notes1.Jiang,J.;Biggins,J.B.;Thorson,J.S.J.Am.Chem.Soc.2005,122,6803–6804.2.Griffith,B.R.;Langenhan,J.M.;Thorson,J.S.Curr.Opin.Biotechnol.2005,16,622–630.3.Yang,J.;Hoffmeister,D.;Liu,L.;Fu,X.;Thorson,J.S.Biol.Med.Chem.2004,12,1577–1584.4.Hostettmann,K.;Marston,A.Saponins;Cambridge University Press:New York,1995.5.Waller,G.R.;Yamasaki,K.Saponins Used in Food and Agriculture;Plenum Press:New York,1996.6.Deng,S.J.;Yu,B.;Xie,J.M.;Hui,.Chem.1999,64,7265–7266.7.Nahálka,J.J.Ind.Microbiol.Biotechnol.2008,35,219–223.8.Casajus´,N.A.;Dauvillée,D.;Viale,A.M.;Munóz,F.J.;Fernández,E.B.;Zorzano,M.T.M.;Eydallin,G.;Ball,S.;Romero,J.P.J.Bacteriol.2006,67,5266–5272.9.Chen,S.;Liu,J.;Pei,H.;Li,J.;Zhou,J.;Xiang,H.Enzyme Microb.Technol.2007,41,390–396.10.Bae,J.;Lee,D.H.;Kim,D.;Cho,S.J.;Park,J.E.;Koh,S.;Kim,J.;Park,B.H.;Choi,Y.;Shin,H.J.;Hong,S.I.;Lee, D.S.Process.Biochem.2005,40,3707–3713.11.Marolda,C.L.;Valvano,M.A.Am.Soc.Microbiol.1995,78,5539–5546.12.Barton,W.A.;Lesniak,J.;Biggins,J.B.;Jeffrey,P.D.;Jiang,J.Q.;Rajashankar,K.R.;Thorson,J.S.;Nikolov,D.B.Nat.Struct.Biol.2001,93,545–551.13.Barton,W.A.;Biggins,J.B.;Jiang,J.Q.;Thorson,J.S.;Nikolov,D.B.Proc.Natl.Acad.Sci.2002,67,13397–13402.14.Dimond,R.L.;Farnsworth,P.A.;Loomis,W.F.Dev.Biol.1976,50,169–181.15.Newell,P.C.;Sussman,M.J.Biol.Chem.1969,244,2990–2995.16.Jardin,P.D.;Bellran,J.R.;Gebhardt,C.;Brasseur,R.Plant Physiol.1995,109,853–860.17.Farre,E.M.;Bachmann,A.;Willmitzer,L.;Trethwey,R.N.Nat.Biotechnol.2001,19,268–272.18.Hajirezaei,M.;Sonnewald,U.Potato Res.1999,42,353–372.19.Kunitz,M.J.Gen.Physiol.1952,35,423–449.hti,R.;Pitkaranta,T.;Valve,E.;Ira,I.;Kalske,E.K.;Heinonen,J.J.Bacteriol.1988,170,5901–5907.21.Bocca,S.N.;Kissen,R.;Rojas-Beltrán,J.A.;Noël,F.;Gebhardt,C.;Moreno,S.;Jardin,P.D.;Tandecarz,J.S.Plant Physiol.Biochem.1999,37,809–819.22.Kohara,A.;Nakajima,C.;Hashimoto,K.;Ikenaga,T.;Tanaka,H.;Shoyama,Y.;Yoshida,S.;Muranaka,T.Plant Mol.Biol.2005,57,225–239.23.Kohara,A.;Nakajima,C.;Yoshida,S.Phytochemistry2007,68,478–486.24.Moehs,C.P.;Allen,P.V.;Friedman,M.;Belknap,W.R.Plant J.1997,11,227–236.25.McCue,K.F.;Allen,P.V.;Shepherd,L.V.T.;Blake,A.;Whitworth,J.;Maccree,M.M.;Rockhold,D.R.;Stewart,D.;Davies,H.V.;Belknap,W.R.Phytochemistry 2006,67,1590–1597.26.Sambrook,J.;Russell,D.Molecular Cloning3;Cold Spring Harbor LaboratoryPress,2001.Table3Endonucleases,vectors,and hosts for different genesGene Endonucleases Vector Hostmalpase BamHI/NotI pET24a(+) E.coli BL21(DE3)g1pttase BamHI/NdeI pET11a(+) E.coli BL21(DE3)ppase BamHI/NdeI pET11a(+) E.coli BL21(DE3)sgt1.1BamHI/NotI PGEX-4T-1(+) E.coli DH5aQ.Dong et al./Tetrahedron Letters51(2010)1603–16051605。