重庆一中初2017级14-15学年(下)期末试题——数学
- 格式:doc
- 大小:503.00 KB
- 文档页数:9
重庆一中2014-2015学年度七年级下期期末考试数学试卷及答案(考试时间l20分钟,满分150分)一、人生的道路上有许多选择,现在来看一下,自己是否具有慧眼识真的能力!(本大题共l0个小题,每小题4分,共40分。
请将正确答案填在下列方框内)序号 l 2 3 4 5 6 7 8 9 10 答案1.下面有4个汽车标志图案,其中不是轴对称图形的是 ( )2.下列各组长度的三条线段能组成三角形的是 ( ) A .5cm ,3cm ,9cm ; B .5cm ,3cm ,8cm ; C .5cm ,3cm ,7cm ; D .6cm ,4cm ,2cm : 3.如图,OB 、OC 分别平分ABC ∠与ACB ∠,MN//BC , 若AB--36,AC-24,则△AMN 的周长是 ( ) A .60 B .66 C .72 D .784.去年五月奥运圣火在高度约为8848米的珠峰项上传递,创造了世界之最.这个高度的百万分之一相当于 ( )A .一间教室的高度B .一块黑板的宽度C .一张讲桌的高度D .一本数学课本的厚度5.如图,已知AB//CD ,CE 、AE 分别平分ACD ∠、CAB ∠,则1+2∠∠= ( )A .450B .900C .600D .7506.室内墙壁上挂一平面镜,小明站在平面镜前看到他背后墙上时钟的示数在镜中如图所示,则这时的实际时间应是 ( )A .3:40B .8:20C .3:2D .4:207.ABC ∆中,AC=AB ,BD 为△ABC 的高,如果∠ABD=250,则∠C= ( )A .650B .52.50C .500D .57.508.由四舍五入得到近似数3.00万是 ( )A .精确到万位,有l 个有效数字B .精确到个位,有l 个有效数字C .精确到百分位,有3个有效数字D .精确到百位,有3个有效数字9.如图,一只蚂蚁以均匀的速度沿台阶12345A A A A A →→→→爬行,那么蚂蚁爬行高度h 随时间t 变化的图象大致是 ( )10.小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是 ( )二、相信自己一定能把最准确的答案填在空白处! (本大题共l0个小题,每小题3分,共30分,请将正确的答案填在下列方框内)序号 11 12 13 14 15 答案 序号 16 17 18 19 20 答案11.单项式313xy -的次数是 . 12.一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为 三角形. 13.温家宝总理在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为 万元.14.如图∠AOB=1250,AO ⊥OC ,B0⊥0D 则∠COD= .15.小明同学平时不用功学习,某次数学测验做选择题时,他 有1道题不会做,于是随意选了一个答案(每小题4个项), 他选对的概率是 .16.若229a ka ++是一个完全平方式,则k 等于 .17. 如图,平面镜A 与B 之间夹角为ll00,光线经平面镜A 反射到平面镜B 上,再反射出去,若∠1=∠2,则∠l 的度数为 .18.已知:如图,矩形ABCD 的长和宽分别为2和1,以D 为圆心, AD 为半径作AE 弧,再以AB 的中点F 为圆心,FB 长为半径作BE 弧,则阴影部分的面积为 .19.观察下列运算并填空:1×2×3×4+1=25=52; 2×3×4×5+1=121=112: 3×4×5×6+1=361=192;……根据以上结果,猜想:(n+1)(n+2)(n+3)(n+4)+1= 。
2015-2016学年重庆市第一中学八年级(下)期末数学试卷一.细心选一选:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在表格中.1.在分式中,x的取值范围是()A.x≠1 B.x≠0 C.x>1 D.x<12.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.3.已知α、β是一元二次方程x2﹣2x﹣3=0的两个根,则α+β的值是()A.2 B.﹣2 C.3 D.﹣34.如图,反比例函数y=的图象过点A,过点A分别向x轴和y轴作垂线,垂足为B和C.若矩形ABOC的面积为2,则k的值为()A.4 B.2 C.1 D.5.如图所示,▱ABCD中,对角线AC,BD交于点O,E是CD中点,连接OE,若OE=3cm,则AD的长为()A.3cm B.6cm C.9cm D.12cm6.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14 B.(x﹣3)2=14 C.D.(x+3)2=47.一个多边形的每个内角都是108°,那么这个多边形是()A.五边形B.六边形C.七边形D.八边形8.分式方程的解是()A.x=﹣5 B.x=5 C.x=﹣3 D.x=39.如图,菱形ABCD中,已知∠D=110°,则∠BAC的度数为()A.30°B.35°C.40°D.45°10.若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围()A.k<1且k≠0 B.k≠0 C.k<1 D.k>111.下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有9个,第(2)个图形中面积为1的正方形有14个,…,按此规律.则第(10)个图形中面积为1的正方形的个数为()A.72 B.64 C.54 D.5012.已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线与边BC交于点D、与对角线OB交于点中点E,若△OBD的面积为10,则k的值是()A.10 B.5 C.D.二、耐心填一填(本大题共6个小题,每小题4分,共24分)请将每小题的正确答案填入下面的表格中.13.分解因式:2m2﹣2=.14.若分式的值为零,则x=.15.如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,则对角线AC的长度为.16.已知x=2是方程x2+mx+2=0的一个根,则m的值是.17.由于天气炎热,某校根据《学校卫生工作条例》,为预防“蚊虫叮咬”,对教室进行“薰药消毒”.已知药物在燃烧机释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在分钟内,师生不能呆在教室.18.如图,在正方形ABCD中,AB=2,将∠BAD绕着点A顺时针旋转α°(0<α<45),得到∠B′AD′,其中过点B作与对角线BD垂直的直线交射线AB′于点E,射线AD′与对角线BD交于点F,连接CF,并延长交AD于点M,当满足S四边形AEBF=S△CDM时,线段BE的长度为.三.解答题(本大题共4个小题,19题10分,20题8分,21题8分,22题8分,共34分)解答时每小题必须给出必要的演算过程或推理步骤.19.解方程:(1)x2﹣6x﹣2=0(2)=+1.20.如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.(1)求证:△ABE≌△CDF;(2)若AB=DB,求证:四边形DFBE是矩形.21.如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?22.童装店在服装销售中发现:进货价每件60元,销售价每件100元的某童装平均每天可售出20件.为了迎接“六一”,童装店决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,(1)降价前,童装店每天的利润是多少元?(2)如果童装店每要每天销售这种童装盈利1200元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?四、解答题(本大题共2个小题,每小题10分,共20分)解答时每小题必须给出必要的演算过程或推理步骤.23.先化简,再求值:(﹣)÷(﹣1),其中a是方程a2﹣4a+2=0的解.24.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P1(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)如图2,已知C是直线上的一个动点,点D的坐标是(0,1),求点C与点D的“非常距离”最小时,相应的点C的坐标.五.解答题(本大题共2个小题,25题12分,26题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)如图1,当E是线段AC的中点,且AB=2时,求△ABC的面积;(2)如图2,当点E不是线段AC的中点时,求证:BE=EF;(3)如图3,当点E是线段AC延长线上的任意一点时,(2)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.26.如图,已知点A是直线y=2x+1与反比例函数y=(x>0)图象的交点,且点A的横坐标为1.(1)求k的值;(2)如图1,双曲线y=(x>0)上一点M,若S△AOM=4,求点M的坐标;(3)如图2所示,若已知反比例函数y=(x>0)图象上一点B(3,1),点P是直线y=x上一动点,点Q是反比例函数y=(x>0)图象上另一点,是否存在以P、A、B、Q为顶点的平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.2015-2016学年重庆市第一中学八年级(下)期末数学试卷参考答案一.细心选一选:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在表格中.1.A.2.B.3.A.4.B.5.B.6.A.7.A.8.A.9.B.10.A.11.C.12.D.二、耐心填一填(本大题共6个小题,每小题4分,共24分)请将每小题的正确答案填入下面的表格中.13.2(m+1)(m﹣1).14.﹣3.15. 8.16.﹣3.17. 75.18.2﹣2.三.解答题(本大题共4个小题,19题10分,20题8分,21题8分,22题8分,共34分)解答时每小题必须给出必要的演算过程或推理步骤.19.解:(1)x2﹣6x﹣2=0,x2﹣6x=2,x2﹣6x+9=2+9,(x﹣3)2=11,x﹣3=,x1=3+,x2=3﹣;(2)方程两边都乘以x﹣2得:1﹣x=﹣1+x﹣2,解这个方程得:x=2,检验:当x=2时,x﹣2=0,所以x=2不是原方程的解,所以原方程无解.20.证明:(1)在□ABCD中,AB=CD,∠A=∠C.∵AB∥CD,∴∠ABD=∠CDB.∵BE平分∠ABD,DF平分∠CDB,∴∠ABE=∠ABD,∠CDF=∠CDB.∴∠ABE=∠CDF.∵在△ABE和△CDF中,∴△ABE≌△CDF(ASA).(2)∵△ABE≌△CDF,∴AE=CF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴DE∥BF,DE=BF,∴四边形DFBE是平行四边形,∵AB=DB,BE平分∠ABD,∴BE⊥AD,即∠DEB=90°.∴平行四边形DFBE是矩形.21.解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.22.解:(1)童装店降价前每天销售该童装可盈利:(100﹣60)×20=800(元);(2)设每件童装降价x元,根据题意,得(100﹣60﹣x)(20+2x)=1200,解得:x1=10,x2=20.∵要使顾客得到更多的实惠,∴取x=20.答:童装店应该降价20元.四、解答题(本大题共2个小题,每小题10分,共20分)解答时每小题必须给出必要的演算过程或推理步骤.23.解:原式=[﹣]÷=•=,由a2﹣4a+2=0,得a2﹣4a=﹣2,则原式=.24.解:(1)①∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|﹣﹣0|=≠2,∴|0﹣y|=2,解得,y=2或y=﹣2;∴点B的坐标是(0,2)或(0,﹣2);②设点B的坐标为(0,y).∵|﹣﹣0|≥|0﹣y|,∴点A与点B的“非常距离”最小值为|﹣﹣0|=;(2)如图2,取点C与点D的“非常距离”的最小值时,需要根据运算定义“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”解答,此时|x1﹣x2|=|y1﹣y2|.即AC=AD,∵C是直线y=x+3上的一个动点,点D的坐标是(0,1),∴设点C的坐标为(x0,x0+3),∴﹣x0=x0+2,此时,x0=﹣,∴点C与点D的“非常距离”的最小值为:|x0|=,此时C(﹣,).五.解答题(本大题共2个小题,25题12分,26题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.解:(1)∵四边形ABCD是菱形,∠ABC=60°,∴△ABC是等边三角形,又E是线段AC的中点,∴BE⊥AC,AE=AB=1,∴BE=,∴△ABC的面积=×AC×BE=;(2)如图2,作EG∥BC交AB于G,∵△ABC是等边三角形,∴△AGE是等边三角形,∴BG=CE,∵EG∥BC,∠ABC=60°,∴∠BGE=120°,∵∠ACB=60°,∴∠ECF=120°,∴∠BGE=∠ECF,在△BGE和△ECF中,,∴△BGE≌△ECF,∴EB=EF;(3)成立,如图3,作EH∥BC交AB的延长线于H,∵△ABC是等边三角形,∴△AHE是等边三角形,∴BH=CE,在△BHE和△ECF中,,∴△BHE≌△ECF,∴EB=EF.26.解:(1)∵点A是直线y=2x+1的点,点A的横坐标为1,∴y=2×1+1=3,∴A(1,3),∵点A是反比例函数y=(x>0)图象上的点,∴k=3;(2)如图1,设点M(m ,),过A作AE⊥x轴于E,过M作MF⊥x轴于F,根据题意得:S△AOM=S梯形AEFM =(3+)(m﹣1)=4,解得:m=3(负值舍去),∴M(3,1);(3)∵反比例函数y=(x>0)图象经过点A(1,3),∴k=1×3=3,∴反比例函数的解析式为y=,∵点P在直线y=x上,∴设P(m,m),若PQ为平行四边形的边,∵点A的横坐标比点B的横坐标小2,点A的纵坐标比点B的纵坐标大2,∴点Q在点P的下方,则点Q的坐标为(m+2,m﹣2)如图2,若点Q在点P的上方,则点Q的坐标为(m﹣2,m+2)如图3,把Q(m+2,m﹣2)代入反比例函数的解析式得:m=±,∵m>0,∴m=,∴Q1(+2,﹣2),同理可得另一点Q2(﹣2,+2);②若PQ为平行四边形的对角线,如图4,∵A、B关于y=x对称,∴OP⊥AB此时点Q在直线y=x上,且为直线y=x与双曲线y=的交点,由解得,(舍去)∴Q3(,)综上所述,满足条件的点Q有三个,坐标分别为:Q1(+2,﹣2),Q2(﹣2,+2),Q3(,).第11 页共12 页第12 页共12 页。
初中数学试卷重庆一中初2016级14—15学年度下期期末考试数学试卷2015.07(时间:120分钟满分:150分)一.细心选一选:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在表格中.题号 1 2 3 4 5 6 7 8 9 10 11 12答案1.在分式12-x中,x的取值范围是().A.1≠x B.0≠x C.1>x D.1<x2.在以下回收、绿色食品、节能、节水四个标志中,是中心对称图形的是().A.B.C.D.3.已知βα、是一元二次方程x2-2x-3=0的两个根,则βα+的值().A.2B.2-C.3D.3-4.如图,反比例函数xky=的图象过点A,过点A分别向x轴和y轴作垂线,垂足为B和C,若矩形ABOC的面积为2,则k的值为().A.4 B.2 C.1 D.215.如图所示,在□ABCD中,对角线AC,BD交于点O,OE∥BC交CD于E,若OE=3cm,则AD的长为().A.3cm B.6cm C.9cm D.12cm4题图y xEDCBAO12题图6.方程2650x x +-=的左边配成完全平方后所得方程为( ).A .2(3)4x += B. 2(3)14x -= C. 2(3)14x += D .2(6)41x +=7.果一个多边形的每一个内角都是108°,那么这个多边形是( ). A .四边形 B .五边形 C .六边形 D .七边形8.分式方程3211x x =-+的解是( ). A .5x =- B .5x = C .3x =- D .3x =9.如图,菱形ABCD 中,已知∠D =110°,则∠BAC 的度数为( ).A .30°B .35°C .40°D .45°10.若关于x 的一元二次方程0962=+-x kx 有两个不相等的实 数根,则k 的取值范围( ).A. k <1 B . 1≤k C . k <1且k ≠0 D . 1≤k 且0≠k11.下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有9个,第(2)个图形中面积为1的正方形有14个,…,按此规律.则第 (10)个图形中面积为1的正方形的个数为( ).A .72B .64C .54D .50 12.已知四边形OABC 是矩形,边OA 在x 轴上,边OC 在y 轴上, 双曲线与边BC 交于点D 、与对角线OB 交于点中点E, 若△OBD 的面积为10,则k 的值是( ).A .10B . 5C . 310D . 320二、耐心填一填(本大题共6个小题,每小题4分,共24分)请将每小题的正确答案填入下面的表格中.题号1314151617 18ADBC9题图11题图15题图13.分解因式222-m= ▲ .14.若分式33xx--的值为零,则x=▲ .15.如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,则对角线AC的长度为▲ .16.已知2=x是一元二次方程022=++mxx的一个解,则m的值是▲ .17.由于天气炎热,某校根据《学校卫生工作条例》,为预防“蚊虫叮咬”,对教室进行“薰药消毒”.已知药物在燃烧机释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在▲分钟内,师生不能呆在教室.18.如图,在正方形ABCD中,22=AB,将BAD∠绕着点A顺时针旋转 α(450<<α),得到''ADB∠,其中过点B作与对角线BD垂直的直线交射线'AB于点E,射线'AD与对角线BD交于点F,连接CF,并延长交AD于点M,当满足CDMAEBFSS∆=2四边形时,线段BE的长度为▲ .三.解答题(本大题共4个小题,19题10分,20题8分,21题8分,22题8分,共34分)解答时每小题必须给出必要的演算过程或推理步骤.19.解方程:答案17题图MD′B′FEDCBA18题图(1) 0262=--x x (2)11122x x x-=+--20. 如图,在□ABCD 中,∠ABD 的平分线BE 交AD 于点E ,∠CDB 的平分线DF 交BC 于点F . (1)求证:△ABE ≌△CDF ;(2)若AB =DB ,求证:四边形DFBE 是矩形.21. 如图,一次函数y=kx+b(k ≠0)的图象过点P(-32,0),且与反比例函数y=mx(m ≠0)的图象相交于点A(-2,1)和点B .(1)求一次函数和反比例函数的解析式;(2)求点B 的坐标,并根据图象回答:当x 在什么范围内取值时,一次函数的函数值小于反比例函数的函数值.22. 童装店在服装销售中发现:进货价每件60元,销售价每件100元的某童装平均每天可售出20件.为了迎接“六一”, 童装店决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件, (1)降价前,童装店每天的利润是多少元?(2)如果童装店每要每天销售这种童装盈利1200元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?四、解答题(本大题共2个小题,每小题10分,共20分)解答时每小题必须给出必要的演算过程或推理步骤.23. 先化简,再求值:)14()22441(22-÷-+-+--aa a a a a a ,其中a 是方程2420a a -+=的解. ABCDEF24.阅读理解: 在平面直角坐标系xoy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若∣x 1-x 2∣≥∣y 1-y 2∣,则点P 1与点P 2的“非常距离”为∣x 1-x 2∣; 若∣x 1-x 2∣<∣y 1-y 2∣,则点P 1与点P 2的“非常距离”为∣y 1-y 2∣.例如:点P 1(1,2),点P 2(3,5),因为∣1-3∣<∣2-5∣,所以点P 1与点P 2的“非常距离”为∣2-5∣=3,也就是图1中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点)。
秘密★启用前重庆一中2014-2015学年高一上学期期末考试数学试题2015.1数学试题共4页。
满分150分。
考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
一.选择题.( 本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合{|20}A x x=+=,集合2{|40}B x x=-=,则A B =( )A.{2}-B.{2}C.{2,2}-D.∅2.已知函数()f x为奇函数,且当0x>时,21()f x xx=+,则(1)f-=()A.2B.-2C.0D.13.已知α是第四象限的角,若3cos5α=,则tanα=()A.34 B.34-C.43 D.43-4.如图,在正六边形ABCDEF中,BA CD FB++等于() A.0 B.BE C.AD D.CF5.函数()33xf x x=+-在区间(0,1)内的零点个数是()A.3B.2C.1D.06.已知函数()()sin(0,0,0)2f x A x Aωϕπωϕ=+>><<的部分图象如图所示,则()f x的解析式是()A.()()2sin23f x xπ=+B.()()2sin3f x xπ=+Oyx7π62π32-2C.()()2sin 26f x x π=+ D .()()2sin 6f x x π=+ 7.下列函数中,既是偶函数,又在区间()1,2内是增函数的为 ( )A.cos y x =B. ln ||y x =C.2x xe ey --= D.tan 2y x = 8.设,cos55tan 35,sin 23b c a ︒=︒==︒,则( )A .a b c >>B .b c a >>C .c b a >>D .c a b >>9. (原创)定义域为R 的函数()f x 满足(2)2()f x f x +=,当[0,2)x ∈时,321()()2x f x -=-,则5()2f -=( ) A.14 B.18C.12-D.14-10.(原创) 函数cos 2()32cos sin x f x x x -=-+的值域是( )A.322,⎡⎢⎣ B. 233,⎡⎢⎣ C. 332⎡⎢⎣ D. 322,⎡⎢⎣二.填空题.(本大题共5小题,每小题5分,共25分.)11.5tan 6π=. 12.(原创)如右下图所示,平行四边形ABCD 的对角线AC 与BD 相交于点O ,点M 是线段OD 的中点,设,AB a AD b ==,则AM = .(结果用,a b 表示)13. 121(lg 25lg )1004--÷=.14.()1t sin an 5010︒+︒=.15.(原创) 设()1g x x =-,已知222()(1),(2)()()()(),(2)()g x g x g x g x f x g x g x g x g x --≤⎧=⎨->⎩,若关于x 的方程()f x m =恰有三个互不相等的实根123,,x x x ,则222123x x x ++的取值范围是 .三.解答题.( 本大题共6小题,共75分.解答须写出文字说明、证明过程和演算步骤.) 16. (原创)(本小题13分)已知2παπ<<,31tan tan 2αα-=-.(Ⅰ)求tan α的值;(Ⅱ)求3cos()cos()2sin()2παπαπα+---的值.17.(原创)(本小题13分)平面内给定三个向量(3,2)a =,(1,2)b =-,(4,1)c =.(Ⅰ)设向量5788d a b λλ=+,且||10d =,求向量d 的坐标;(Ⅱ) 若()a kc +//(2)b a -,求实数k 的值.18. (原创)(本小题13分)已知函数()(0,1)xf x a a a ≠=>在区间[1,2]-上的最大值是最小值的8倍.(Ⅰ)求a 的值;(Ⅱ)当1a >时,解不等式2log (22)log (1)a a a x x +<+.19. (原创)(本小题12分)已知函数()2()4sin(),()cos (0)3g x x h x x πωωπω=+=+>.(Ⅰ)当2ω=时,把()y g x =的图像向右平移6π个单位得到函数()y p x =的图像,求函数()y p x =的图像的对称中心坐标;(Ⅱ)设()()()f x g x h x =,若()f x的图象与直线2y =-的相邻两个交点之间的距离为π,求ω的值,并求函数()f x 的单调递增区间.20.(原创) (本小题12分)已知函数2()log (41)xf x mx =++. (Ⅰ)若()f x 是偶函数,求实数m 的值;(Ⅱ)当0m >时,关于x 的方程()242148(log )2log 41f x x m ++-=在区间上恰有两个不同的实数解,求m 的范围.21.(原创)(本小题13分)已知定义在(,1)(1,)-∞-+∞的奇函数满足:①(4)1f =;②对任意2x >均有()0f x >;③对任意1,1x y >>,均有()()(2)f x f y f xy x y +=--+. (Ⅰ)求(2)f 的值;(Ⅱ)证明:()f x 在(1,)+∞上为增函数; (Ⅲ)是否存在实数k ,使得()sin 2(4)(sin cos )2f k k θθθ--++<对任意的[0,]θπ∈恒成立?若存在,求出k 的范围;若不存在说明理由.2015年重庆一中高2017级高一上期期末考试 数学参考答案 2015.1 一.选择题:1-5:ABDAC:6——10:BBADA10. 解:cos 22cos ()32cos sin 1(64cos 2sin )2x x f x x x x x --==-+-+222222(2cos )2(2cos )1(2cos )(1sin )[(44cos cos )(12sin sin )]2x x x x x x x x --==-++-++++221sin 1()2cos x =++-令1sin 2cos x m x +=-,则1sin 2cos x m m x+=-,sin cos 21x m x m +=-,21)2n(1m x m ϕ=+-+得221)sin(1x m m ϕ-=++,由211m ≤+解得403m ≤≤,22()1f x m =+单增,值域为322,⎡⎢⎣二.填空题.(本大题共5小题,每小题5分,共25分.)11.3-;12.1344a b+;13. 20;14.1;15. 63⎫-⎪⎭.15.解:222221122(2),2,0()21211(1),,0x x x x x x x f x x x x x x x x -≤-----≤⎧⎧==⎨⎨->-----+>⎩⎩,绘出简图 若方程()f x m =有三个根,则104m <<,且当0x >时方程可化为20x x m -+-=,易知,231x x +=,23x x m =;当0x ≤时方程可化为220x x m --=,可解得1x =记y=2222212312323()212x x x x x x x x m++=++-=+-3928m =-+令t =,则2312116816y t t =--+,求得y ⎫∈⎪⎭ 三.解答题.( 本大题共6小题,共75分.解答须写出文字说明、证明过程和演算步骤.) 16. 解:(Ⅰ)令tan x α=,则132x x -=-,22320x x +-=,解得12x =或2x =-,2παπ<<,tan 0α<,故tan 2α=-;(Ⅱ)3cos()cos()sin cos 2tan 1211cos sin()2παπααααπαα+--+==+=-+=--17. 解:(Ⅰ)571510714,,(,3)885888d a bλλλλλλλλ⎛⎫⎛⎫=+=+-= ⎪ ⎪⎝⎭⎝⎭2||d λ=+=1±,(1,3)d =或(1,3)d =-- (Ⅱ) (34,2),2(5,2)a kc k k b a +=++-=-,由题得(34)(5)(2)02k k ⨯+--⨯+=,解得1613k =-18.解:(Ⅰ)当1a >时,21max min (),()f x a f x a -==,则2218a a a -==,解得2a =;当01a <<时,12max min(),()f x a f x a -==,则1328a a a --==,解得12a =;(Ⅱ) 当1a >时,由前知2a =,不等式2log (22)log (1)a a a x x +<+即为222log (42)log (1)x x +<+224202421230x x x x x x +>>-⎧⎧⇔⇔⎨⎨+<+-->⎩⎩213x x >-⎧⇔⎨<->⎩或得解集为(2,1)(3,)--+∞.19. 解:(Ⅰ)当2ω=时,2()4sin(2)3g x x π=+2()4sin(2)4sin(2)6333g x x x ππππ-=-+=+ ()4sin(2)3p x x π=+,令23x k ππ+=,得62k x ππ=-+,中心为,0()62k k Z ππ⎛⎫-+∈ ⎪⎝⎭;(Ⅱ)2()4sin()(cos )3f x x x πωω=+-14sin ()cos cos 2x x x ωωω⎡=-⋅-+⎢⎣22sin cos x x x ωωω=-sin 2cos2)x x ωω=-+2sin(2)3x πω=--由题意,T π=,2,12ππωω∴==令23t x π=-是x的增函数,则需2sin y t =是t 的增函数 故222232k x k πππππ-≤-≤+,522266k x k ππππ-≤≤+,51212k x k ππππ-≤≤+ 函数()f x 的单增区间是5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.20.解:(Ⅰ) 若()f x 是偶函数,则有()()f x f x -=恒成立,即:22log (41)log (41)x x mx mx-+-=++于是2222412log (41)log (41)log ()log (41)24xx x x x mx x -+=+-+=-+=-即是22mx x =-对x R ∈恒成立,故1m =-(Ⅱ)当0m >时,2log (41)x y =+,在R 上单增,y mx =在R 上也单增所以2()log (41)x f x mx=++在R 上单增,且(0)1f =则()242418(log )2log 41f x x m ++-=可化为()242418(log )2log 4(0)f x f x m ++-=又()f x 单增,得242418(log )2log 40x x m ++-=,换底得2222log 48()2log 40log 4x x m -+-=即22242(log )2log 40x x m -+-=,令2log t x =,则3[0,]2t ∈,问题转换化为 242240t t m -+-=在3[0,]2t ∈有两解24224t t m ⇔=-++令2224y t t =-++,29312()(0)222y t t =--+≤≤,max 19()22y y ==, 作出29312()(0)222y t t =--+≤≤与4y m =的简图知,4942m ≤<解得819m <≤ 又0m >,故819m <≤.21.解:(Ⅰ)由[][]()()(2)(1)(1)1(1)(1)1f x f y f xy x y f x y y f y x +=--+=-+-+=--+令1,1m x n y =-=-,则,0m n >,且有(1)(1)(1)f m f n f mn +++=+对任意,0m n >均成立令1m n ==即有(2)(2)(2)f f f +=,得(2)0f =;(Ⅱ)由(1)(1)(1)f m f n f mn +++=+有(1)(1)(1)f mn f n f m +-+=+,只需1m >就好 设211,1x mn x n =+=+,其中,0,1n m m >>,则21(1)0x x n m -=->,故21x x > 则21()()(1)(1)(1)f x f x f mn f n f m -=+-+=+,1,12m m >+>所以(1)0f m +>,即21()()0f x f x ->,21()()f x f x >,()f x 在(1,)+∞单调递增(Ⅲ)由(1)(1)(1)f m f n f mn +++=+令3m n ==,有(4)(4)(10)f f f +=,(10)2f =令19,9m n ==,由1(91)(1)(911)099f f f ⋅+++==+,故10()29f =-,由奇偶性10()29f -=-则()2f x <的解集是10(,)(1,10)9-∞-于是问题等价于是否存在实数k 使10sin 2(4)(sin cos )9k k θθθ--++<-或1sin 2(4)(sin cos )10k k θθθ<--++<对任意的[0,]θπ∈恒成立令sin cos ,[t t θθ=+∈-,问题等价于210(4)19t k t k --+-<-或21(4)110t k t k <--+-<对[t ∈-恒成立令2()(4)1g t t k t k =--+-,则10()9g t <-对[t ∈-恒成立的必要条件是10(1)9109g g ⎧-<-⎪⎪⎨⎪<-⎪⎩即123091109k k ⎧-+<⎪⎪⎨⎪+++<⎪⎩得1391989k k ⎧<⎪⎪⎨⎪>+++⎪⎩同理1()10g t <<恒成立的必要条件是1(1)10110g g <-<⎧⎪⎨<<⎪⎩,即124101(1110k k <-<⎧⎪⎨<-++<⎪⎩解得57218k k ⎧<<⎪⎨⎪--<<+⎩572k <<;当572k <<时,2()(4)1g t t k t k =--+-的对称轴42k t -=33,42⎛⎫∈- ⎪⎝⎭, (1)当47k +≤<时,对称轴04322k t -⎫=∈⎪⎭,在区间[-的右侧 2()(4)1g t t k t k =--+-在[-单调递减,1()10g t <<恒成立1(1)10110g g <-<⎧⎪⇔⎨<<⎪⎩成立故47k +≤<时,1()10g t <<恒成立;(2)当542k<<+42kt-=34⎛∈-⎝,2()(4)1g t t k t k=--+-在[-先减后增1()10g t<<恒成立还需min4()12kg t g-⎛⎫=>⎪⎝⎭,即2(4)4(4)1142k kk k----+->化简为212240k k-+<,2(6)12k-<,即6k-<-<66k-<<+故有66542kk⎧-<<+⎪⎨<<+⎪⎩解得64k-<<+;综上所述存在()67k∈-,使()sin2(4)(sin cos)2f k kθθθ--++<对任意的[0,]θπ∈恒成立.。
重庆初一下学期期末数学试题同学们注意:本试题共28 个小题,满分150 分,考试时间120 分钟一、选择题:(本大题共10 个小题,每小题 4 分,共 40 分)在每个小题的下面,都给出了代号为 A、 B、 C、 D 的四个答案,其中只有一个是正确的,请将各小题所选答案的标号填写在下表的相应位置上 .题号12345678910 答案D D B C D A B B C C1、下列各式计算正确的是()A.x4 x4 2x8 . x2 y 36 yB xC.x2 3x5 D . x3 x58x2.下列各式中 , 不能用平方差公式计算的是 ()A. (4x 3y)( 3 y 4x)B. (2x2 y 2 )( 2x 2 y 2 )C. (a b c)( c b a) D . ( x y)( x y)3.据中新社北京 2010 年 12 月 8 日电, 2010 年中国粮食总产量达到546 400 000 吨,用科学记数法表示为()A. 5. 464×10 7吨 B . 5. 464×10 8吨 C . 5. 464×10 9吨 D . 5. 464×10 10吨4.将图甲中阴影部分的小长方形变换到图乙位置,根据两个图形的面积关系可以得到一个关于 a、 b 的恒等式为()aa b 2 a2 a-b a-bA. 2ab b2aB. a b 2 a2 2ab b2 b bC. a b a - ba2 b2 甲乙D. a a ba2 ab(第 4 题)5. 柿子熟了从树上自然掉落下来,下面哪一幅图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况() .速度速度速度速度O AO O时间O时间时间时间( A )( B )( C )( D )D6. 如图,在△ ABC中,AB AC , A 36 ,BD、CE分别EAB C是△ ABC、△ BCD的角平分线,则图中的等腰三角形有()第7 题A 、 5 个B 、 4 个C 、3 个D 、 2 个7.如图,在 Rt △ ABC 中,∠ C = 90°,以 AC 、BC 为直径的半圆面积分别是 12.5πcm 2 和 4.5 cm 2,则 Rt △ ABC 的面积为()cm 2.A . 24B .30C . 48D .608.如下图,AD 是△ ABC 中∠ BAC 的平分线, DE ⊥ AB 交 AB 于点 E ,DF ⊥ AC 交 AC 于点 F .若 S△ABC= 7, DE = 2, AB = 4,则 AC =( )A . 4B. 3C. 6D .59. 如下图所示, 以 OA 为斜边作等腰直角三角形 OAB ,再以 OB 为斜边在△ OAB 外侧作等腰直 角三角形 ,如此继续,得到 8 个等腰直角三角形,则图中△ 与△ OHI 的面积比值是OBCOAB( )A. 32B. 64C. 128D. 25610. 如图,△ ABC 的外角平分线 CP 和内角平分线 BP 相较于点 P ,若∠ BPC=35°,则∠ CAP=( )A.45°B.50°C.55°D.65°ACBEF DAPBCE OIADC DF HB第 8 题G(第 9 题图)第 10 题二、填空题: (本大题共 10 个小题,每小题 3 分,共 30 分)请将每小题的正确答案填入下面的表格中 .题号1112 13 1415答案 a-b+2± 12 54 120 0251m 题号 1617 18 19 20 答案10:21120 061121811. 长方形面积是 3a 23ab 6a ,一边长为 3a ,则它的另一边长是。
重庆一中初2016级14—15学年度下期半期考试数 学 试 卷一.选择题:(本大题12个小题,每小题4分,共48分) 1.下列等式中,从左到右的变形是分解因式的是( ).A .2(1)(2)2x x x x +-=--B .232344a b a b =⋅ C .2221(1)x x x -+=- D .2)3(232+-=+-x x x x2.计算mn nm m n m 222+--+的结果是( ).A .m n n m 2+- B .m n n m 2++ C .m n n m 23+- D .m n n m 23++ 3.下列图形中,既是轴对称图形,又是中心对称图形的是( ).A .直角三角形B .等边三角形C .平行四边形D .矩形 4.顺次连结四边形ABCD 各边中点得到的四边形一定是( ).A .矩形B .正方形C .平行四边形D .菱形5.把分式ba a+2中的a 、b 都扩大4倍,则分式的值( ). A .扩大8倍 B .不变 C .缩小4倍 D .扩大4倍 6.在菱形ABCD 中,对角线AC 与BD 交于点O ,如果∠ABC=60°,AC=4,那么该菱形的面积是( ).A .83B .8C .163D .167.三角形的三边a 、b 、c 满足0)(2)(=-+-c b c b a ,则这个三角形的形状是( ). A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形8.如图,已知菱形ABCD 中,对角线AC=12,BD=16,点E 、F 分别为边BC 、CD 的中点,点P 对角线 BD 上一动点,则PE+PF 的最小值为( ). A .10 B .12 C .14 D .169.如图,在□ABCD 中,072=∠ABC ,AF BC ⊥于F ,AF 交BD 于点E ,若2D E A B =,则AED ∠ 的大小是( ). A .060 B .066 C .070 D .07210.如图1,将正三角形每条边两等份,然后过这些分点作平行于其他两边的直线,则以图中线段为边的 菱形的个数为3个;如图2,将正三角形每条边三等份,然后过这些分点作平行于其他两边的直线,则 以图中线段为边的菱形的个数为9个;如图3,将正三角形每条边四等份,然后过这些分点作平行于其 他两边的直线,则以图中线段为边的菱形的个数为( ).A .15 B .18 C .21 D .2411.若关于x 的分式方程2322-=--x m m x x 无解,则m 的值为( ). A .32=m B .232==m m 或 C .21=m D .2132==m m 或图1 图2 图3 第10题图 F E D C B A 第9题图 P F EDC B A 第8题图12.甲、乙两人分别从A B 、两地同时向C 地前进,甲经B 地后再走4小时10分钟在C 地追上乙,这时两人行程共走110千米,而C A 、两地的距离等于乙走6小时的路程,则A B 、两地间的距离为 ( )千米. A .7 B .8 C .9 D .10 二.填空题:(本大题6个小题,每小题4分,共24分)13.若分式21a +有意义,则a 的取值范围是___________.14.因式分解: 42-a =___________. 15.矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOD =120°,AC =8,则△ABO 的周长为___________. 16.一个多边形的内角和等于它的外角和的6倍,那么此多边形的边数为___________.17.已知:2123432-+-=+--x Bx A x x x (A 、B 为常数),则A = ;B = .18.如图,在□ABCD 中,点,M N 分别是边CD 、BC 的中点,42==AN AM ,,且060MAN ∠=, 则AB 的长是___________.三.解答题:(本大题2个小题,每小题7分,共14分)19.分解因式:)(9)(2y x y x x ---20.解方程:112512=-++-xx x x x四.解答题:(本大题4个小题,每小题10分,共40分)21.A 、B 两地的距离是100千米,一辆公共汽车从A 地驶出3小时后,一辆小汽车也从A 地出发,它的 速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B 地,求两车的速度.22.如图,在△ABC 中,∠ABC=90°,点D 为AC 的中点,过点C 作CE ⊥BD 于点E ,过点A 作BD 的 平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG=BD ,连接BG 、DF . (1)证明:四边形BDFG 是菱形;(2)若AC=10,CF=6,求线段AG 的长度.23.先化简,再求值:x x x x x x x x x 416)44122(2222+-÷+----+,其中x 是不等式组⎩⎨⎧-≥-≥-1032312x x 的整数解.A B C G F E D N MDC BA第18题图24.如图,已知矩形ABCD 中,AB=8,BC=12,点E 、F 分别为线段BC 、DE 的中点,连接BF 、AE 交于点G .(1)求线段BF 的长度;(2)求证:BG=GF .五.解答题:(本大题2个小题,25题12分,26题12分,共24分)25.为了满足学生的物质需求,重庆市某重点中学mama 超市准备购进甲、乙两种绿色袋装食品.其中甲、 乙两种绿色袋装食品的进价和售价如下表:甲 乙 进价(元/袋) m m-2 售价(元/袋) 20 13已知:用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同. (1)求m 的值;(2)要使购进的甲、乙两种绿色袋装食品共800袋的总利润(利润=售价﹣进价)不少于5200元,且 不超5280元,问该mama 超市有几种进货方案?(3)在(2)的条件下,该mama 超市准备对甲种袋装食品进行优惠促销活动,决定对甲种袋装食品每 袋优惠a (2<a <7)元出售,乙种袋装食品价格不变.那么该mama 超市要获得最大利润应如何进货?GF ED CB A26.已知□ABCD 中,030=∠A ,AB=10,BC=15,点E 为边AD 上一点,且AE=BE . (1)如图1,把ABE ∆沿直线BE 翻折0180,得到BE A 1∆,求线段C A 1的长度;(2)如图2,把ABE ∆绕点B 旋转后得到11BE A ∆,使点1E 落在边BC 上,若B A 1与CD 交于点N , 求线段N A 1的长度;(3)如图3,把ABE ∆绕点B 旋转0α(0<α<360)后得到11BE A ∆,设直线..B A 1分别与直线..DE 、 直线..CD 交于点M 、N.是否存在这样的α,使DMN ∆为等腰三角形?若存在,请求出线段DM 的长 度;若不存在,请说明理由.A 1EDCBA图1NAEE 1D CBA 1图2AEE 1D CBA 1图3。
2015重庆一中高2017级高一下期期末考试数 学 试 题 卷 2015.7一、选择题:(每小题5分,共计50分,在每小题给出的四个选项中,只有一项符合要求.) 1.10y -+=的倾斜角为( ) A .56π B .23π C .3π D .6π2.学校教务处要从某班级学号为160-的60名学生中用系统抽样方法抽取6名同学的作业进行检查,则被抽到的学生的学号可能是( )A .5,10,15,20,25,30B .3,13,23,33,43,53C .1,2,3,4,5,6D .2,4,8,16,32,48 3.下列命题中错误的是( )A .夹在两个平行平面间的平行线段相等B .过直线l 外一点M 有且仅有一个平面α与直线l 垂直,C .垂直于同一条直线的两个平面平行D .空间中如果两个角的两边分别对应平行,那么这两个角相等 4.如右图,程序框图所进行的求和运算是 ()5.边长为5,7,8的三角形的最大角与最小角之和为( )A .090 B .0120 C .0135 D .01506.右图是某三棱锥的三视图,则该三棱锥的表面积为( )A. 4B.6C. 4D.6 7.已知0,0>>y x ,且()()119x y ++=,则x y +的最小值是( )A .4B .5C .29 D .211侧视图正视图 2俯视图28.10111111111+224248242⎛⎫⎛⎫⎛⎫+++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…………的值为( ) A .9172+B .10192+C .111112+D .10172+ 9.(原创)在ABC ∆中3,2AC BC AB ===,P 为三角形ABC 内切圆圆周上一点,则PA PB ·的最大值与最小值之差为( )A .4 B. C. D .210(原创).已知底面为边长为2的正方形,侧棱长为1的直四棱柱1111ABCD A B C D -中,,P Q 是面1111A B C D 上的两个不同的动点.给出以下四个结论:①若DP =则DP在该四棱柱六个面上的投影长度之和的最大值为②若P 在面对角线11AC 上,则在棱1DD 上存在一点M 使得1MB BP ⊥; ③若,P Q 均在面对角线11AC 上,且1PQ =,则四面体BDPQ 的体积一定是定值; ④若,P Q 均在面对角线11AC 上,则四面体BDPQ 在底面1111ABCD A B C D -上的投影恒为凸四边形的充要条件是PQ ; 以上各结论中,正确结论的个数是( )A .1B .2C .3D .4二、填空题:(每小题5分,共计25分,把答案填在答题卡的相应位置.) 11.经过点),3(),1,2(a Q P --的直线与倾斜角为︒45的直线垂直,则=a ________. 12.已知等差数列{}n a 的前n 项和为n S ,且满足253,25a S ==,则10S = . 13(原创).已知,B C 是球O 的一个小圆1O上的两点,且BC =2BOC π∠=123BO C π∠=,则三棱锥1O O BC -的体积为______. 14(原创)在星期天晚上的6:30-8:10之间,小明准备用连续的40分钟来完成数学作业,已知他选择完成数学作业的时间是随机的,则在7:00时,小明正在做数学作业的概率是______.15(原创).已知0m ≥,满足条件4y xx y y mx m ≥⎧⎪+≤⎨⎪≤-⎩的目标函数z x my =+的最大值小于2,则m 的取值范围是______.三、解答题:(本大题共6小题,共计75分,解答应写出文字说明、证明过程或演算步骤.)30 35 40 45 50 55 年龄频率0.010.02 a 16.(本小题满分13分)某同学对本地[]30,55岁的爱好阅读的人群随机抽取n 人进行了一次调查,得到如下年龄统计表,其中不超过40岁的共有60人。
初中数学试卷马鸣风萧萧重庆一中初2017级14—15学年度下期半期考试数 学 试 题同学们注意:本试题共26个小题,满分150分,考试时间120分钟一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将各小题所选的答案填入下面的表格内. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.计算52a a ⋅的结果是( )A.10a B.7a C.3a D.8a 2.下列各式中能用平方差公式的是( )A.)32)(32(+--a aB.))((b a b a --+C.)3)(3(a b b a -+D.)2)(1(-+a a 3.已知等腰三角形的两边长分别为3cm 和8cm ,则此三角形的周长可能是( ) A.14cm B.16cm C.19cm D.14 cm 或19cm 4.如果一个角的补角是150°,那么这个角的度数是( ) A.30° B.60° C.90° D.120°5.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂的物体的重量x (kg )间有下面的关系:x1234 5 y10 10.5 11 11.5 1212.5下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0cmC .物体质量每增加1kg ,弹簧长度y 增加0.5cmD .所挂物体质量为7kg 时,弹簧长度为13.5cm6.如图,下列条件中,不能判断直线1l ∥2l 的是( )A.∠1=∠3B. ∠2+∠4=180°C.∠4=∠5D. ∠2=∠3 7.如图,已知直线AB ∥CD ,∠C=115°,∠A=25°,则∠E=( ) A.70° B.80° C.90° D.100°8.若()()232y y y my n +-=++,则m 、n 的值分别为() A.5m =,6n = B .1m =,6n =- C .1m =,6n = D .5m =,6n =- 9.适合下列条件的ABC ∆中,直角三角形的个数为( ) ①3:2:1::=∠∠∠C B A②C B A ∠=∠+∠③B A ∠-=∠︒90 ④C B A ∠=∠=∠2 A .1B .2C .3D .410.地铁1号线是重庆轨道交通线网东西方向的主干线,也是贯穿渝中区和沙坪坝区的重要交通通道,它的开通极大地方便了市民的出行.现某同学要从沙坪坝重庆一中到两路口,他先匀速步行至沙坪坝地铁站,等了一会,然后搭乘一号线地铁直达两路口(忽略途中停靠站的时间).在此过程中,体现他离重庆一中的距离y 与时间x 的关系的大致图象是( )11.如图,在△ABC 和△ADE 中,①AB = AD ;②AC = AE ;③BC = DE ;④∠C = ∠E ;⑤B ADE ∠=∠.下列四个选项分别以其中三个为条件,剩下两个为结论,则其中错误的是( ) A .若①②③成立,则④⑤成立. B .若②④⑤成立,则①③成立. C .若①③⑤成立,则②④成立.D .若①②④成立,则③⑤成立.12.如图,ABC ∆的面积为3,1:2:=DC BD ,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( ) A.31 B.107 C.53 D.2013第6题 FAB E CD第7题EA二、填空题:(本大题6个小题,每小题4分,共24分)请将答案直接填写在下面的表格里. 题 号 13 14 15 16 17 18 答 案13.某种冠状病毒的直径是120纳米,1纳米=910-米,则这种冠状病毒的直径用科学记数法表示为 米.14. 若n m ,满足3,2522==+mn n m ,则()2n m -= .15.已知9)3(22+--x m x 是一个多项式的平方,则m = .16.如图,图①,图②,图③,……是用围棋棋子摆成的一列具有一定规律的“山”字.则第n 个“山”字中的棋子个数是 个.17.为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同),一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是 .……图①图②图③图④水池蓄水量水池蓄水量18.如上图,△ABC 中,∠BAC =90°,AD ⊥BC , ∠ABC 的平分线BE 交AD 于点F ,AG 平分∠DAC .给出下列结论:①∠BAD=∠C ;②AE=AF ;③∠EBC=∠C ;④FG ∥AC ;⑤EF=FG .其中正确的结论是 .三、解答题:(本大题3个小题,共24分)解答时每小题必须给出必要的演算过程. 19.计算:(每小题5分,共10分) (1)()2231453-⎪⎭⎫⎝⎛-+-----π (2)()()54358122m m n mn ⋅-÷-20.(6分)如图,在△ABC 中,D 是AB 上一点,DF 交AC 于点E ,AB ∥CF ,E 是AC 的中点.求证:AD=CF21.计算:(每小题4分,共8分) (1)已知71=-aa ,求221a a +.FN ABCDGE第18题AD BCFE(2)已知 10,3-==+xy y x , 求()()2211y y x x +--+的值.四、解答题:(本大题3个小题,每题10分,共30分)解答时每小题必须给出必要的演算过程或推理步骤. 22.先化简,再求值:)2)(2()3)(()(2y x y x y x y x y x -+--+++ ,其中y x , 满足:02122=-+++x y y .23.推理填空:完成下列证明:如图,E 在△ABC 的边AC 上,且∠ABF=∠C ,AF 平分∠BAE 交BE 于点F ,FD ∥BC 交AC 于D.求证:AC-AB=DC.解:∵FD ∥BC∴∠ADF=∠C ( ) ∵∠ABF =∠C∴∠ABF=∠ADF ( ) ∵AF 平分∠BAE∴ (角平分线的定义) 在△BAF 和△DAF 中BFACED∠BAF=∠DAF∠ABF=∠ADF∴△BAF≌△DAF ()∴AB=AD∵AC-AD=DC∴AC-AB=DC.24.如图,△ABC中,∠BAC=90°,BD是∠ABC的平分线,BD⊥CF交CF于点E,直线CE 交BA的延长线于点F且AD=AF.求证:(1)△BAD≌△CAF(2)连接DF,若BF=15cm,求△ADF的周长.FAEDB C五、解答题:(本大题2个小题,每题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.近几年铁路部门为了满足人们的出行需求,做出了许多贡献:线路不断增加,车次越来越多,速度逐渐加快,这给我们的生活带来了许多便利.“五一”期间,小颖决定对重庆到北京这段铁路,火车运行的情况进行调查.某天,他收集到如下信息:现有一列高铁从重庆驶往北京,一列动车从北京驶往重庆(高铁的速度大于动车的速度),两车同时出发并且线路相同,设动车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的关系,根据图像进行以下探究:(1)重庆、北京两地之间的距离为km(直接写出答案);(2)求动车和高铁的速度;(3)求线段BC 所表示的y 与x 之间的关系式,并写出自变量x 的取值范围;(4)若第二列高铁也从重庆出发驶往北京,速度与第一列高铁相同,在第一列高铁与动车相遇30分钟后,第二列高铁与动车相遇,求第二列高铁比第一列高铁晚出发多少小时?26.如图,△ABC 中,∠ACB =90°,∠ABC =60°,将△ABC 绕着顶点B 顺时针旋转α∠得到△EBD ()︒︒≤≤3600α,F ,G 分别是AB,BE 上的点,BF=BG ,直线CF 与直线DG 相交于点H.(1)如图①,当︒=∠60α时,点C 旋转到AB 边上的一点D ,点A 旋转到点E 的位置,这时△CBF 和△DBG 全等吗?说明理由并且求出此时∠FHG 的度数.(2)如图②,当︒=∠120α时,点C,B,E 在同一直线上,这时∠FHG 的度数有没有发生变化?若有变化,请求出变化后∠FHG 的度数;若没有变化,请说明理由.(3)如图③,在旋转过程中,是否存在CF ∥DG 的情况,若存在,直接写出此时α∠的度数.若不存在,请说明理由.x/h y/km DCBA900124O 1800 15 5 y/kmx/hHCBAD EFG 图①HBC DAFEG图②BCEDAFG图③。
重庆一中初2017级15—16学年度下期期末考试数学试题2016.7(全卷共五个大题,满分150分,考试时间120分钟)亲爱的同学:当你走进考场,你就是这里的主人。
只要心境平静,细心、认真地阅读、思考,你就会感到成功离你并不远。
一切都在你掌握之中,请相信自己!一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将各小题所选答案的代号填入题后的表格内.1.下列各式的因式分解结果中,正确的是A. B.C. D.下列图案中,既是轴对称图形又是中心对称图形的是A B C D3.如果两个相似三角形的面积比为1:4,那么它们的相似比为A. 1:16B. 1:8C. 1:4D. 1:24.用配方法解方程时,配方后得到的方程为A.(x+1)2=0 B.(x-1)2=0 C. (x+1)2=2 D.(x-1)2=25.下列函数中,属于反比例函数的是A. B. C. D.6.分式的值为0,则的值为A. 1 B.-1 C.0 D.7.如图,正方形OABC绕着O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是A.15°B.20°C.25°D.30°在同一坐标系中,函数和的图像大致是A B C D9.重庆一中初二年级要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,应该邀请的球队个数为A.6B.7C.8D.910.下列矩形都是由大小不等的正方形按照一定规律组成,其中,第①个矩形的周长为6,第②个矩形的周长为10,第③个矩形的周长为16,…则第⑥个矩形的周长为①②③④A.42 B.46 C.68 D.7211.若关于x的方程的两根互为相反数,则的值为A. B. C. 或 D. 或12.如图,反比例函数经过斜边的中点,且与另一直角边交于点,连接,的面积为,则的值为A. 4B. 5C. 6D. 7二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将每小题的正确答案填在上面表格内.13. 方程的根为.14.如图,已知菱形ABCD的一个内角,对角线AC、BD相交于点O,点E在AB上,且,则=度.15.关于的方程有两个不相等的实数根,则k的取值范围是 .16.若点(-1、),(2、),(5、)都在反比例函数()的图象上,则,,的大小关系为(用“<”连接).17.已知关于的方程的根大于0,则的取值范围是 .18.如图,已知正方形纸片ABCD,E为CB延长线上一点,F为边CD上一点,将纸片沿EF翻折,点C恰好落在AD边上的点H,连接BD,CH,CG. CH交BD 于点N,EF、CG、BD恰好交于一点M.若DH=,BG=,则线段MN的长度为 .三、解答题:(本题共2小题,19题8分,20题6分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19.解方程(1) (2)20.如图,是平行四边形对角线上两点,,求证:.四、解答题:(本题共4小题,每题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:其中是方程的解.22.如图,已知反比例函数的图象经过点A(-,m),•过点A作AB⊥轴于点B,且△AOB的面积为.(1)求k和m的值;(2)若一次函数的图象经过点A,并且与轴的交点为点C,试求出△的面积.23.某商场准备从厂家进购A、B两种商品定价后直接销售,已知A商品的进价比B商品的进价多15元,已知同样花600元进购的A商品件数是B 商品的一半。
重庆一中初2017级14—15学年度下期期末考试
数 学 试 题2015.7.
同学们注意:本试题共26个小题,满分150分,考试时间120分钟
一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为
1.2
2-的值为( ).
A .
21 B .21- C .41 D .4
1- 2.下列图形是轴对称图形的是( ).
3.下列各组数是勾股数的是( ).
A .5,4,3
B .9,8,7
C .47,41,9
D .22213,12,5 4.计算23)(b a 的计算结果是( ).
A .2
6
b a B .2
3
b a C .2
5
b a D .b a 6
5.下列事件为确定事件的是( ) .
A.明天要下雨
B.水中捞月
C.守株待兔
D.任意掷一枚图钉,落地后针尖朝上 6.
如图,直线AB 、CD 相交于点E ,AB DF //.若︒
=∠70D ,则CEB ∠等于( ).
A .︒70
B .︒80
C .︒90
D .︒110
7.如图所示,转盘被等分成4个扇形,并在上面依次写上数字1、2、3、5,若自由转动转盘,当它停止转动时,指针指向奇数区的概率是( ).
A .41
B .21
C .43
D .3
1 A
B
C
D
因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成某路段的改造.下面能反映该工程尚未改造的道路里程y (公里)与时间x (天)的变化情况的大致图象是( ).
10.如图,一只蚂蚁从长宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到
B 点,那么它所爬行的最短路线的长是( ).
A .9
B .10
C .14
D .无法确定 11.用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去, 第7个图案需要的黑色五角星的个数是( ).
A .10
B .11
C .12
D .13 12.关于多项式5822
++-x x 的说法正确的是( ).
A .有最大值13
B .有最小值3-
C .有最大值37
D .有最小值1 次引起粉尘爆炸的粉末成分主要是玉米粉,玉米粉的爆炸下限为每立方米45000000微克,把数45000000用科学记数法表示为 . 14.计算:2)2015(0
--π= .
(第10题图)
……
图案①
图案④
图案③
图案②
图案⑤
A .
B .
C .
D .
15.弹簧挂上物体后会伸长,测得一弹簧的长度)(cm y 与所挂的物体的质量)(kg x 间有下面的关系:
则y 的关系式为 .16.如图,在△ABC 中,∠C=90°,AB 的中垂线交AB 于点D ,交BC 于点E ,连接AE ,若
∠BED=70°,则∠CAE 的度数为 °.
17.已知2
510m m --=,则22
1
25m m m -+
= . 18.如图,在长方形ABCD 中,点E 是AD 的中点,连结BE ,将△ABE 沿着BE 翻折得到△FBE ,
EF 交BC 于点H ,延长BF 、DC 相交于点G ,若DG=16,BC=24,则FH 等于 .
三、解答题:(本题共8个小题,共78分)解答时每小题必须给出必要的演算过程或推理步骤. 19.作图题:(6分,要求:在下列空白处尺规作图,保留作图痕迹,不写作法,要作答.)
已知:,α∠线段c .求作:ABC ∆,使c BC c AB A 3,2,==∠=∠α.
20.计算:(本题共2个小题,每小题5分,共10分)
(1))2()(2
b a b b a ++- (2)x ])3()4)(2[(2
÷++--y x x y y x (第16题图)
G
D C B
21.(8分)如图,︒=∠︒=∠90,90D A ,AC 与BD 相
交于点E ,EC BE =.
求证:ABC △≌DCB △.
22.(10分)为规范学生的在校表现,我校某班实行了操行评分制,根据学生的操行分高低分为A 、
B 、
C 、
D 四个等级.现对该班本学期的操行等级进行了统计,并绘制了不完整的两种统计图,请根据图象回答问题:
某班操行等级条形统计图 某班操行等级扇形统计图
(1)该班的总人数为 人,得到等级A 的学生人数占总人数的百分比为 ; (2)补全条形统计图;
(3)据统计获得等级A 的学生中有2名男生,其余全为女生,现班主任打算从操行等级为A 的学
生中任意抽取一名作为代表,参加下学期开学的“国旗下的讲话”演讲活动,请求出抽到女生的概率. E D
C
B A
23.(10分)读一读:
式子“10054321⨯⋅⋅⋅⨯⨯⨯⨯⨯”表示从1开始的100个连续自然数的积.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“10054321⨯⋅⋅⋅⨯⨯⨯⨯⨯”表示为
∏=100
1n n ,这里“∏
”
是求积符号.例如:9997531⨯⋅⋅⋅⨯⨯⨯⨯⨯,即从1开始的100以内的连续奇数的积,可表示为
∏=-50
1
)12(n n ,又知3
3
3
3
3
3
3
3
3
3
10987654321
⨯⨯⨯⨯⨯⨯⨯⨯⨯可表示为∏=10
1
3
n n .通过对以
上材料的阅读,请解答下列问题:
(1)100108642⨯⋅⋅⋅⨯⨯⨯⨯⨯(即从2开始的100以内的连续偶数的积)用求积符号可表
示为 ;
(2)101
31211⨯⋅⋅⋅⨯⨯⨯用求积符号可表示为 ; (3)计算)1
1(12
2
2∏=-n n .
24.(10分)如图,△ABC 中,∠ABC=90°,D 为BC 上一点,且BD=AB,连接AD ,E 是AC 上
一点,∠ABE=∠BDE 且∠C+2∠EBC=90°. (1)求证:2
2
2
DB BE DE =+; (2)已知2=DE ,求BE 的长. E
D
C
B
A
25.(12分)2015年5月中旬,中国和俄罗斯海军在地中海海域举行了代号为“海上联合-2015
(1)”的联合军事演习,这是中国第一次远赴地中海进行军事演习,也是中国海军距本土最远
的一次军演.某天,“临沂舰”、“潍坊舰”两舰艇同时从A 、B 两个港口出发,均沿直线匀速驶向演习目标地海岛C ,两舰艇都到达C 岛后演习第一阶段结束.已知B 港位于A 港、C 岛之间,且A 、B 、C 在一条直线上.如图所示,潍临、l l 分别表示“临沂舰”、“潍坊舰” 离B 港的距离随行驶时间)(h x 变化的图象.
(1)A 港与C 岛之间的距离为 ;
(2)分别求出“临沂舰”、“潍坊舰”的航速及相遇时行驶的时间;
(3)若“临沂舰”、“潍坊舰”之间的距离不超过km 20时就属于最佳通讯距离,求出两舰艇在演
习第一阶段处于最佳通讯距离时的x 的取值范围. l 潍
l 临
160
40
2
23
0.5
y/km
x/h
O
26.(12
分) 已知在四边形ABCD 中,180ABC ADC ∠+∠=︒,
︒=∠+∠180BCD BAD ,BC AB =.
(1)如图1,连接BD ,若90BAD ∠=︒,AD=7,求DC 的长度; (2)如图2,点P 、Q 分别在线段AD 、DC 上,满足PQ=AP+CQ ,求证: QBC ABP PBQ ∠+∠=∠; (3)若点Q 在DC 的延长线上,点P 在DA 的延长线上,如图3所示,仍然满足PQ=AP+CQ ,请写出PBQ ∠与ADC ∠的数量关系,并给出证明过程.
图1
D
A
B
C
A
D
C
P
Q 图2
D。