2013年全国大学生数学建模竞赛A题正式论文
- 格式:pdf
- 大小:4.35 MB
- 文档页数:20
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2013 年 9 月 15 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要高速公路交通事故在给人们带来生命财产损失的同时,也会引发大范围的交通拥堵,增加车辆油耗和废气排放,带来能源消耗和环境污染问题。
高速公路上一旦发生交通事故,部分道路就会被占用或者封闭,事故发生地点通行能力降低,无法满足交通需求,进而导致交通拥堵,增加二次事故发生的可能性。
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): D我们的参赛报名号为(即为你队的电子文件名):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2013 年 9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):公共自行车服务系统优化模型摘要本模型的解决是为了提高公共自行车的使用率。
问题一,根据附件1中的公共自行车数据可统计出各站点20天中每天及累计的借车频次和还车频次(见于附件1),并得出各个站点累计的借车频次和还车频次进行从小到大的排序(见于附件2)。
根据附件1,可以得知每次用车的时长的统计,并根据此统计数据使用EXCEL软件描绘每次用车时长的分布图,通过此图,可以得知:用车时间在0—60分钟的次数较多,在20分钟附近较为突出,超过60分钟的次数较少。
车道被占用对城市道路通行能力的影响摘要本文主要研究交通事故占用车道对城市道路通行能力的影响.针对问题一,首先求出道路的基本通行能力,结合道路基本通行能力与定义的交通事故修正系数求得出事故发生后的实际通行能力.用SPSS软件采用Mann-Whitney U检验方法对事故发生前的实际通行能力值与事故发生后的实际通行能力值进行两独立样本检验,结果表明两者存在显著性差异.再作图观察实际通行能力值变化趋势,且对其分三个阶段进行描述,得到事故发生起伏期的实际通行能力变化很大,交通事故发生后实际通行能力在调整期相对稳定;稳定期曲线趋于平缓,实际通行能力基本稳定.针对问题二,由于在同一横断面发生的两次交通事故所占车道不同时,利用SPSS 软件对两起交通事故的实际通行能力值进行两配对样本检验,采用Wilcoxon配对秩检验方法得到:随时间的推移,两次事故发生后的实际通行能力的变化有显著性差异.然后计算两次事故稳定期车流量的比值为37%:63%,而右转与左转的流量比为38%:62%,说明左、右转流量的不同是造成两次交通事故对应的实际通行能力差异的直接原因.针对问题三,首先根据实际通行能力、上游车流量定义出拥堵系数;然后通过讨论拥堵系数与事故路段车辆排队长度之间的关系,确定了事故路段车辆排队长度与实际通行能力、事故持续时间以及上游车流量之间关系的积分模型;最后考虑到从视频中统计出的是离散型数据,因此将上述积分模型进行离散化处理,求出了事故发生后该路段部分时刻的排队长度的具体值,通过与视频中实际的排队长度进行比较,从而检验了模型的准确性.针对问题四,为了求出估算车队排队长度将到达上游路口的时间,建立了两个模型对其进行对比求解.从问题1得出的实际通行能力的数据可以拟合出其与时间的关系函数,进而得出不同时间段的实际通行能力值.模型A中,将上游车流量定为1500pcu/h,通过排队长度模型的求解得到排队长度达到140米时,持续时间为18min.模型B首先检验得到第一次交通事故发生后的上游车流量符合泊松分布.通过对实际情况的MATLAB实验仿真求出满足泊松分布的上游车流量在一小时内的随机分布数组,并将其代入排队长度模型进行求解,得到结果在1240s时,修正后的排队长度达到140米,即认为在事故持续时间20.5min左右时,车辆排队长度到达上游路口.通过对比得到,模型B较模型A更为贴近实际.关键词:两独立样本检验;Mann-Whitney U检验;Wilcoxon配对秩检验;拥堵系数;MATLAB仿真一、问题的重述车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象.由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞.如处理不当,甚至出现区域性拥堵.车道被占用的情况种类繁多、复杂,正确估算车道被占用对城市道路通行能力的影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据.视频1(附件1)和视频2(附件2)中的两个交通事故处于同一路段的同一横断面,且完全占用两条车道.请研究以下问题:1.根据视频1(附件1),描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程.2.根据问题1所得结论,结合视频2(附件2),分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异.3.构建数学模型,分析视频1(附件1)中交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系.4.假如视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,路段下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离.请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路口.二、问题的分析按照题目要求,本文主要研究因交通事故车道被占用对城市道路通行能力的影响.交通事故发生后,由于发生事故的车辆对自己所行驶车道造成堵塞,使得该横断面实际通行能力有很大变化;而对于不同交通事故发生后堵塞不同车道的情况,同一横断面交通事故所占车道不同,该横断面实际通行能力也会有差异;不同状况的交通事故所造成的道路堵塞,对路段车辆排队长度也有很大的影响.2.1问题一的分析问题一要求描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程.通过对附件视频1的观察,交通事故发生后,两辆相撞的车在第一时间对自己所行驶车道(第二、三车道)造成堵塞(附件3中所标注右转车道为车道一,直行车道为车道二,左转车道为车道三),仅剩唯一的第一车道可以通行.这导致事故所处横断面的实际通行能力有很大的变化.根据题目提供的视频附件,提取相关数据.通过对视频中所提供数据进行分析,统计以10秒为组距驶入驶出固定路段的车辆数.根据统计得到的数据,求出事故发生前道路的实际通行能力,并以此作为基准.再拟定事故发生后所处横断面的实际通行能力指标,求出从交通事故发生至事故撤离整个期间内的实际通行能力值.分析比较事故发生前的实际通行能力与事故发生后的实际通行能力的差异,说明发生事故后对道路通行能力的影响.再对事故发生后的各个实际通行能力值作散点图,观察其变化趋势,分阶段描述发生交通事故的整个期间,事故所处横断面实际通行能力的变化.2.2问题二的分析对于问题二中所要求的,分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异.根据两段附件视频可知,第一次交通事故的发生造成第二、三车道被堵塞,只有第一车道可以通行;第二次交通事故的发生造成第一、二车道被堵塞,只有第三车道可以通行.根据题目的附件三可知,第一车道为右转车道,通行流量比例为21%,第三车道为左转车道,通行流量比例为35%,即两条车道的通行流量是有差异的,就有可能造成两起交通事故实际通行能力的差异.为比较所占车道不同对实际通行流量的影响,首先按第一问求实际通行能力的思路进行求解,得到各时间段车流量的实际通行能力.然后进一步分析自发生事故起,两起交通事故的实际通行能力随时间推移有无显著性差异.对于产生差异的原因,从各车道流量不同的角度出发,说明车流量对实际通行能力的影响.2.3问题三的分析问题三中要求构建数学模型分析交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系.根据实际情况可知,当道路实际通行能力降低,而车流量较大时,道路车辆的排队现象越容易出现.车辆的排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量这三个变量均有很大关系.为研究该问题,建立用实际通行能力、上游车流量、事故持续时间表示排队长度的数学模型.事故发生后,道路横断面可供通车辆通行的车道减少,在很大程度上减弱了道路实际通行能力,使得车辆从路段上游驶入已知路段时的速度大于车辆驶出事故横断面的平均速度.当事故路段上游的车驶入该路段时发现路段内原有的车还没有驶离事故横断面,未驶出的车辆积少成多,就会导致该路段的拥堵.为此,定义一个拥堵系数来描述t时刻车辆进入拥堵队列的可能性大小.又由于本题道路的横断面有三条车道,且下游转道车流量的比例分别为21%,44%,35%,因此道路拥堵时,按照车流量比例最大的车道上的队列长度作为车辆排队长度计算,用微分确定单位时间内的车辆排队长度,最后建立积分模型得到排队长度的表达式,进行离散化处理,求出不同时间段的排队长度的具体值.2.4 问题四的分析问题四假设交通事故所处横断面距离上游路口变为140米,已知上游车流量和初始排队长度,要求估算车队排队长度将到达上游路口的时间.从问题1得出的实际通行能力的数据可以拟合出其与时间的关系函数,进而得出不同时间段的实际通行能力值.再分别建模模型A 、B 对此问题进行求解.模型A 中根据题意将上游车流量恒定为1500pcu/h ,再通过得到的实际通行能力值及排队长度进行求解.模型B 考虑到实际中路口上游车流量不可能在一小时内为一定值,分析在上游车流量为1500pcu/h 的情况下,车流量在一小时内连续的时间段内的车流量分布情况,所以先要得出在视频1中在交通事故发生后的上游车流量分布规律,进而求出1500pcu/h 的车流量在一小时的随机分布数组,并对实际情况的实验仿真.最后将各时间段实际通行能力值,上游车流量代入第三问模型的函数表达式中,得到各时间段的排队长度,计算第一次排队长度达到140米的时间.三、模型的假设1.假设题目中的发生的两个交通事故处于同一路段的同一横断面,且发生事故后完全占用两条车道;2.假设只考虑四轮及以上机动车、电瓶车的交通流量,且换算成标准车当量数;3.假设公交车及大巴车的的车长为标准小汽车车身长度的二倍;4.假设本文所研究的道路平坦,不考虑因发生交通事故的车辆造成道路堵塞以外的其它道路障碍.四、符号的说明1T :缺失数据的第一时间段;n T :缺失数据的第n 时间段 (42或 n );1N :驶入等待通行区域的车辆数;2N :驶出等待通行区域的车辆数;3N :标志性车辆前至事故发生地点的车辆数;4N :标志性车辆至等待通行区域的上游边界的车辆数;N : 缺失数据的补全值;11N :事故发生前驶入等待通行区域的车辆数;12N :事故发生前驶出等待通行区域的车辆数;13N :事故发生前等待通行区域内车辆数;11'N :事故发生前上一时间段驶入等待通行区域的车辆数;12'N :事故发生前上一时间段驶出等待通行区域的车辆数;13'N :事故发生前上一时间段等待通行区域内车辆数;21N :事故发生后驶入等待通行区域的车辆数;22N :事故发生后驶出等待通行区域的车辆数;N:事故发生后等待通行区域内车辆数;23'N:事故发生后上一时间段驶入等待通行区域的车辆数;21'N:事故发生后上一时间段驶出等待通行区域的车辆数;22'N:事故发生后上一时间段等待通行区域内车辆数;23U:正常通行时间内所处横断面的实际通行能力;1U:在交通事故影响下所处横断面的实际通行能力;2T:单位时间;hQ:基本通行能力;U:事故后实际通行能力;l:等待通行区域车辆排队长度;W:路段上游车流量;N:单位时间最大车流量;t:事故持续时间;:拥堵系数;v:汽车通过事故横断面的平均速度.五、模型的建立与求解5.1问题一:事故发生至撤离期间断面通行能力的变化问题一要求描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程.针对此问题,具体求解分为以下三个步骤:Step1:根据统计得到的数据,求出事故发生前道路的实际通行能力;Step2:拟定事故发生后所处横断面实际通行能力指标,求出从交通事故发生至发生事故车辆撤离整个期间内的实际通行能力;Step3:分析比较以上两种情况的实际通行能力,并对其进行差异性检验;Step4:对事故发生后的实际通行能力值作图,通过适当的分析,分阶段描述在各不同阶段事故所处横断面实际通行能力的变化过程.5.1.1模型的准备1.通过视频统计数据为进行严谨详细的问题求解,首先从题目所给出的视频附件中统计详细数据.附件1中的视频记录了2013年2月28日16:38:39~17:03:50期间某路段的道路通行情况,视频共26分58秒,包括发生交通事故前的第一段正常通行时间,发生交通事故至撤离现场期间在事故影响下的实际通行时间,以及撤离后的第二段正常通行时间.第一段正常通行时间从16:38:39开始,大约持续了四分钟;发生交通事故至撤离现场时间为16:42:32~17:01:21,大约持续了19分钟.通过观察视频1中道路上车辆行驶的情况,将事故发生地点至其上游120米处划为等待通行区域的规定路段,由于统计每秒进出等待通行区域车辆数的过程时间太短,不利于统计数据,因此划定以10秒为统计时间间距,选定进出等待通行区域的参考系,根据城市道路工程设计规范内的车辆换算表,可知小汽车为1辆标准车辆,大客车换算为2辆标准车]1[.以此分别统计出每10秒驶入规定路段的车辆数及同时间段内驶出该规定路段的车辆数.2.缺失数据处理(1)由于视频1中事故发生后16:49:40~16:50:10与16:54:00~16:54:10两个时间段的影像被剪去,造成数据缺失.本文通过以标志性车辆为参考系,统计缺失数据的时间段中两个时间点1T 与n T 画面中出现的车辆数3N 与4N ,3N 为标志性车辆前至事故发生地点的车辆数,4N 为标志性车辆至等待通行区域的上游边界的车辆数. 其中1T 至n T 共经过了n 个时间间距.为补全数据,本文通过对统计的两时间点内的车辆数进行做差求平均值,得出缺失的数据均为均值N :n N N 34N -=. 补全数据结果如下:表1 补全数据表5.1.2模型的建立与求解道路通行能力是指道路上某一点某一车道或某一横断面处,单位时间内可能通过的最大交通实体(车辆或行人)数,用辆/h 或用辆/昼夜或辆/秒表示,车辆多指小汽车,当有其它车辆混入时,均采用等效通行能力的标准车辆(小汽车)为单位(pcu ). 影响道路通行能力的主要因素是道路条件、交通条件和交通外环境等.基本通行能力是指在理想的道路、交通、控制和环境条件下,理论上所能通行的最大小时交通量.实际通行能力是指在设计或评价某一具体路段时,根据该设施具体的公路几何构造、交通条件以及交通管理水平,按实际公路条件、交通条件等进行相应对基本通行能力进行修正后的小时交通量]1[.实际通行能力的计算是假定没有偶然事件发生的情况下进行的.实际交通系统中,路段可以服务的最大交通量除了受车道宽度、侧向净空等确定性因素以外,还受许多随机性因素影响,如交通事故,自然灾害、恶劣天气、道路维护等]2[.由于本文研究的对象是同一条道路,并且车道的宽度均为3.25m ,以及其他确定性因素均相同.由于研究的时间相差不大(26分钟),所以自然灾害、恶劣天气、道路维护等随机性因素均相同.因此,此路段的实际通行能力只受交通事故的影响.模型的具体建立求解过程如下:1.实际通行能力的确定实际通行能力是由道路的基本通行能力乘上若干个对其造成影响的修正系数而得到的,由于此路段的实际通行能力只受交通事故的影响,故设定交通事故修正系数来对发生交通事故后道路基本通行能力进行修正,修正后的基本通行能力即为发生交通事故后道路的实际通行能力.(1)确定交通事故修正系数f通过对视频1中事故发生至撤离的数据采集,得到了每10秒驶入等待通行区域的车辆数1N 以及驶出的车辆数2N 的数据,进而分别统计出进入等待通行区域的车流量与驶出等待通行区域的车流量.由统计结果可发现,当道路拥堵严重时,从上游路口进入该路段的车辆数会在很大程度上减少(初步分析出现这种状况的原因是由于红绿灯以及车主主观对道路的判断放弃从该路段上通行),而进出路段的车流量之比却很大,与实际通行能力相悖,因此无法直接用进出路段的车流量之比来表示事故发生后道路的实际通行能力.为此,结合道路实际情况以及上述统计结果,本文以每10秒内驶出等待通行区域的车辆数比上相同时间段等待通行区域内的车辆数来反映事故发生后的实际通行能力.处于等待通行区域的车辆越多,则实际通行能力越小,联系视频中出现的情形,当道路拥堵严重时,进入该路段的车辆数会减少,反映事故发生后的实际通行能力并不受进入车辆数的影响,而取决与等待的车辆数,因此此指标克服了上述矛盾的情况.交通事故前的第一段正常通行时间内的交通事故修正系数用1f 表示,驶入等待通行区域的车辆数为11N ,驶出此区域的车辆数为12N ,在区域内停留的车辆数为13N ,上一时间段的相应指标量分别表示为11'N ,12'N ,13'N ,定义1f 为:1312111213111'''N N N N N N f -+==; 设发生交通事故至撤离现场期间在事故影响下所处横断面的实际通行能力用2f 表示,驶入等待通行区域的车辆数为21N ,驶出的车辆数为22N ,在区域内停留的车辆数为23N ,上一时间段的相应指标量分别表示为21'N ,22'N ,23'N ,定义2f 为:2322212123212'''N N N N N N f -+==; 由于事故发生后某一时间段仍可能出现等待通行区域内的车辆数为0,即023=N .又因为22N 可能为0时,其交通事故修正系数求得为0,但事实上此处有两种可能:一是因为堵塞严重无车通过,交通事故修正系数为0;二是因为等待通行区域内无车通过,交通事故修正系数为1(表示正常通过),故产生歧义,所以采用加“1”的方法进行处理.采用加“1”法对实际通行能力影响较小,即23N 、22N 均加1后,再求两者之间的比仍可作为交通事故修正系数.因此本文采取加“1”法进行修正其交通事故系数,既消除歧义,又反映了实际通行能力.经过加“1”法修正后:事故发生前修正系数:1'''111'1312111213111+-++=++=N N N N N N f ; 事故发生后修正系数: 1'''111'2322212123212+-++=++=N N N N N N f . (2)确定基本通行能力Q由附件3图中可知,道路同一方向横断面上的三条车道,每条车道的宽度为固定的3.25m,根据查阅相关资料,宽度为3.25m 的车道最大通行速度为60km/h,当道路通行速度为60km/h 时,查表可知该段道路的一般基本通行能力为1800pcu/h ]3[.由于基本通行能力是指在理想状态下,理论上所能通行的最大小时交通量,为进一步确定已知道路基本通行能力,根据基本通行能力定义,道路基本通行能力为道路理想状态下单位时间h T 内,可能通过的最大车辆数N ,得到计算已知道路基本通行能力的公式:)/(h pcu T N Q h=; 设事故发生前没有任何堵塞的情况下道路为理想状态,且在此时间段内(不考虑堵车),通过该路段的车辆中,根据发生交通事故前道路上行驶的车流量统计数据,每10秒通过规定的120m 路程的车辆最大值为5辆,代入公式计算得:)(180********h / pcu ss pcu T N Q h===; (3)求解发生事故后实际通行能力U 根据相关资料]2[由基本通行能力与修正系数计算实际通行能力的关系公式为:f Q U ⨯=.2.事故发生前后实际通行能力的差异分析比较以上两组统计值,即未发生交通事故时的实际通行能力值和发生交通事故期间的道路实际通行能力值.由于视频所给出的两个时期时间长短不一致,故统计出的数值个数不同,并且我们对其总体分布不甚了解,两独立样本的非参数检验是在对总体的分布不了解的情况下,通过对独立样本的Mann-Whitney U 检验分析来推断样本来自的两个总体的分布等是否存在显著性差异的方法]4[.因此本文通过SPSS 采用两独立样本检验法来对这两组数据样本进行差异性检验(具体操作步骤及详细结果见附录1):表2 发生交通事故前后实际通行能力独立样本检验结果表检验统计量a实际通行能力Mann-Whitney U 344.500Wilcoxon W 7484.500Z -5.170渐近显著性(双侧) .000a. 分组变量: 是否发生车祸由上表知,采用Mann-Whitney U 检验,渐近显著性(双侧)值为0.000,小于0.01,因此拒绝原假设,认为发生车祸的前后的实际通行能力指标存在极显著差异.得出结论:由于突发的交通事故,对原来正常的道路通行能力有显著性影响,对比道路正常通行能力和事故期间的实际通行能力,可知交通事故的发生使得道路通行能力明显下降.3. 结果分析对事故发生后的实际通行能力值作图,并分阶段描述在各不同阶段事故所处横断面实际通行能力的变化过程.根据统计出的交通事故发生至事故撤离整个期间内的实际通行能力值,做出散点图如下:图1 第一起交通事故发生后实际通行能力变化图由图像观察可得,事故发生初期0~200秒的实际通行能力变化很大,定为交通事故发生后实际通行能力的起伏期;200~400秒相对稳定可设为交通事故发生后实际通行能力的调整期;400秒以后曲线趋于平缓,事故发生后的实际通行能力趋于稳定.对于事故发生初期实际通行能力起伏较大的原因,根据视频的显示,初步分析其原因为红绿灯的变化及上下班高峰期的影响,而对于后期实际通行能力趋于稳定的原因,是由于出现了交通堵塞,开始进行排队通过,且随着排队的车辆数目量增多,红绿灯对平稳期的通行影响逐渐较小.4.红绿灯的影响通过上诉的结果分析,可知红绿灯对实际通行能力有一定的影响,本文将以红绿灯的相位时间为统计时间间距对视频1中进出等待通行区域的车辆数进行统计.选定进出等待通行区域的参考系,以此分别统计出每30秒进入规定路段的车辆数及同时间段内驶出该规定路段的车辆数.将进入规定的等待通行区域对应的时间化为1,2,3, (26)做出实际通行能力与对应时间的关系图,如下:图2 实际通行能力与红绿灯对应时间的关系图通过对实际通行能力与对应时间的关系图的观察,可知在1~16的时间内,实际通行能力呈起伏状,红绿灯的相位周期为1分钟,整个阶段内红灯为峰值,绿灯为谷值.而在17~26的时间内,开始进行排队,实际通行能力趋于稳定,因此红绿灯对事故发生后前期有较显著变化,而对事故发生后末期并不影响.5.2问题二:交通事故所占车道不同对通行能力的影响问题二要求分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异.针对此问题,具体求解为以下三个步骤:Step1:拟定发生事故后事故所处横断面实际通行能力,求出从交通事故发生至事故撤离整个期间内的实际通行能力;Step2:对两次交通事故发生后,随时间的推移,对相同时段的道路实际通行能力值用SPSS软件两配对样本检验进行显著性差异分析;Step3:画图比较分析,说明两次交通事故发生所占车道不同对该横断面实际通行能力影响的差异.5.2.1模型的准备为对问题进行严谨详细的求解,首先从题目所给出的视频附件中统计详细数据.针对问题中所提出的对比两起事故在发生之后对道路实际通行能力的影响,我们仅对发生交通事故至撤离现场这一阶段进行数据统计.发生交通事故至撤离现场阶段的时间为。
2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要本文主要研究车道被占用对城市道路通行能力的影响并建立了相应的数学模型。
针对问题一,考虑到交通信号灯的周期,我们选择1分钟为周期,结合不同车辆的标准车当量的折算系数,求出每个采样点的交通量,通过MATLAB作图,从定性方面对道路通行能力进行分析,然后通过基本通行能力和4个修正系数建立动态通行能力的模型。
图像显示,事故发生后(采样点5附近),实际通行能力下降至一个较低水平,并且横断面处的实际能力变化过程呈先下后上的波形变化,在事故解决(第20个采样点)以后,由图像看出实际通行能力持续上升。
针对问题二,利用问题一建立的模型,结合视频二,比较交通事故所占不同车道时横断面的实际通行能力,可以发现二者实际通行能力变化趋势大致相同,但视频二实际通行能力大于视频一实际通行能力。
可见占用车流量大的车道使道路通行能力降低更多。
针对问题三,首先我们建立单车道排队车辆数目的积分模型,单个车道的滞留车辆为上游车流量和实际通行能力的差值。
我们以30s为一个时间段,对视频一中的车流量进行统计,得到横截面处每个监测段的实际通行能力。
本题要求考虑三车道,总体排队长度不容易通过积分模型确定,所以我们将队列长度问题转化为车辆数目问题,通过视频资料统计120米对应24辆车,据此关系转换,从而得到车辆排队长度与事故横断面实际通行能力、事故持续时间和上游车流量的关系。
针对问题四,在对问题3研究的基础上,根据问题3建立的数学模型,建立起某一段时间间隔车辆排队的长度,然后,通过求得的关系得到当排队长度为140m的时候所对应的时间段,由于每段时间间隔设为30s,因此,可以求得排队长度到达上游时用的时间为347.7273s。
关键词:交通事故车道占用通行能力排队论一、问题的重述车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。
2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话): &&& 所属学校(请填写完整的全名):东北电力大学参赛队员 (打印并签名) :1. 吴泽伟楚鑫指导教师或指导教师组负责人 (打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2013 年 9 月 15 日赛区评阅编号(由赛区组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要在现代这个交通拥挤非常严重的时代,突发的交通事故更是加剧了交通拥挤的程度,严重影响道路交通的运行效率。
确定交通事故影响范围及其对道路交通通行能力的影响程度,对于交通管理部门制定合理、有效的拥挤疏导措施具有非常重要意义。
针对这个问题,我们可以在做出合理假设的基础上,通过对附件中的视频数据进行分析归纳,综合考虑交通事故对道路通行能力的影响因素,并将各因素之间的关系进行分析总结,以期能够解决实际问题1、根据视频1(附件1),观察交通事故发生后车辆通过事故横断面的实际车流量随着时间变化的情况,进行数据的收集;结合交通信号灯的变化,利用MA TLAB对视频数据进行处理,实现道路实际通行能力的图像以及函数拟合,进而描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。
2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):吉林医药学院参赛队员(打印并签名) :1. 于邦文2. 薛盈军3. 杨国庆指导教师或指导教师组负责人(打印并签名):霍俊爽(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2013 年 9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要本文通过对城市中车道因交通事故被占用问题的分析,探讨了事故所处道路横断面的实际通行能力的变化过程,并依据事故路段车辆排队长度与实际通行能力、事故持续时间、路段上游车辆流量之间的关系,最后针对各个问题建立模型并求解。
2013高教社杯全国大学生数学建模竞赛A题2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》。
我们完全明白,在竞赛开始后参赛队员不能以任何方式与队外的任何人研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料,必须按照规定的面的车辆数。
实际通行车流量的采集与处理视频1中出现车辆多种多样,要统计车流量数据,需先统一车流标准,把视频中出现的车辆进行折算,以小轿车做为标准,对各个型号车辆进行折算[2],折算系数如表1所示。
表1 车辆折算系数附件中出现汽车小轿车中型车大客车车辆折算系数在事故发生前,道路的通行能力足以应对上游车流量,当发生事故时,事故点上游共有10辆小轿车与5辆大客车,车流量为20pcu。
之后一分钟(16:42:32-16:43:32),上游又有车流量21pcu,但只通过了21pcu,说明造成了交通拥堵和排队情况。
“附件5”可知,相位时间为30s,红灯时间为30s,即60s为一个周期,进行统计时间周期也为60s,不会造成因交通灯引起的误差。
实际通行流量是指折算后通过事故横断面的车流,上游车流量是指折算后从各个路口驶入事故横断面的车流。
对附件1中事故横断面处的车流量进行统计,得出实际通行车流量情况,并统计横断面上游的车流量,在统计过程中发现视频并不是完全连续的,例如在16:49:40时出现了突变,直接到16:50:04,跳跃间隔为24s,但于堵车情况较重,可以根据车流量守恒原则和车辆追踪,统计出通过横断面处的车流量及上游车流量。
但16:56:04等时间,跳跃时间较长,近2分钟,无法精确统计,如表2处“空缺”所示。
在17:00:07到17:01:20时视频发生跳变,在此期间事故车辆驶离道路,之后为事故恢复时间。
为了描述事故发生开始到车辆离开车道全程的实际通行能力变化情况,将视频中空缺数据通过灰色预测(程序见附录)进行填补,结果如表2所示。
道路上不断增加的交通流经常导致拥挤。
拥挤产生延误、降低流率、带来燃油损耗和负面的环境影响。
为了提高道路系统的效率,国内外许多研究者一直致力于车流运行模型的研究。
Daganzo[1]提出了一种和流体力学LWR 模型相一致的元胞传输模型,这种模型能用来模拟和预测交通流的时空演化,包括暂时的现象,如排队的形成、传播、和消散。
Heydecker 和Addison[2]通过研究车速和密度的因果关系分析和模拟了在变化的车速限制下的交通流。
Jennifer 和Sallissou[3]提出了一种混合宏观模型有效地描述了路网的交通流。
然而,拥挤也会由交通异常事件引起。
交通异常事件定义为影响道路通行能力的意外事件[4],如交通事故、车辆抛锚、落物、短期施工等,从广义角度看,还应包括恶劣天气与特殊勤务等。
异常事件往往造成局部车道阻塞或关闭,形成交通瓶颈,引起偶发性拥挤,这已经逐渐成为高速道路交通拥挤的主要原因[5],越来越多地受到研究者们的重视。
例如M. Baykal-Gursoy[6]等人提出了成批服务受干扰下的稳态M/M/c 排队系统模拟了发生异常事件的道路路段的交通流。
Chung[7]依据韩国高速公路系统监测的准确记录的大型交通事故数据库提出了一种事故持续时间预测模型。
当然,这些研究最终都是为了帮助缓解异常事件引起的交通拥挤。
交通异常事件发生后,事发地段通行能力减小,当交通需求大于事发段剩余通行能力时,车辆排队,产生延误,行程时间增加[8],交通流量发生变化。
本文以高速公路基本路段发生交通事故为例,主要分析了交通事故发生后不同时间段内事故点及其上游下游路段交通流量的变化,用于以后进一步的突发事件下交通流预测工作。
1 交通事故影响时间分析由于从交通事故发生到检测到事故、接警、事故现场勘测、处理、清理事故现场恢复交通,以及恢复交通后车辆排队不再增加都需要一定的时间。
这部分时间主要由三部分构成: 第一部分是事故发生到警察到达现场的时间T1; 第二部分是交通事故现场处理时间T2,由现场勘测、处理到事故族除、恢复交通; 第三部分是交通事故持续影响时间T3,这部分时间从恢复事故现场交通开始,到事故上游车辆排队不再增加,即排队开始减弱[9]。