专题6.1 任意角的三角函数(精讲精析篇)(原卷版)
- 格式:doc
- 大小:1.19 MB
- 文档页数:9
5.2.1 三角函数的概念【知识点梳理】 知识点一:三角函数定义设α是一个任意角,它的终边与半径是r 的圆交于点(,)P x y ,则22r x y +,那么: (1)y r 做α的正弦,记做sin α,即sin y r α=; (2) x r 叫做α的余弦,记做cos α,即cos x rα=; (3)y x叫做α的正切,记做tan α,即tan (0)yx x α=≠.知识点诠释:(1)三角函数的值与点P 在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离22r x y +,那么22sin x y α=+22cos x y α=+,tan yxα=. (2)三角函数符号是一个整体,离开α的sin 、cos 、tan 等是没有意义的,它们表示的是一个比值,而不是sin 、cos 、tan 与α的积.知识点二:三角函数在各象限的符号 三角函数在各象限的符号:在记忆上述三角函数值在各象限的符号时,有以下口诀:一全正,二正弦,三正切,四余弦. 知识点诠释:口诀的含义是在第一象限各三角函数值为正;在第二象限正弦值为正,在第三象限正切值为正,在第四象限余弦值为正.知识点三:诱导公式一由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等,由此得到诱导公式一: sin(2)sin k απα+= cos(2)cos k απα+=tan(2)tan k απα+=,其中k Z ∈注意:利用诱导公式一,可以把求任意角的三角函数值,转化为求02π~(或0360︒︒~)范围内角的三角函数值.知识点四、特殊角的三角函数值 0° 30°45°60°90°120°135°150°180°270°6π 4π 3π 2π 23π 34π 56π π32π sin α 0 12 22 3213222 12 0 1-cos α132 2212 012- 22- 32- 1- 0tan α0 331 33-1- 33- 0【题型归纳目录】 题型一:三角函数的定义 题型二:判断三角函数值的符号 题型三:确定角所在象限 题型四:诱导公式(一)的应用 题型五:圆上的动点与旋转点 【典型例题】题型一:三角函数的定义例1.(2022·陕西·蒲城县蒲城中学高三阶段练习(文))设α是第二象限角,(),8P x 为其终边上的一点,且4sin 5α,则x =( ) A .3- B .4-C .6-D .10-例2.(2022·北京市西城外国语学校高三阶段练习)角α的终边上有一点(2,2)P -,则sin α=( ) A .22B .22-C .2D .1例3.(2022·河南·高三阶段练习(文))已知角α的终边经过点()()4,30P m m m -≠,则2sin cos αα+的值为( ) A .35 B .25C .1或25-D .25或25-变式1.(2022·山西大附中高三阶段练习(文))已知角x 的终边上一点的坐标为55sin ,cos 66ππ⎛⎫⎪⎝⎭,则角x 的最小正值为( ) A .56πB .53π C .6π D .3π变式2.(2022·江西·崇仁县第二中学高三阶段练习(文))已知点2π(cos ,1)3P 是角α终边上一点,则cos α=( )A 5B .5C 25D .3变式3.(2022·全国·高三专题练习)已知角α的终边经过点()3,4P -,则sin cos 11tan ααα--+的值为( )A .65-B .1C .2D .3变式4.(2022·全国·高三专题练习)已知角θ的终边经过点(,3)M m m -,且1tan 2θ=,则m =( ) A .12B .1C .2D .52变式5.(2022·全国·高一课时练习)已知顶点在原点,始边与x 轴非负半轴重合的角α的终边上有一点()3,P m ,且()2sin 0m α=≠,求m 的值,并求cos α与tan α的值.变式6.(2022·全国·高一课时练习)已知角α的终边在函数()102y x x =->的图像上,求sin α,cos α的值.【方法技巧与总结】利用三角函数的定义求值的策略(1)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种:方法一:先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值.方法二:在α的终边上任选一点(,)P x y ,P 到原点的距离为r (0r >).则sin y rα=,cos xr α=.已知α的终边求α的三角函数值时,用这几个公式更方便.(2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论. (3)若终边在直线上时,因为角的终边是射线,应分两种情况处理. 题型二:判断三角函数值的符号例4.(2022·全国·高一课时练习)已知α为第二象限角,则( ) A .sin 0α< B .tan 0α> C .cos 0α< D .sin cos 0αα>例5.(2022·湖北·高一阶段练习)下列各式的符号为正的是( ) A .cos3 B .5ππsin cos 36⎛⎫- ⎪⎝⎭C .sin2cos2-D .7πtan8例6.(2022·甘肃·静宁县第一中学高一阶段练习(文))sin 4tan7⋅的值( ) A .大于0 B .小于0 C .等于0 D .不大于0变式7.(2022·江西省万载中学高一期中)设02πα≤<,如果sin 0α<且cos20α<,则α的取值范围是( ) A .π<α<3π2B .3π2<α<2π C .π4<α<34π D .5π4<α<7π4【方法技巧与总结】三角函数值在各象限内的符号也可以用下面的口诀记忆:“一全正二正弦,三正切四余弦”,意为:第一象限各个三角函数均为正;第二象限只有正弦为正,其余两个为负;第三象限正切为正,其余两个为负;第四象限余弦为正,其余两个为负.题型三:确定角所在象限例7.(2022·全国·高一课时练习)点()cos2018,sin 2018P ︒︒所在的象限是( ) A .一B .二C .三D .四例8.(2022·福建·莆田二中高三阶段练习)设α角属于第二象限,且cos cos22αα=-,则2α角属于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限例9.(2022·陕西汉中·高一期中)若cos tan 0αα<,且sin cos 0αα<,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角变式8.(2022·全国·高三专题练习)若sin 0θ<且tan 0θ<,则角θ所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限变式9.(2022·江苏·无锡市教育科学研究院高一期末)已知角α的顶点为坐标原点,始边为x 轴的非负半轴,若点(sin ,tan )P αα在第四象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限变式10.(2022·辽宁·高一期末)坐标平面内点P 的坐标为()sin5,cos5,则点P 位于第( )象限. A .一 B .二 C .三 D .四【方法技巧与总结】 确定角所在象限的步骤(1)判断该角的某些三角函数值的符号;(2)根据角的 三角函数值的符号,确定角所在象限. 题型四:诱导公式(一)的应用例10.(2022·天津市红桥区教师发展中心高一期末)17sin 4π=____________.例11.(2022·广西·桂林十八中高一开学考试)13sin 3π=_________.例12.(2022·湖南·高一课时练习) 17tan()3π-=______.变式11.(2022·云南民族大学附属中学模拟预测(理))()cos 300-︒=______.变式12.(2022·湖南·()3tan330sin 60︒+︒+-︒.【方法技巧与总结】利用诱导公式一化简或求值的步骤(1)将已知角化为·360k α︒+(k 为整数,0360α︒≤<︒)或2k πβ+(k 为整数,02βπ≤<)的形式.(2)将原三角函数值化为角α的同名三角函数值.(3)借助特殊角的三角函数值或任意角的三角函数的定义达到化简求值的目的. 题型五:圆上的动点与旋转点例13.(2022·湖南益阳·高一期末)在直角坐标系xOy 中,一个质点在半径为2的圆O 上,以圆O 与x 正半轴的交点0P 为起点,沿逆时针方向匀速运动到P 点,每5s 转一圈,则2s 后0P P 的长为( ) A .42sin 5πB .42cos 5πC .24sin 5π D .24cos5π例14.(2022·全国·高一专题练习)点P 从()1,0出发,沿单位圆按逆时针方向运动263π弧长到达Q 点,则Q 的坐标为( ) A .13,22B .312⎛⎫- ⎪ ⎪⎝⎭C .13,2⎛- ⎝⎭D .321⎛⎫ ⎪ ⎪⎝⎭例15.(2022·江西师大附中高一期末)在平面直角坐标系xOy 中,若点P 从()2,0出发,沿圆心在原点,半径为2的圆按逆时针方向运动43π弧长到达点Q ,则点Q 的坐标是( ) A .(3- B .(1,3--C .(3D .(1,3-变式13.(2022·江西·模拟预测(文))已知单位圆上第一象限一点P 沿圆周逆时针旋转3π到点Q ,若点Q 的横坐标为12-,则点P 的横坐标为( )A.13B.12C2D3变式14.(2022·全国·高三专题练习)如图所示,滚珠P,Q同时从点(2,0)A出发沿圆形轨道匀速运动,滚珠P按逆时针方向每秒钟转π3弧度,滚珠Q按顺时针方向每秒钟转6π弧度,相遇后发生碰撞,各自按照原来的速度大小反向运动.(1)求滚珠P,Q第一次相遇时所用的时间及相遇点的坐标;(2)求从出发到第二次相遇滚珠P,Q各自滚动的路程.【方法技巧与总结】利用三角函数的定义求解【同步练习】一、单选题1.(2022·全国·高三专题练习)已知角α的终边与单位圆交于点132P⎛-⎝⎭,则sinα的值为()A.3B.12-C3D.122.(2022·江西赣州·高一期末)在3世纪中期,我国古代数学家刘徽在《九章算术注》中提出了割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”这可视为中国古代极限观念的佳作.割圆术可以视为将一个圆内接正n边形等分成n个等腰三角形(如图所示),当n越大,等腰三角形的面积之和越近似等于圆的面积.运用割圆术的思想,可得到sin9︒的近似值为(π取近似值3.14)()A .0.039B .0.157C .0.314D .0.0793.(2022·四川省平昌中学高一阶段练习)如图,角α的终边与单位圆O 的交点34(,)55A -,则4cos 2sin 5cos 3sin αααα-=+( )A .203B .23C .45D .203-4.(2022·全国·高三专题练习)已知角α的终边与单位圆交于点1,3P m ⎛⎫- ⎪⎝⎭,则sin α=( )A .223B .13C .22D .13±5.(2022·江西上饶·高一阶段练习)赵爽是我国古代数学家、天文学家,约公元222年,赵爽在注解《周髀算经》一书时介绍了“勾股圆方图”,亦称“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的大正方形.如图所示的是一张弦图,已知大正方形的面积为100,小正方形的面积为20,若直角三角形较小的锐角为α,则sin αcos α的值为( )A .15B .25C 5D 256.(2022·北京市第五中学高一期末)在直角坐标系xOy 中,已知43sin ,cos 55αα=-=,那么角α的终边与单位圆O 坐标为( ) A .34,55⎛⎫- ⎪⎝⎭B .43,55⎛⎫- ⎪⎝⎭C .34,55⎛⎫- ⎪⎝⎭D .43,55⎛⎫- ⎪⎝⎭7.(2022·江西·景德镇一中高一期中)已知α是第二象限角,则( ) A .2α是第一象限角 B .sin02α>C .sin 20α<D .2α是第三或第四象限角8.(2022·四川省内江市第六中学高一阶段练习(理))在平面直角坐标系xOy 中,P (x ,y )(xy ≠0)是角α终边上一点,P 与原点O 之间距离为r ,比值rx叫做角α的正割,记作sec α;比值r y 叫做角α的余割,记作csc α;比值xy叫做角α的余切,记作cot α.四名同学计算同一个角β的不同三角函数值如下:甲:5sec 4β=-;乙:5csc 3β=;丙:3tan 4β=-;丁:4cot 3β=.如果只有一名同学的结果是错误的,则错误的同学是( ) A .甲 B .乙C .丙D .丁二、多选题9.(2022·江苏·南京市第一中学高一阶段练习)已知α是第一象限角,则下列结论中正确的是( ) A .sin20α>B .cos20α>C .cos02α> D .tan02α>10.(2022·全国·高一单元测试)下列结论正确的是( ) A .76π-是第三象限角 B .若圆心角为3π的扇形的弧长为π,则该扇形的面积为32πC .若角α的终边上有一点()3,4P -,则3cos 5α=-D .若角α为锐角,则角2α为钝角11.(2022·辽宁朝阳·高一阶段练习)已知角θ的终边经过点(2,3)--,且θ与α的终边关于x 轴对称,则( ) A .21sin 7θ=-B .α为钝角C .27cos α= D .点(tan θ,tan α)在第四象限12.(2022·全国·高一)以原点为圆心的单位圆上一点P 从()1,0出发,沿逆时针方向运动133π弧长到达点Q ,则点Q 的坐标不可能的是( )A .312⎛⎫- ⎪ ⎪⎝⎭B .312⎫⎪⎪⎝⎭C .132⎛ ⎝⎭D .13,2⎛ ⎝⎭三、填空题13.(2022·上海理工大学附属中学高一期中)角α的终边上有一点()()3,40P a a a ->,则sin α的值为______;14.(2022·全国·高一课时练习)已知角α的终边在射线3(0)y x x =≥上,则角α的正弦值为______,余弦值为______.15.(2022·全国·高一课时练习)已知角α的终边上有一点()3,P m -,且2sin 4α=,则m 的值为______.16.(2022·全国·高一课时练习)若角θ是第四象限角,则sin cos tan sin cos tan y θθθθθθ=++=______. 17.(2022·江苏盐城·高一期末)已知角α为第一象限角,其终边上一点(),P x y 满足()()222ln 2ln x y x y -=+,则2cos α-sin α=________.四、解答题18.(2022·江苏·高一专题练习)已知角α的终边经过点()()4,30P a a a -≠,求2sin cos αα+的值.19.(2022·江苏·高一专题练习)已知α角的终边经过点()3,P m ,且满足2sin 4m α=. (1)若α为第二象限角,求sin α值; (2)求cos tan αα+的值.20.(2022·全国·高一课时练习)已知11sin sin αα=-,且lg cos α有意义. (1)试判断角α是第几象限角;(2)若角α的终边上有一点3,5M m⎛⎫⎪⎝⎭,且1OM=(O为坐标原点),求实数m的值及sinα的值.21.(2022·全国·高一课前预习)计算下列各式的值:(1)tan405sin450cos750︒-︒+︒;(2)t 15s25ann3i4ππ⎛⎫-⎝+⎪⎭.。
高一数学任意角的三角函数【本讲主要内容】任意角的三角函数(三角函数的定义、单位圆与三角函数线)【知识掌握】 【知识点精析】1. 任意角的三角函数的定义:设P (x ,y )是角α的终边上任意一点,|OP|=r (r >0),则sin cos αα==y r xr, tan cot αα==y x x y , sec csc αα==r x r y, 正弦、余弦、正切、余切、正割、余割分别可以看成是从一个角的集合到一个比值的集合的映射,它们都是以角为自变量,以比值为函数值的函数,这六个函数统称为三角函数。
注意:①一个角的三角函数值只与这个角的终边位置有关,而与P 点的选取无关。
②为计算方便,我们把半径为1的圆(单位圆)与角的终边的交点选为P 点的理想位置。
2. 三角函数的定义域、值域确定三角函数的定义域时,要抓住分母不为0这一关键,当角的终边在坐标轴上时,点P 的坐标中必有一个为0。
3. 三角函数值符号记忆口诀为:“一全正,二正弦,三两切,四余弦”。
(注:余割和正弦互为倒数关系,正割和余弦互为倒数关系。
) 4. 诱导公式(一):根据三角函数的定义知,角的三角函数值是由角的终边位置确定的,所以终边相同的角的同一三角函数的值相等。
即:sin()sin ()cos()cos ()tan()tan ()()k k Z k k Z k k Z ²°²°²°诱导公式一360360360+=∈+=∈+=∈⎫⎬⎪⎭⎪ααααααsin()sin ()cos()cos ()tan()tan ()()()222k k Z k k Z k k Z πααπααπαα+=∈+=∈+=∈⎫⎬⎪⎭⎪诱导公式一弧度制用途:使用诱导公式(一),可以把求任意角的三角函数值问题化为0~2π间三角函数值,具体求法是将任意角化为2k π+α,()k Z ∈,其中0≤α<2π,然后利用诱导公式(一)化简,再求值。
专题6.1任意角的三角函数(精讲精析篇)提纲挈领点点突破热门考点01 象限角及终边相同的角(1)任意角、角的分类:①按旋转方向不同分为正角、负角、零角.②按终边位置不同分为象限角和轴线角.(2)终边相同的角:A. B.C. D.【答案】B【解析】由题意得,与终边相同的角可以表示为.故选B.【方法技巧】象限角的两种判断方法(1)图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角.【典例2】若α是第三象限的角, 则2απ-是 ( )A. 第一或第二象限的角B. 第一或第三象限的角C. 第二或第三象限的角D. 第二或第四象限的角 【答案】B【解析】α是第三象限角, 322,2k k k Z πππαπ∴+<<+∈, 3224k k παπππ∴+<<+, 31,422422k k k k παπππππππαπ∴--<-<--∴-+<-<-+,故当k 为偶数时, 12πα-是第一象限角;故当k 为奇数时, 12πα-是第三象限角,故选B.【总结提升】象限角与轴线角(终边在坐标轴上的角)的集合表示 (1)象限角:(2)轴线角:热门考点02 (1)弧度制:①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr ,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制.比值lr与所取的r 的大小无关,仅与角的大小有关.(2)弧度与角度的换算:360°=2π弧度;180°=π弧度.A .15B .16C .17D .18 【答案】B 【解析】因为圆心角为,弦长为,所以圆心到弦的距离为半径为40,因此根据经验公式计算出弧田的面积为,实际面积等于扇形面积减去三角形面积,为,因此两者之差为,选B.A .12S S =B .12S S ≤C .12S S ≥D .先12S S <,再12S S =,最后12S S >【答案】A 【解析】如图所示,因为直线l 与圆O 相切,所以OA AP ⊥, 所以扇形的面积为1122AOQ S AQ r AQ OA =⋅⋅=⋅⋅扇形,12AOP S OA AP ∆=⋅⋅, 因为AQ AP =,所以扇形AOQ 的面积AOP AOQ S S ∆=扇形, 即AOP AOQ AOB AOB S S S S ∆-=-扇形扇形扇形, 所以12S S =,【答案】圆心角α等于2弧度时,这个扇形的最大面积是25 cm 2. 【解析】设扇形的半径为r cm ,则弧长为l =(20-2r ) cm . 由0<l <2πr ,得0<20-2r <2πr ,∴10π+1<r <10.于是扇形的面积为S =12(20-2r )r =-(r -5)2+25(10π+1<r <10).当r =5时,l =10,α=2,S 取到最大值,此时最大值为25 cm 2.故当扇形的圆心角α等于2弧度时,这个扇形的面积最大,最大面积是25 cm 2. 【总结提升】应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度;(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决; (3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.热门考点03 三角函数的定义1.任意角的三角函数定义:设α是一个任意角,角α的终边与单位圆交于点P (x ,y ),那么 (1)点P 的纵坐标叫角α的正弦函数,记作sin α=y ; (2)点P 的横坐标叫角α的余弦函数,记作cos α=x ;(3)点P 的纵坐标与横坐标之比叫角α的正切函数,记作tan α=yx .它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.将正弦函数、余弦函数和正切函数统称为三角函数,通常将它们记为: 正弦函数y =sinx ,x ∈R ; 余弦函数 y =cosx ,x ∈R ; 正切函数 y =tanx ,x ≠π2+k π(k ∈Z ).2.三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦A .第一象限角B .第二象限角C .第三象限角D .第四象限角 【答案】C【解析】,则的终边在三、四象限;则的终边在三、一象限,,,同时满足,则的终边在三象限.【典例7】已知角的终边在射线上,则等于( )A. B. C. D.【答案】A 【解析】由题得在第四象限,且,所以故答案为:A.【典例8】(江西高考真题(文))已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若()4,p y 是角θ终边上一点,且25sin θ=-,则y=_______. 【答案】-8 【解析】根据正弦值为负数,判断角在第三、四象限,再加上横坐标为正,断定该 角为第四象限角.=【典例9】已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( ) A .(-2,3] B .(-2,3) C .[-2,3)D .[-2,3]【答案】A【解析】 ∵00cos ,sin αα≤>,∴角α的终边落在第二象限或y 轴的正半轴上. ∴39020a a ⎧-≤⎨+>⎩∴23-a <≤.故选A.【总结提升】1.已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后利用三角函数的定义求解.2.已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义求解相关的问题.若直线的倾斜角为特殊角,也可直接写出角α的三角函数值.热门考点04 同角三角函数的基本关系式同角三角函数的基本关系式(1)平方关系:sin 2α+cos 2α=1(α∈R ). (2)商数关系:tan α=sin αcos α⎝⎛⎭⎫α≠k π+π2,k ∈Z .A .33-B .36-C .36 D 【答案】B 【解析】因为3(,)22ππα∈,sin tan cos ααα==>0,故3(,)2παπ∈即sin αα=,又22sin cos 1αα+=, 解得:sin α=36-故选 :B【答案】3 310【解析】 【分析】将sin cos sin cos x x x x +-=2左端分子分母同除以cos x ,得tan 12tan 1x x +=-,解得tan 3x =,2222sin cos tan 33sin cos sin cos tan 13110x x x x x x x x ====+++. 故答案为:3;310【规律方法】1.同角三角函数关系式的三种应用方法--“弦切互化法”、““1”的灵活代换法”、“和积转换法” (1)利用sin 2α+cos 2α=1可实现α的正弦、余弦的互化,注意()222124sin cos sin cos sin cos tanπθθθθθθ=+=+-=等;(2)由一个角的任一三角函数值可求出这个角的另外两个三角函数值,因为利用“平方关系”公式,需求平方根,会出现两解,需根据角所在的象限判断符号,当角所在的象限不明确时,要进行分类讨论. 2. 利用sin αcos α=tan α可以实现角α的弦切互化.(1)若已知tan α=m ,求形如a sin α+b cos αc sin α+d cos α(或a sin 2α+b cos 2αc sin 2α+d cos 2α)的值,其方法是将分子、分母同除以cos α(或cos 2α)转化为tan α的代数式,再求值,如果先求出sin α和cos α的值再代入,那么运算量会很大,问题的解决就会变得繁琐.(2)形如a sin 2α+b sin αcos α+c cos 2α通常把分母看作1,然后用sin 2α+cos 2α代换,分子、分母同除以cos 2α再求解.热门考点05 sin α±cos α与sin αcos α的关系及应用三角函数求值与化简必会的三种方法 (1)弦切互化法:主要利用公式tan α=;形如,22asin x bsinxcosx ccos x ++等类型可进行弦化切.(2)“1”的灵活代换法: ()222124sin cos sin cos sin cos tanπθθθθθθ=+=+-=等.(3)和积转换法:利用()()22212,()2sin cos sin cos sin cos sin cos θθθθθθθθ±=±++-=的关系进行变形、转化.A .B .C .D . 【答案】B 【解析】 ∵,∴,∴,又∵,∴,∴,∴,故选B.【答案】详见解析 【解析】()22sin sin cos 2sin 2sin cos sin 1tan 1cos ααααααααα++=++()2sin cos sin cos sin cos αααααα+=+2sin cos k αα==,()222sin cos sin cos 2sin cos αααααα-=+-12sin cos αα=-1k =-,当04πα<<时,sin cos αα<,此时sin cos 1k αα-=--, 当42ππα≤<时,sin cos αα≥,此时sin cos 1k αα-=-.A .B .C .D .【答案】D 【解析】, 则 即故选D. A .B .C .或D .或【答案】B 【解析】由题意知, ,①,即,,为钝角,,,,,②由①②解得,,故选B.【总结提升】(1)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(2)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.热门考点06 诱导公式及其应用六组诱导公式角 函数 2k π+α(k ∈Z ) π+α -α π-α π2-α π2+α 正弦 sin_α -sin_α -sin_α sin_α cos_α cos_α 余弦 cos_α -cos_α cos_α -cos_α sin_α -sin_α 正切tan_αtan_α-tan_α-tan_α对于角“k π2±α”(k ∈Z )的三角函数记忆口诀“奇变偶不变,符号看象限”,“奇变偶不变”是指“当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变”.“符号看象限”是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号”【答案】【解析】∵θ是第四象限角, ∴,则,又sin (θ),∴cos(θ).∴cos()=sin (θ),sin ()=cos (θ).则tan (θ)=﹣tan ().故答案为:.(1)化简()f α. (2)若33cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值. 【答案】(1)cos α-;(2)45- 【解析】 (1)3sin()cos()tan()22()tan()sin()f ππααπααπαπα-+-=---. sin()sin (tan )2tan sin πααααα---=- cos sin tan tan sin ααααα=-cos α=-.(2)因为3cos()2πα-3cos()2πα=- 3sin 5α=-=, 所以3sin 5α=-. 因为α是第四象限角, 所以4cos 5α=, 所以4()cos 5f αα=-=-. 【总结提升】1.用诱导公式求值时,要善于观察所给角之间的关系,利用整体代换的思想简化解题过程.常见的互余关系有-α与+α,+α与-α,+α与-α等,常见的互补关系有-θ与+θ,+θ与-θ,+θ与-θ等.2. 利用诱导公式化简求值的步骤:(1)负化正;(2)大化小;(3)小化锐;(4)锐求值.热门考点07 同角公式、诱导公式的综合应用从①一,②二,③三,④四,这四个选项中选择一个你认为恰当的选项填在上面的横线上,并根据你的选择,解答以下问题: (1)求cos ,tan αα的值;(2)化简求值:3sin()cos()sin 2cos(2020)tan(2020)πααπαπαπα⎛⎫--+ ⎪⎝⎭+-.【答案】(1)答案不唯一,具体见解析(2)1625【解析】 (1)因为3sin 5α=-,所以α为第三象限或第四象限角; 若选③,24sin 3cos 1sin ,tan 5cos 4ααααα=--=-==; 若选④,24sin 3cos 1sin ,tan 5cos 4ααααα=-===-;(2)原式sin cos (cos )cos tan()ααααα-=-sin cos tan ααα-=-sin cos sin cos αααα=2cos α=2315⎛⎫=-- ⎪⎝⎭1625=. 【典例19】设tan(α+8π7)=m , 求证:sin (15π7+α)+3cos (α-13π7)sin (20π7-α)-cos (α+22π7)=m +3m +1. 【答案】见解析【解析】证法一:左边=sin[π+(87π+α)]+3cos[(α+8π7-3π)]sin[4π-(α+87π)]-cos[2π+(α+8π7)] =-sin (α+8π7)-3cos (α+8π7)-sin (α+8π7)-cos (α+8π7)=tan (α+8π7)+3tan (α+8π7)+1 =m +3m +1=右边.∴等式成立. 证法二:由tan(α+8π7)=m ,得tan(α+π7)=m . 左边=sin[2π+(π7+α)]+3cos[2π-(π7+α)]sin[2π+π-(π7+α)]-cos[2π+π+(π7+α)] =sin (π7+α)+3cos (π7+α)sin[π-(π7+α)]-cos[π+(π7+α)] =sin (π7+α)+3cos (π7+α)sin (π7+α)+cos (π7+α)=tan (π7+α)+3tan (π7+α)+1 =m +3m +1=右边, ∴等式成立.【规律方法】1.利用诱导公式化简三角函数的基本思路:(1)分析结构特点,选择恰当公式;(2)利用公式化成单角三角函数;(3)整理得最简形式.2.化简要求:(1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.3.三角恒等式的证明一般有三种方法:①一端化简等于另一端;②两端同时化简使之等于同一个式子;③作恒等式两端的差式使之为0.4证明条件恒等式,一般有两种方法:一是在从被证等式一边推向另一边的适当时候将条件代入,推出被证等式的另一边,这种方法称作代入法;二是直接将条件等式变形,变形为被证的等式,这种方法称作推出法,证明条件等式时,不论使用哪一种方法,都要依据要证的目标的特征进行变形.巩固提升A .B .12-C .12D 【答案】D【解析】()sin 780sin 72060sin 60︒=︒+︒=︒=故选:DA .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】∵-2π<α<0,∴tanα<0,cosα>0,∴点P(tanα,cosα)位于第二象限,故选BA .43B .34C .43±D .34± 【答案】C【解析】 因为4sin 5θ=,()0,θπ∈,则由22sin cos 1θθ+=, 解得35cos θ=±,故可得43sin tan cos θθθ==±.故选:C .A .4-B .14-C .14D .4【答案】A【解析】 因为31cos 24πα⎛⎫+= ⎪⎝⎭,由诱导公式可得,1sin 4α=, 因为22sin cos 1αα+=,α是第二象限角,所以cos 4α===-. 故选:AA .4B .1CD .2 【答案】D【解析】 圆心角为51506πα==,设扇形的半径为R , 2215152326S R R ππα=⋅⇒=⨯, 解得2R =.故选:DA .3-B .3C .43-D .43 【答案】A【解析】由题意,416sin cos 12sin cos 39θθθθ-=⇒-=,则72sin cos 09θθ=-<,由于3π,π4θ⎛⎫∈ ⎪⎝⎭,则sin(π)cos(π)sin cos 3θθθθ---=+==-. 故选A.A .15B .25C .35D 【答案】C【解析】 由已知()()sin 3cos sin cos 3cos sin tan 2,2πθπθθθθθθ⎛⎫++-=-⇒-=-⇒= ⎪⎝⎭则22222sin cos cos tan 13sin cos cos .sin cos tan 15θθθθθθθθθθ+++===++ 故选C.A B .C .D .-【答案】D【解析】 因为1sin cos 23παα⎛⎫-==- ⎪⎝⎭,且()0,απ∈所以sin 3α==,所以sin tan cos ααα==-所以()tan tan απα+==-故选:DA .sin tan ααB .cos sin αα-C .sin cos ααD .sin cos αα+ 【答案】AB【解析】由题意知sin 0α<,cos 0α>,tan 0α<.选项A sin 0tan αα>;选项B ,cos sin 0αα->;选项C ,sin cos 0αα<;选项D ,sin cos αα+符号不确定.故选:AB.A .①③B .①④C .④⑥D .②⑤【答案】BC【解析】若θ为第二象限角,则sin 0θ>,cos 0θ<,tan 0θ<.所以,θ为第二象限角sin 0cos 0θθ>⎧⇔⎨<⎩或sin 0tan 0θθ>⎧⎨<⎩或cos 0tan 0θθ<⎧⎨<⎩.故选:BC.【答案】45- 43-【解析】∵角α的终边经过点34,55P ⎛⎫- ⎪⎝⎭,∴||1OP =, ∴4sin ,t 344455355an 1αα-=--===-. 故答案为:45-;43-.;【解析】 α为第二象限角 sin 0α∴>,cos 0α< 由22sin tan 2cos sin cos 1ααααα⎧==-⎪⎨⎪+=⎩得:sin cos αα⎧=⎪⎪⎨⎪=⎪⎩;5-【解析】∵角α终边过点(1)P -,||2OP =,∴t an α==1sin 2α-=,cos α=∴cos sin αα-=故答案为:3;12. (1)求sin ,cos ,tan ααα的值;(25sin(3)2cos()ππαα-++ 【答案】(1)1sin ,tan 3ααα==-=2) 【解析】(1)由题意角α的终边经过点1(,33P --,可得1r OP ==,根据三角函数的定义,可得1sin ,tan 33ααα=-=-=. (25sin(3)2cos()ππαα-++=tan (14α===-⨯=. 【答案】-154或94. 【解析】 当角α的终边在射线y =-34x (x >0)上时,取终边上一点P (4,-3), 所以点P 到坐标原点的距离r =|OP |=5,所以sin α=y r =35-=-35,cos α=x r =45, tan α=y x =-34. 所以sin α-3cos α+tan α=-35-125-34=-154. 当角α的终边在射线y =-34x (x <0)上时,取终边上一点P ′(-4,3), 所以点P ′到坐标原点的距离r =|OP ′|=5,所以sin α=y r =35,cos α=x r =-45, tan α=y x =-34. 所以sin α-3cos α+tan α=35-3×45⎛⎫- ⎪⎝⎭-34=35+125-34=94. 综上,sin α-3cos α+tan α的值为-154或94.(1)化简()f α. (2)若33cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值. 【答案】(1)cos α-;(2)45-【解析】(1)3sin()cos()tan()22()tan()sin()f ππααπααπαπα-+-=---. sin()sin (tan )2tan sin πααααα---=- cos sin tan tan sin ααααα=- cos α=-.(2)因为3cos()2πα- 3cos()2πα=- 3sin 5α=-=, 所以3sin 5α=-. 因为α是第四象限角, 所以4cos 5α=, 所以4()cos 5f αα=-=-.。
1·2 任意的三角函数1·2·1 任意角的三角函数1. 任意角三角函数的定义(1) 设是一个任意角,在的终边上任取(异于原点的)一点P (x ,y ) 则P 与原点的距离①把比值叫做的正弦 记作:②把比值叫做的余弦 记作:③把比值叫做的正切 记作:上述三个比值都不会随P 点在的终边上的位置的改变而改变.当角的终边在纵轴上时,即时,终边上任意一点P 的横坐标x 都为0,所以tan 无意义;它们都是以角为自变量,以比值为函数值的函数. 以上三种函数,统称为三角函数。
三角函数值的定义域:R R2. 三角函数的符号αα02222>+=+=y x y x rr yαr y =αsin r xαr x =αcos x yαx y =αtan ααZ)(2∈+=k k ππααr y=αsin r x=αcos x y =αtan ⎭⎬⎫⎩⎨⎧∈+≠Z k k ,2|ππαα3. 终边相同的角的同一三角函数值相等例如390°和-330°都与30°终边位置相同,由三角函数定义可知它们的三角函数值相同,即sin390°=sin30° cos390°=cos30°sin (-330°)=sin30° cos (-330°)=cos30° 诱导公式一(其中): 用弧度制可写成这组公式的作用是可把任意角的三角函数值问题转化为0~2π间角的三角函数值问题。
4. 三角函数的集合表示:1.已知角α的终边过点(,2)(0)a a a ≠,求α的六个三角函数值。
【解析】因为过点(,2)(0)a a a ≠,所以|r a =, ,2xa y a ==当0sin y a r α>====时,Z ∈k ααsin )360sin(=︒⋅+k απαsin )2sin(=+k ααcos )360cos(=︒⋅+k απαcos )2cos(=+k ααtan )360tan(=︒⋅+k απαtan )2tan(=+ksin 1y yy MPr α====cos 1x xx OM r α====tan y MP ATAT x OM OAα====cosx r α===;1tan 2;cot ;sec 22αααα====;当0sin5y a r α<====-时,cos5x r α===-;1tan 2;cot ;sec 2αααα====2. 已知角α的终边上一点()P m ,且sin 4α=,求cos ,sin αα的值。
第01讲任意角和弧度制及三角函数的概念(精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:象限角、区域角、终边相同的角角度1:象限角角度2:区域角角度3角:终边相同的角高频考点二:角度制与弧制度的相互转化高频考点三:弧长公式与扇形面积公式角度1:弧长的有关计算角度2:与扇形面积有关的计算角度3:题型归类练角度4:扇形弧长公式与面积公式的应用高频考点四:任意角的三角函数角度1:单位圆法与三角函数角度2:终边上任意点法与三角函数角度3:三角函数值符号的判定高频考点五:三角函数线高频考点六:解三角不等式第四部分:高考真题感悟第五部分:第01讲任意角和弧度制及三角函数的概念(精练)1、角的概念的推广①按旋转方向不同分为正角、负角、零角.②按终边位置不同分为象限角和轴线角. ③终边相同的角:终边与角α相同的角可写成360()k k Z βα=+⋅∈.2、弧度制的定义和公式①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||lrα=,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制.比值lr与所取的r 的大小无关,仅与角的大小有关. ④弧度与角度的换算:3602rad π=;180rad π=. 若一个角的弧度数为α,角度数为n ,则180()rad απ=,180n n rad π=⋅.3、任意角的三角函数3.1.单位圆定义法:任意角的三角函数定义:设α是一个任意角,角α的终边与单位圆交于点(,)P x y ,那么 (1)点P 的纵坐标叫角α的正弦函数,记作sin y α=; (2)点P 的横坐标叫角α的余弦函数,记作cos x α=; (3)点P 的纵坐标与横坐标之比叫角α的正切函数,记作tan yxα=(0x ≠).它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.3.2.终边上任意点法:设(,)P x y 是角α终边上异于原点的任意一点,它到原点的距离为r (0r >)那么:sin y r α=;cos x rα=;tan yx α=(0x ≠)(1)弧长公式在半径为r 的圆中,弧长为l 的弧所对的圆心角大小为α,则||lrα=变形可得||l r α=,此公式称为弧长公式,其中α的单位是弧度.(2)扇形面积公式211||22S lr r α== 5、三角函数线正弦线:MPOM正切线:AT6常用结论(1)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦.(2)角度制与弧度制可利用180rad π=进行相互转化,在同一个式子中,采用的度量方式必须统一,不可混淆. 30 60 90 150 180)象限角:,k k ∈360180,}k k Z +∈36090,}k k Z +∈ 360270,}k k Z +∈180,}k k Z ∈ 18090,}k k Z +∈ 90,}k k Z ∈一、判断题1.(2022·江西·贵溪市实验中学高三阶段练习)“角α是第一象限的角”是“角2α是第一象限的角”的充分不必要条件.( ) 【答案】错误 【详解】由α是第一象限角可举例380α=︒, 则1902α=︒,得角2α是第二象限的角, 即由“角α是第一象限的角”推不到“角2α是第一象限的角”,所以不是充分条件,所以错误.故答案为:错误. 2.(2022·江西·贵溪市实验中学高三阶段练习)已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数α是1或4.( ) 【答案】正确 【详解】设扇形所在圆的半径为r ,则扇形弧长l r α=,于是得226122r r r αα+=⎧⎪⎨=⎪⎩,解得21r α=⎧⎨=⎩或14r α=⎧⎨=⎩,所以扇形的圆心角的弧度数α是1或4. 故答案为:正确3.(2022·江西·贵溪市实验中学高二阶段练习)已知角α的终边经过点()P m ,0m ≠,且sin α=,则cos α= ) 【答案】正确 【详解】因为角α的终边经过点()P m ,0m ≠,且sin α=,=m =所以cos α==故答案为:正确4.(2022·江西·贵溪市实验中学高三阶段练习)角θ终边经过点(-3,4),则7cos 225θ=-.( ) 【答案】正确 【详解】由角θ终边经过点()3,4-,可得3cos 5θ==-,而2237cos 22cos 12()1525θθ=-=--=-.故答案为:正确.5.(2022·江西·贵溪市实验中学高二阶段练习)tan 300︒= ) 【答案】错误 【详解】tan 300tan(36060)tan 60︒=︒-︒=-︒=故答案为:错误高频考点一:象限角、区域角、终边相同的角①象限角角度1:确定已知角所在象限例题1.(2022·河南·南阳中学高一阶段练习)若()45180k k α=+⋅∈Z ,则α的终边在( ) A .第二或第三象限 B .第一或第三象限 C .第二或第四象限 D .第三或第四象限【答案】B 【详解】当k 为奇数时,记21,k n n =+∈Z ,则()225360n n α+⋅∈︒=Z ,此时α为第三象限角;当k 为偶数时,记2,k n n =∈Z ,则()45360n n α+⋅∈︒=Z ,此时α为第一象限角. 故选:B例题2.(2022·上海市宝山中学高一期中)平面直角坐标系中,若角532α=︒,则α是第________象限的角. 【答案】二##2 【详解】532360172︒=︒+︒,因此532︒与172︒终边相同,而172︒是第二象限角.所以α是第二象限角. 故答案为:二.角度1题型归类练1.(2022·江西抚州·高一期中)若34πα=-,则α是第( )象限角. A .一 B .二C .三D .四【答案】C 【详解】34πα=-,α终边落在第三象限,α为第三象限角.故选:C.2.(2022·河南南阳·高一期中)“α是第一象限角”是“0,2πα⎛⎫∈ ⎪⎝⎭”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【详解】若α是第一象限角,则22,2k k k Z ππαπ<<+∈,无法得到α一定属于0,2π⎛⎫⎪⎝⎭,充分性不成立, 若0,2πα⎛⎫∈ ⎪⎝⎭,则α一定是第一象限角,必要性成立,所以“α是第一象限角”是“0,2πα⎛⎫∈ ⎪⎝⎭”的必要不充分条件.故选:B3.(多选)(2022·广东·韶关市田家炳中学高一期末)下列四个角为第二象限角的是( )A .200-B .100C .220D .420【答案】AB 【详解】对于A 选项,200160360-=-,故200-为第二象限角; 对于B 选项,100是第二象限角; 对于C 选项,220是第三象限角;对于D 选项,42060360=+,故420为第一象限角. 故选:AB.角度2:由已知角所在的象限确定某角的范围例题1.(多选)(2021·全国·高一专题练习)有一个小于360︒的正角α,这个角的6倍的终边与x 轴的非负半轴重合,则这个角可以为( ) A .60︒ B .90︒ C .120︒ D .300︒【答案】ACD 【详解】由题意,62180k α=⨯︒且k Z ∈,则1803kα︒=,又0360α︒<<︒, ∴1k =时,60α=︒;2k =时,120α=︒;3k =时,180α=︒;4k =时,240α=︒;5k =时,300α=︒; 故选:ACD6.(多选)(2021·全国·高一专题练习)若α为第一象限角,则180()k k Z α⋅︒+∈的终边所在的象限可能是( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】AC 【详解】由题设,36036090k k α''︒<<︒+︒,k Z '∈,∴(2)180180(2)18090k k k k k α''+⋅︒<⋅︒+<+⋅︒+︒,令12k k k Z '=+∈,∴1118018018090k k k α⋅︒<⋅︒+<⋅︒+︒,故180()k k Z α⋅︒+∈的终边所在的象限可能是第一、三象限. 故选:AC角度2题型归类练1.(2021·全国·高一专题练习)若α是第一象限角,则2α-是( )A .第一象限角B .第一、四象限角C .第二象限角D .第二、四象限角【答案】D 【详解】由题意知,36036090k k α⋅︒<<⋅︒+︒,k ∈Z ,则180180452k k α⋅︒<<⋅︒+︒,所以180451802k k α-⋅︒-︒<-<-⋅︒,k ∈Z .当k 为偶数时,2α-为第四象限角;当k 为奇数时,2α-为第二象限角.所以2α-是第二或第四象限角.故选:D.2.(2021·广东·中山纪念中学高一阶段练习)若α是第四象限角,则90º-α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角【答案】B 【详解】由题知,(90360,360)k k α∈-+⋅⋅,k Z ∈, 则90(90360,180360)k k α-∈-⋅-⋅,在第二象限, 故选:B3.(多选)(2022·安徽·界首中学高一期末)若α是第二象限角,则( ) A .πα-是第一象限角 B .2α是第一或第三象限角 C .32πα+是第二象限角D .2α是第三或第四象限角【答案】AB 【详解】解:因为α与α-关于x 轴对称,而α是第二象限角,所以α-是第三象限角,所以πα-是第一象限角,故A 选项正确;因为α是第二象限角,所以222k k ππαππ+<<+,k ∈Z ,所以422k k παπππ+<<+,k ∈Z ,故2α是第一或第三象限角,故B 选项正确;因为α是第二象限角,所以32πα+是第一象限角,故 C 选项错误;因为α是第二象限角,所以222k k ππαππ+<<+,k ∈Z ,所以4224k k ππαππ+<<+,k ∈Z ,所以2α的终边可能在y 轴负半轴上,故D 选项错误. 故选:AB.角度3:确定n 倍角所在象限例题1.(2022·广东广州·高一期末)已知α是锐角,那么2α是( ). A .第一象限角 B .第二象限角 C .小于180°的正角 D .第一或第二象限角【答案】C 【详解】因为α是锐角,所以0,2πα⎛⎫∈ ⎪⎝⎭,所以()20,απ∈,满足小于180°的正角.其中D 选项不包括90,故错误. 故选:C2.(2021·上海·高一课时练习)角θ的终边在第二象限,则角2θ的终边在_________. 【答案】第三、四象限或y 轴非正半轴 【详解】解:θ是第二象限角,36090360180k k θ∴︒+︒<<︒+︒,k Z ∈.236018022360360k k θ︒+︒<<︒+︒,k Z ∈.2θ的终边的位置是第三或第四象限,y 的非正半轴.故答案为:第三、第四象限或y 轴的非正半轴角度3题型归类练1.(2021·上海·高一课时练习)若α是第三象限角,则α-是第_________象限角. 【答案】二 【详解】因为α是第三象限角,所以α的终边在第三象限, 又α-的终边与α的终边关于x 轴对称,所以α-的终边在第二象限,所以α-是第二象限角, 故答案为:二.2.(2018·广西·高一阶段练习)已知α终边在第四象限,则2α终边所在的象限为_______________. 【答案】第三象限或第四象限或y 轴负半轴 由于α是第四象限角,故π2π2π2k k α-<<,故4ππ24πk k α-<<,即2α终边在” 第三象限或第四象限或y 轴负半轴”. 角度4:确定n 分角所在象限例题1.(2021·陕西·榆林市第十中学高一阶段练习)若角α是第一象限角,则2α是( ) A .第一象限角 B .第二象限角 C .第一或第三象限角 D .第二或第四象限角【答案】C 【详解】因为α是第三象限角,所以36036090,k k k Z α⋅<<⋅+∈, 所以18018045,2k k k Z α︒⋅<<⋅+∈,当k 为偶数时,2α是第一象限角, 当k 为奇数时,2α是第三象限角. 故选:C .例题2.(多选)(2022·辽宁·抚顺县高级中学校高一阶段练习)如果α是第三象限的角,那么3α可能是下列哪个象限的角( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】ACD 【详解】α是第三象限的角,则32,22k k παπππ⎛⎫∈++ ⎪⎝⎭,k Z ∈,所以22,33332k k αππππ⎛⎫∈++ ⎪⎝⎭,k Z ∈; 当=3,k n n Z ∈,2,2,332n n n Z αππππ⎛⎫∈++∈ ⎪⎝⎭,在第一象限; 当=31,k n n Z +∈,72,2,36n n n Z αππππ⎛⎫∈++∈ ⎪⎝⎭,在第三象限; 当=32,k n n Z +∈,5112,2,363n n n Z αππππ⎛⎫∈++∈ ⎪⎝⎭,在第四象限; 所以3α可以是第一、第三、或第四象限角. 故选:ACD角度4题型归类练1.(2022·河南新乡·高一期末)“α是第四象限角”是“2α是第二或第四象限角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【详解】当α是第四象限角时,3222,2k k k Z ππαππ+<<+∈,则3,42k k k Z παπππ+<<+∈,即2α是第二或第四象限角.当324απ=为第二象限角,但32πα=不是第四象限角,故“α是第四象限角”是“2α是第二或第四象限角”的充分不必要条件. 故选:A2.(多选)(2022·江西·南昌十五中高一阶段练习)已知角α是第一象限角,则角3α可能在以下哪个象限( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】ABC 【详解】解:因为角α是第一象限角,所以222k k ππαπ<<+,k Z ∈,所以223363k k παππ<<+,k Z ∈, 当3k t =,t Z ∈时,2236t t απππ,t Z ∈,3α位于第一象限,当31k t =+,t Z ∈时,2522336t t παπππ,t Z ∈,3α位于第二象限,当32k t =+,t Z ∈时,4322332t t παπππ,t Z ∈,3α位于第三象限,综上可得3α位于第一、二、三象限; 故选:ABC3.(2022·上海师大附中高一期末)设α是第三象限的角,则2α的终边在第______象限. 【答案】二或四 【详解】因为α是第三象限角,所以3222k k ππαππ+<<+,k Z ∈,所以3224k k παπππ+<<+,k Z ∈, 当k 为偶数时,2α为第二象限角, 当k 为奇数时,2α为第四象限角. 故答案为:二或四.②区域角例题1.(2022·湖南·高一课时练习)已知角α的终边在如图阴影表示的范围内(不包含边界),那么角α的集合是________.【答案】{α|k ·360°+45°<α<k ·360°+150°,k ∈Z } 【详解】观察图形可知,终边落在边界上的角分别是36045,360150,k k k Z ⋅︒+︒⋅︒+︒∈, 所以角α的集合是{α|k ·360°+45°<α<k ·360°+150°,k ∈Z }. 故答案为:{α|k·360°+45°<α<k·360°+150°,k ∈Z} 例题2.(2020·全国·高一课时练习)如图所示,终边落在阴影部分(不包括边界)的角的集合是________.【答案】{}90180120180,k k k αα︒+⋅︒<<︒+⋅︒∈Z 【详解】因为终边落在y 轴上的角为90180,k k Z ︒+⋅︒∈,终边落在虚线上的角为1203601202180,k k ︒︒+⋅︒=+⋅︒k Z ∈; 3003601201802180120(21)180,n n n n Z ︒︒︒+⋅︒=+︒+⋅︒=++⋅︒∈,即终边在虚线上的角为120180k ︒+⋅︒,k Z ∈,所以终边落在阴影部分的角为90180120180,k k k Z α︒+⋅︒<<︒+⋅︒∈, 故答案为:{}90180120180,k k k Z αα︒+⋅︒<<︒+⋅︒∈题型归类练1.(2022·上海·华师大二附中高一期中)用弧度制表示终边落在如图所示阴影部分内(含边界)的角θ的集合是__________.【答案】32,2,Z 64k k k ππππ⎡⎤-+∈⎢⎥⎣⎦【详解】由题图,终边OB 对应角为26k ππ-且Z k ∈,终边OA 对应角为324k ππ+且Z k ∈, 所以阴影部分角θ的集合是32,2,Z 64k k k ππππ⎡⎤-+∈⎢⎥⎣⎦.故答案为:32,2,Z 64k k k ππππ⎡⎤-+∈⎢⎥⎣⎦2.(2021·全国·高一专题练习)如图所示,终边在阴影区域内(含边界)的角的集合为______.【答案】{}4518060180,n n n Z αα+⋅≤≤+⋅∈ 【详解】终边在直线OM 上的角的集合为:{}{}45360,225360,M k k Z k k Z αααα==︒+⋅︒∈⋃=︒+⋅︒∈{}(){}452180,4521180,k k Z k k Z αααα==︒+⋅︒∈⋃=︒++⋅︒∈{}45180,n n Z αα==︒+⋅︒∈.同理可得终边在直线ON 上的角的集合为{}60180,n n Z αα=︒+⋅︒∈,所以终边在阴影区域内(含边界)的角的集合为{}4518060180,n n n Z αα︒+⋅︒≤≤︒+⋅︒∈. 故答案为:{}4518060180,n n n Z αα︒+⋅︒≤≤︒+⋅︒∈3.(2020·全国·高一课时练习)如下图,终边落在OA 位置时的角的集合是__________;终边落在OB 位置,且在360360-︒︒内的角的集合是________;终边落在阴影部分(含边界)的角的集合是______.【答案】 {|360120,}k k αα=︒+︒∈Z {45,315}-︒︒ {|36045360120,}k k k αα︒-︒︒+︒∈Z 【详解】由题意以OA 为终边的一个角是120︒,因此以OA 为终边的角的集合是{|360120,}k k αα=︒+︒∈Z ;以OB 为终边的角的集合是{|36045,}k k αα=︒-︒∈Z ,在已知范围内的有45,315-︒︒两个角,集合表示为{45,315}-︒︒;∴终边落在阴影部分(含边界)的角的集合为{|36045360120,}k k k αα︒-︒︒+︒∈Z . 故答案为:{|360120,}k k αα=︒+︒∈Z ;{45,315}-︒︒;{|36045360120,}k k k αα︒-︒︒+︒∈Z .4.(2019·江苏·海安市南莫中学高一期中)如图所示,阴影部分表示的角的集合为(含边界)______(用弧度表示).【答案】{|,}3k k k Z παπαπ≤≤+∈【详解】如图,阴影部分表示的角α位于一、三象限, 在第一象限,03πα≤≤;在第三象限,43ππα≤≤, ∴阴影部分表示的角的集合为(含边界): {|223k k παπαπ≤≤+或()()21213k k ππαπ+≤≤++,}{|,}3k Z k k k Z παπαπ∈=≤≤+∈.故答案为{|,}3k k k Z παπαπ≤≤+∈.③终边相同的角例题1.(2022·北京师大附中高一期中)将x 轴正半轴绕原点逆时针旋转30,得到角α,则下列与α终边相同的角是( ) A .330︒ B .330-︒C .210︒D .210-︒【答案】B 【详解】由题意得:{}30360,k k Z αα=︒+⋅︒∈,当1k =-时,330α=-︒,B 正确,其他选项经过验证均不正确. 故选:B例题2.(2017·天津市红桥区教师发展中心高一期末)在0~180范围内,与950-终边相同的角是______.【答案】130 【详解】与950-终边相同的角的集合为}{()950360Z k k αα=-+∈, 当3k =时,9503603130α=-+⨯=,所以在0~180范围内, 与950-终边相同的角是130.故答案为:130题型归类练1.(2022·辽宁·凌源市实验中学高一阶段练习)下列与角23π的终边一定相同的角是( ) A .53πB .()43k k Z ππ-∈ C .()223k k Z ππ+∈ D .()()2213k k Z ππ++∈ 【答案】C 【详解】 对于选项C :与角23π的终边相同的角为()223k k Z ππ+∈,C 满足. 对于选项B :当()2k n n Z =∈时, ()442,33k n k Z n Z ππππ-=-∈∈成立; 当()21k n n Z =+∈时,()()44212,333k n n k Z n Z ππππππ-=+-=-∈∈不成立. 对于选项D :()()2521233k k k Z ππππ++=+∈不成立. 故选: C2.(2022·上海市奉贤区奉城高级中学高一阶段练习)与1920°终边相同的角中,最小的正角是________ 【答案】120° 【详解】19205360120︒=⨯︒+︒,所以与1920°终边相同的角中,最小的正角为120°. 故答案为:120°.高频考点二:角度制与弧制度的相互转化例题1.(2022·河南南阳·高一期中)把π5化成角度制是( )A .36°B .30°C .24°D .12°【答案】A 【详解】由角度制与弧度制的互化知,π180=︒, 所以ππ180()3655π=⨯︒=︒, 故选:A例题2.(2022·陕西汉中·高一期中)如图,时钟显示的时刻为12:55,将时针与分针视为两条线段,则该时刻的时针与分针所夹的锐角为( )A .π3B .23π72C .11π36D .3π10【答案】B 【详解】由图可知,该时刻的时针与分针所夹的锐角为2π112π23π12121272+⨯=. 故选:B.题型归类练1.(2022·安徽·砀山中学高一期中)将210°化成弧度为( ) A .5π6-B .5π6C .4π3D .7π6【答案】D 【详解】 7210=210=1806ππ︒⨯, 故选:D.2.(2022·上海市七宝中学高一开学考试)经过50分钟,钟表的分针转过___________弧度的角. 【答案】5π3-【详解】根据题意,分针转过的弧度为5052603ππ-⨯=-. 故答案为:53π-.3.(2022·湖南·高一课时练习)将下表中的角度和弧度互化:180π=︒∴1180π︒=,1801π︒=故:高频考点三:弧长公式与扇形面积公式角度1:弧长的有关计算例题1.(2022·上海奉贤区致远高级中学高一期中)已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( ) A .2 B .sin 2 C .2sin1D .2sin1【答案】C 【详解】2弧度的圆心角所对的弦长为2,∴半径1sin1r =,∴所求弧长为22sin1r =. 故选:C.例题2.(2022·湖南·高一课时练习)已知相互咬合的两个齿轮,大轮有48齿,小轮有20齿,当大轮顺时针转动一周时,小轮转动的角是多少度?多少弧度?如果大轮的转速是150r/min ,小轮的半径为10cm ,那么小轮圆周上的点每秒转过的弧长是多少? 【答案】小轮转动的角是864︒,245π弧度,小轮圆周上的点每秒转过的弧长为120π cm 【详解】由题意得,相互咬合的两个齿轮,大轮有48齿,小轮有20齿, 所以当大轮旋转一周时,大轮转了48个齿,小轮转了20齿, 所以小轮转动了4812205=周,即123608645⨯︒=︒,1224255ππ⨯=,所以当大轮的转速为150r/min 时,小轮的转速为121503605⨯=r/min , 所以小轮圆周上的点每秒转过的弧度数为 36026012ππ⨯÷=,因为小轮的半径为10cm ,所以小轮圆周上的点每秒转过的弧长 1210120ππ⨯= cm角度1题型归类练1.(2022·青海·海南藏族自治州高级中学高一期末)已知扇形的圆心角为2rad 5,半径为10,则扇形的弧长为( )A .12 B .1 C .2 D .4【答案】D 【详解】解:因为扇形的圆心角为2rad 5,半径为10,所以由弧长公式得:扇形的弧长为21045l r α=⋅=⨯=故选:D2.(2022·北京·汇文中学高一期中)一圆锥的侧面展开图为一圆心角为23π的扇形,该圆锥母线长为6,则圆锥的底面半径为________. 【答案】2 【详解】因为圆锥的母线长为6,所以侧面展开图扇形的半径为6,设该圆锥的底面半径为r , 所以有26223r r ππ⋅=⇒=, 故答案为:2.角度2:与扇形面积有关的计算例题1.(2022·河北·沧县中学高一阶段练习)已知扇形OAB 的圆心角为8rad ,其周长是,则该扇形的面积是___2cm . 【答案】8 【详解】设扇形的半径为R ,弧长是88l R R =⨯=,则其扇形周长是82R R +=R =22188cm 2R ⨯⨯=. 故答案为:8例题2.(2022·重庆八中高一期末)如图所示,弧田是由圆弧AB 和其所对弦AB 围成的图形,若弧田的弧AB 长为3π,弧所在的圆的半径为4,则弧田的面积是___________.【答案】6π-【详解】解:根据题意,只需计算图中阴影部分的面积, 设AOB α∠=,因为弧田的弧AB 长为3π,弧所在的圆的半径为4, 所以34πα=,所以阴影部分的面积为113444sin 622παπ⨯⨯-⨯⨯⨯=-所以弧田的面积是6π-故答案为:6π-例题3.(2022·湖南·雅礼中学高一期中)中国折叠扇有着深厚的文化底蕴.如图(2),在半圆O (半径为20cm )中作出两个扇形OAB 和OCD ,用扇环形ABDC (图中阴影部分)制作折叠扇的扇面.记扇环形ABDC 的面积为1S ,扇形OAB 的面积为2S,当12S S =时,扇形的现状较为美观,则此时扇形OCD 的半径为__________cm【答案】1) 【详解】设,AOB θ∠=,半圆O 的半径为r ,扇形OCD 的半径为1r ,1252S S =,所以2212112212r r rθθθ-,即2212r r r -,所以2212r r===,所以1r r =20,r cm =,所以11)r cm=, 故答案为:1).角度2题型归类练1.(2022·上海市行知中学高二期中)已知圆锥的表面积为28π,其侧面展开扇形的圆心角大小为3π,则这个圆锥的底面半径为______. 【答案】2 【详解】设圆锥的底面半径为r ,母线长为l , 由题意,有228rl r πππ+=①, 由于侧面展开扇形的圆心角大小为3π, 所以23l r ππ=,即6l r =②,由①②得12l =,2r =, 即圆锥的底面半径为2, 故答案为:2.2.(2022·上海市七宝中学高一开学考试)已知扇形的圆心角为3π,弧长为45π,则扇形的面积为___________.【答案】2425π 【详解】依题意,扇形的半径412553lrππα===,所以扇形的面积1141224225525S lrππ==⨯⨯=,故答案为:2425π.3.(2022·上海·高三专题练习)《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦´矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长等于9米的弧田.(1)计算弧田的实际面积;(2)按照《九章算术》中弧田面积的经验公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(结果保留两位小数)【答案】(1)9π2m);(2)少1.522m.试题解析:(1) 扇形半径,扇形面积等于弧田面积=(m2)(2)圆心到弦的距离等于,所以矢长为.按照上述弧田面积经验公式计算得(弦´矢+矢2)=.平方米按照弧田面积经验公式计算结果比实际少1.52平米.角度3:扇形中的最值问题例题1.(2022·吉林·长春十一高高一期末)已知扇形周长为40,当扇形的面积最大时,扇形的圆心角为()A.32B.52C.3 D.2【答案】D 【详解】设扇形半径为r ,易得020r <<,则由已知该扇形弧长为402r -.记扇形面积为S ,则()()()22014022010024r r S r r r r +-=-=-≤=,当且仅当20r r =-,即10r =时取到最大值,此时记扇形的圆心角为θ,则40220210r r θ-=== 故选:D例题2.(2022·江西·奉新县第一中学高一阶段练习)如果一个扇形的周长为60cm ,那么当它的半径和圆心角分别为多少时,扇形的面积最大?【答案】当扇形的半径为15cm ,圆心角为2rad 时,扇形的面积最大 【详解】解:设该扇形的半径为cm r ,圆心角为θ,弧长为cm l ,面积为2cm S , 则260l r +=,所以602l r =-,其中030r <<,所以,()()2211602301522522S lr r r r r r ==-=-+=--+,所以当15cm r =时,S 最大,最大值为2225cm , 此时()602152rad 15l r θ-⨯===. 例题3.(2022·广西梧州·高一期中)已知扇形的周长为30. (1)若该扇形的半径为10,求该扇形的圆心角α,弧长l 及面积S ; (2)求该扇形面积S 的最大值及此时扇形的半径 . 【答案】(1)1α=,10l =,50S =; (2)2254,152. (1)由题知扇形的半径10r =,扇形的周长为30, ∴22030l r l +=+=, ∴10l =,10110lr α,1110105022S lr ==⨯⨯=.(2)设扇形的圆心角α,弧长l ,半径为r ,则230l r +=, ∴302l r =-,∴()()21522530112222154S lr r r r r r r -+⎛⎫--=⎪=⎭≤⎝== 当且仅当15r r -=,即152r =取等号, 所以该扇形面积S 的最大值为2254,此时扇形的半径为152.1.(2022·浙江·高三专题练习)某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD 挖去扇形OBC 后构成的).已知10OA =,()010OB x x =<<,线段BA ,CD 与BC ,AD 的长度之和为30,圆心角为θ弧度.(1)求θ关于x 的函数表达式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值. 【答案】(1)210(010)10x x x θ+=<<+; (2)52x =,2254. (1)解:根据题意,可算得()m BC x θ=,()10m AD θ=. 因为30AB CD BC AD +++=,所以()2101030x x θθ-++=, 所以,()21001010x x x θ+=<<+. (2)解:根据题意,可知()()()2222251011102210AOD BOCx x y S S x x θ+-=-=-=⨯+扇形扇形 ()()22522551055024x x x x x ⎛⎫=+-=-++=--+⎪⎝⎭, 当()5m 2x =时,()2max 225m 4=y .综上所述,当5m 2x =时铭牌的面积最大,且最大面积为2225m 4. 2.(2022·全国·高一阶段练习)已知一扇形的圆心角为()0αα>,周长为C ,面积为S ,所在圆的半径为r . (1)若35α=︒,8r =cm ,求扇形的弧长;(2)若16C =cm ,求S 的最大值及此时扇形的半径和圆心角. 【答案】(1)149πcm ; (2)S 的最大值是216cm ,此时扇形的半径是4 cm ,圆心角为2. 【解析】35α=︒=735rad rad 18036ππ⨯=, 扇形的弧长7148369l r αππ==⨯=cm ; (2)设扇形的弧长为l ,半径为r ,则216r l +=,∴162l r =-()08r <<,则()()2211162841622S lr r r r r r ==-=-+=--+,当4r =时,2max 16cm S =,16248l =-⨯=cm ,2l rα,∴S 的最大值是216cm ,此时扇形的半径是4 cm ,圆心角2α=.3.(2022·河北张家口·高一期末)已知扇形的圆心角是α,半径为r ,弧长为l . (1)若135α=,10r =,求扇形的弧长l ;(2)若扇形AOB 的周长为22,当扇形的圆心角α为多少弧度时,这个扇形的面积最大,并求出此时扇形面积的最大值. 【答案】(1)152π; (2)当2α=时,扇形面积最大值max 1214S =. (1)31354πα==,∴扇形的弧长3151042l r ππα==⨯=;(2)扇形AOB 的周长()22222L r l r r r αα=+=+=+=,222rα∴=-, ∴扇形AOB 面积2221111112S r r r r r α⎛⎫==-=-+ ⎪⎝⎭,则当112r =,max 1214S =, 即当2α=时,扇形面积最大值max 1214S =. 角度4:扇形弧长公式与面积公式的应用例题1.(2022·陕西·西安中学高一期中)中国传统折扇有着极其深厚的文化底蕴.《乐府诗集》中《夏歌二十首》的第五首曰:“叠扇放床上,企想远风来轻袖佛华妆,窈窕登高台.”如图所示,折扇可看作是从一个圆面中剪下的扇形制作而成若一把折扇完全打开时圆心角为67π,扇面所在大圆的半径为20cm ,所在小圆的半径为8cm ,那么这把折扇的扇面面积为( )A .288πB .144πC .487π D .以上都不对【答案】B 【详解】 由题意得,大扇形的面积为11612002020277S ππ=⨯⨯⨯=, 小扇形的面积为21619288277S ππ=⨯⨯⨯=, 所以扇面的面积为12120019214477S S πππ-=-=. 故选:B6.(2022·全国·高一课时练习)已知扇形面积为225cm ,当扇形的圆心角为多大时,扇形的周长取得最小值? 【答案】当扇形的圆心角为2时,扇形的周长取得最小值. 【详解】解:设扇形的半径为R ,弧长为l ,扇形的周长为y ,则2y l R =+. 由题意,得1252lR =,则50l R =,故502522(0)y R R R R R ⎛⎫=+=+> ⎪⎝⎭. 利用函数单调性的定义,可得当05R <时,函数502y R R=+是减函数; 当5R >时,函数502y R R=+是增函数. 所以当5R =时,y 取得最小值20,此时10l =,2lRα==, 即当扇形的圆心角为2时,扇形的周长取得最小值. 【点睛】要求周长的最小值,可考虑将周长写成某个变量的函数式,利用函数的单调性求最值.函数()()0,0kf x x x k x=+≠>在(x ∈-∞上单调递减,在)x ∈+∞上单调递增.角度4题型归类练1.(2022·陕西·榆林市第十中学高一阶段练习)已知扇形所在圆的半径为2,圆心角的弧度数是2,则该扇形的弧长为( ) A .1 B .4C .6D .8【答案】B因为扇形所在圆的半径2r =,圆心角的弧度数α=2, 所以该扇形的弧长224l r α==⨯=. 故选:B2.(2022·北京·高一期中)已知某扇形的圆心角为6π,弧长为23π,则该扇形的半径为___________;面积为___________. 【答案】 4 43π##43π 【详解】由题设,该扇形的半径2436r ππ=÷=,面积为1244233S ππ=⨯⨯=. 故答案为:4,43π3.(2022·江苏省木渎高级中学高一期末)中国扇文化有着深厚的文化底蕴,文人雅士喜在扇面上写字作画.如图,是书画家唐寅(1470—1523)的一幅书法扇面,其尺寸如图所示,则该扇面所在扇形的圆心角为____rad ,此时扇面..面积为____cm 2.【答案】 52704 【详解】解:如图,设AOB θ∠=,OA OB r ==,由题意可得:2464(16)r r θθ=⎧⎨=+⎩,解得:485r =,52θ=. 所以,21481486416247042525OCD OAB S S S cm ⎛⎫=-=⨯⨯+-⨯⨯=⎪⎝⎭.故答案为:5;7042.高频考点四:任意角的三角函数角度1:单位圆法与三角函数例题1.(2022·全国·高三专题练习)设0a <,角α的终边与圆221x y +=的交点为(34)P a a -,,那么sin 2cos αα+=( ) A .25-B .15-C .15D .25【答案】D 【详解】画图,角α的终边与圆221x y +=的交点为(34)P a a -,,设()P x y ,,则3x a =-,4y a =,代入得22(3)(4)1a a -+=,解得2125a =, ∵0a <, ∴15a =-,∴34()55P -,, 又∵在单位圆中,cos x α=,sin y α=, ∴3cos 5α=,4sin 5α=-, ∴2sin 2cos 5αα+=, 故选:D例题2.(2022·北京师大附中高三期中)已知正角α的终边经过点1(2P -,则角α的值可以是_______(写出一个就可以).【详解】因为1(2P -,所以2tan 12α==-所以角α的值可以是23π.故答案为:23π(答案不唯一)角度1题型归类练1.(2022·全国·高三专题练习)点P 为圆221x y +=与x 轴正半轴的交点,将点P 沿圆周逆时针旋转至点P ',当转过的弧长为2π3时,点P '的坐标为( )A.1,2⎛ ⎝⎭ B.12⎛- ⎝⎭C.21⎛⎫⎪ ⎪⎝⎭ D.12⎫-⎪⎪⎝⎭【答案】B 【详解】设旋转角为θ,则22123θπππ⨯⨯=,得23πθ=,从而可得1(2P '-. 故选:B.2.(2022·四川凉山·高一期末)已知角α的顶点在原点,始边与x 轴非负半轴重合,终边与以原点为圆心,半径为1的圆相交于点则34,55A ⎛⎫-- ⎪⎝⎭,则 tan α=( )A .34B .43C .34-D .43-【答案】B 【详解】由题意可得:角α的终边与单位圆的交点为34,55A ⎛⎫-- ⎪⎝⎭,所以35x =-,45y =-,所以445tan 335y x α-===-,故选:B.角度2:终边上任意点法与三角函数例题1.(2022·北京师大附中高一期中)若角α的终边经过点(2,4)P -,则tan α=( ) A .12-B .12C .2D .2-由题设,4tan 22α==--. 故选:D例题2.(2022·北京·人大附中高一期中)已知角α的终边过点()4,3(0)P a a a ->,则cos α的值是( ) A .35 B .35C .45D .45-【答案】C 【详解】 由题意知:44cos 55a a α===.故选:C.角度2题型归类练1.(2022·山东山东·高一期中)已知点(1)P -是角α终边上一点,则cos α=() A . B .12-C D .12【答案】A 【详解】因为点(1)P -是角α终边上一点,所以cos α==故选:A.2.(2022·宁夏·石嘴山市第一中学三模(理))已知角θ的终边上有一点(4,3)(0)a a a P ->,则2sin cos θθ+的值是( ) A .25-B .25C .25或25-D .不确定【答案】B 【详解】角θ的终边上点(4,3)(0)aa a P ->,则||5r OP a ==, 于是得3344sin ,cos 5555a a a a θθ-====-, 所以3422sin cos 2()555θθ+=⨯+-=.故选:B3.(2022·河南焦作·高一期中)若角θ的终边经过点(),3P x -,且3sin 5θ=-,则tan θ=( )A .43-B .43±C .34-D .34±由三角函数的定义可得3sin 5θ==-,解得4x =±,因此3tan 4θ=±.故选:D.4.(2022·四川自贡·高一期末)角α的终边过点()12,5P ,则cos α=( ) A .513B .1213C .125D .512【答案】B 【详解】由题意P 到原点的距离为13r OP ==, 所以12cos 13α=. 故选:B .角度3:三角函数值符号的判定例题1.(2022·陕西·榆林市第十中学高一阶段练习)若3α=,则( ) A .sin 0,cos 0αα>> B .sin 0,cos 0αα>< C .sin 0,cos 0αα<> D .sin 0,cos 0αα<<【答案】B 【详解】 因32παπ<=<,则α是第二象限象限角, 所以sin 0,cos 0αα>< . 故选:B例题2.(2022·北京房山·高一期中)若sin 0θ<且tan 0θ<,则角θ所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D 【详解】sin 0θ<,则角θ在第三,四象限,tan 0θ<,则角θ在第二,四象限,所以满足sin 0θ<且tan 0θ<,角θ在第四象限. 故选:D3.(2022·全国·高三专题练习(理))若tan 0α<,则下列结论一定正确是( ) A .sin 0α< B .sin 20α<C .cos 0α<D .cos20α<【答案】B 【详解】。
考点25 弧度制及任意角的三角函数【命题解读】了解终边相同的角的意义;了解弧度制的概念,能进行弧度与角度的互化.理解任意角的三角函数(正弦、余弦、正切)的定义,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切,熟记特殊角的三角函数值,并能准确判断三角函数值的符号 【基础知识回顾】1. 角的概念的推广(1)正角、负角和零角:一条射线绕顶点按逆时针方向旋转所形成的角叫作正角,按顺时针方向旋转所形成的角叫作负角;如果射线没有作任何旋转,那么也把它看成一个角,叫作零角.(2)象限角:以角的顶点为坐标原点,角的始边为x 轴的正半轴,建立平面直角坐标系,这样,角的终边在第几象限,我们就说这个角是第几象限的角.终边落在坐标轴上的角(轴线角)不属于任何象限.(3)终边相同的角:与角α的终边相同的角的集合为{β|β=k·360°+α,k ∈Z}. 2. 弧度制①1弧度的角:长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=__lr __,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③弧度与角度的换算:360°=_2π_rad ;180°=__π__rad ;1°=__π180__rad ;1 rad =__180π__度. ④弧长公式:__l =|α|r__.扇形面积公式:S 扇形=__12lr__=__12|α|r 2__. 3. 任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P(x ,y),那么sin α=__y__,cos α=__x__,tan α=yx ()x ≠0.(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.1、 下列与角9π4的终边相同的角的表达式中正确的是 ( )A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z ) C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )2. 设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =k 2·180°+45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 4·180°+45°,k ∈Z ,那么( ) A .M =N B .M ⊆N C .N ⊆M D .M ∩N =∅3. 若α是第四象限角,则π-α是第( )象限角.A . 一B. 二C. 三D. 四4. 若扇形的面积为3π8、半径为1,则扇形的圆心角为( )A.3π2B.3π4C.3π8D.3π165、 关于角度,下列说法正确的是( )A .时钟经过两个小时,时针转过的角度是60°B .钝角大于锐角C .三角形的内角必是第一或第二象限角D .若α是第二象限角,则 α2是第一或第三象限角考向一 角的表示及象限角例1(1)集合⎩⎨⎧⎭⎬⎫α⎪⎪k π≤α≤k π+π4,k ∈Z 中的角所表示的范围(阴影部分)是( )(2)若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角变式1、设角α是第三象限角,且⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角.变式2、若α是第三象限角,给出下列式子:① sin α+cos α<0;② tan α-sin α<0; ③ tan αsin α<0;④ sin(cos α)<0. 其中成立的是________.(填序号)方法总结:本题考查象限角、终边相同的角、三角函数值所在象限的符号.利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角.三角函数值象限的符号牢记:“一全正、二正弦、三正切、四余弦”.考查运算求解能力,逻辑思维能力,考查转化与化归思想.考向二 扇形的有关运算例2、已知一扇形的中心角是α,所在圆的半径是R .(1) 若α=60°,R =10cm ,求扇形的弧长及该弧所在的弓形面积;(2) 若扇形的周长是一定值C (C >0),当α为多少弧度时,该扇形有最大面积?变式1、扇形AOB 的周长为8 cm .(1)若这个扇形的面积为3 cm 2,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB.变式2、 已知扇形的圆心角是α,半径是r ,弧长为l .(1)若α=100°,r =2,求扇形的面积;(2)若扇形的周长为20,求扇形面积的最大值,并求此时扇形圆心角的弧度数.方法总结:有关弧长及扇形面积问题的注意点(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决. (3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.考向三 三角函数的定义及应用例3、已知角α的终边上一点P (-3,m )(m ≠0), 且sin α=2m4,求cos α,tan α的值.变式1、(1)已知角α的终边经过点P(-x ,-6),且cos α=-513,则1sin α+1tan α=____.(2)已知角α的终边与单位圆的交点为P ⎝⎛⎭⎫-12,y ,则sin α·tan α=_ __.变式2、(1)函数y =log a (x -3)+2(a >0且a ≠1)的图象过定点P ,且角α的顶点在原点,始边与x 轴非负半轴重合,终边过点P ,则sin α+cos α的值为( )A.75 B .65 C.55D.355(2)已知角α的终边经过点P (-x ,-6),且cos α=-513,则1sin α+1tan α=________.方法总结:1.明确用定义法求三角函数值的两种情况:(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解;(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.2.三角函数值只与角的大小有关,与点P 在角的终边上的位置无关,由于P 是除原点外的任意一点,故r 恒为正,本题要注意对变量的讨论.考向四 三角函数值的符号及判定例4、已知sin α<0,tan α>0. (1) 求α角的集合; (2) 求α2终边所在的象限; (3) 试判断tan α2sin α2cos α2的符号.变式1、(2020·江西九江一模)若sin x <0,且sin(cos x )>0,则角x 是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角变式2、(多选)在平面直角坐标系xOy 中,角α以Ox 为始边,终边经过点P (-1,m )(m >0),则下列各式的值一定为负的是( )A .sin α+cos αB .sin α-cos αC .sin αcos α D.sin αtan α方法总结:(1)区域角也称为范围角,表示的是一定范围内角的全体,它是高考的考点之一.表示区域角时要注意考虑问题的范围以及边界的虚实线情况.(2)准确掌握三角函数在各象限的符号.1、在平面直角坐标系中,角α的顶点在原点,始边在x 轴的正半轴上,角α的终边经过点M ⎝⎛⎭⎫-cos π8,sin π8,且0<α<2π,则α=( ) A.π8B.3π8C.5π8D.7π82、已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( ) A.-12B.-32C.12D.323、(2014新课标I ,文2)若tan 0α>,则A. sin 20α> B . cos 0α> C . sin 0α> D . cos20α>4、(2011全国课标理5文7)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ= (A )45-(B)35- (C) 35 (D) 455、(2018•新课标Ⅰ,文11)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点(1,)A a ,(2,)B b ,且2cos23α=,则||(a b -= )A .15B C D .16、若两个圆心角相同的扇形的面积之比为1∶4,则这两个扇形的周长之比为________.7、(2018浙江)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点34(,)55P --.(1)求sin()απ+的值; (2)若角β满足5sin()13αβ+=,求cos β的值.。
辅导讲义――任意角的三角函数教学内容任意角和弧度制及任意角的三角函数1.角的概念(1)分类⎩⎨⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(2)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }.2.弧度的定义和公式(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式:①弧度与角度的换算:360°=2π弧度;180°=π弧度;②弧长公式:l =|α|r ;③扇形面积公式:S 扇形=12lr 和12|α|r 2.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=y x (x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线,余弦线和正切线.1.易混概念:第一象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.利用180°=π rad 进行互化时,易出现度量单位的混用.3.三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=y x,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α=x r ,tan α=y x. [试一试]1.若α=k ·180°+45°(k ∈Z ),则α是第______象限角.2.已知角α的终边经过点(3,-1),则sin α=________.1.三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦;2.对于利用三角函数定义解题的题目,如果含有参数,一定要考虑运用分类讨论,而在求解简单的三角不等式时,可利用单位圆及三角函数线,体现了数形结合的思想.[练一练]若sin α<0且tan α>0,则α是第______象限角.考点一角的集合表示及象限角的判定 1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有______个.2.终边在直线y =3x 上的角的集合为________.3.在-720°~0°范围内找出所有与45°终边相同的角为________.4.设集合M =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =k 2·180°+45°,k ∈Z , N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 4·180°+45°,k ∈Z ,那么集合M ,N 的关系是______.[类题通法]1.利用终边相同角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角.2.已知角α的终边位置,确定形如kα,π±α等形式的角终边的方法:先表示角α的范围,再写出kα,π±α等形式的角范围,然后就k 的可能取值讨论所求角的终边位置.考点二 三角函数的定义[典例] (1)已知角α的终边上一点P 的坐标为⎝⎛⎭⎫sin 2π3,cos 2π3,则角α的最小正值为______. (2)已知α是第二象限角,其终边上一点P (x ,5),且cos α=24x ,则sin ⎝⎛⎭⎫α+π2=________.[类题通法]用定义法求三角函数值的两种情况(1)已知角α终边上一点P的坐标,则可先求出点P到原点的距离r,然后用三角函数的定义求解;(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求相关问题.[针对训练]已知角α的终边在直线y=-3x上,求10sin α+3cos α的值.考点三扇形的弧长及面积公式[典例](1)已知扇形周长为10,面积是4,求扇形的圆心角.(2)已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?若本例(1)中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.[类题通法]弧度制应用的关注点(1)弧度制下l=|α|·r,S=12lr,此时α为弧度.在角度制下,弧长l=nπr180,扇形面积S=nπr2360,此时n为角度,它们之间有着必然的联系.(2)在解决弧长、面积及弓形面积时要注意合理应用圆心角所在的三角形.[针对训练]已知扇形的圆心角是α=120°,弦长AB=12 cm,求弧长l.[课堂练通考点]1.如图所示,在直角坐标系xOy中,射线OP交单位圆O于点P,若∠AOP=θ,则点P的坐标是________.2.已知扇形的周长是6 cm,面积是2 cm2,则扇形的圆心角的弧度数是________.3.已知角α的终边经过点(3a-9,a+2),且cos α≤0,sin α>0,则实数a的取值范围是________.4.在与2 010°终边相同的角中,绝对值最小的角的弧度数为________.5.已知角α 的终边经过点P (x ,-6),且tan α=-35,则x 的值为________. 6.已知sin α=13,且α∈⎝⎛⎭⎫π2,π,则tan α=______.第Ⅰ组:全员必做题1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是______.2.已知cos θ·tan θ<0,那么角θ是第________象限角.3.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=______. 4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为________.5.给出下列各函数值:①sin(-1 000°);②cos(-2 200°);③tan(-10);④sin 7π10cos πtan 17π9,其中符号为负的是________(填写序号).6.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.7.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=________.8.设角α是第三象限角,且⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角.9.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB .10.已知sin α<0,tan α>0.(1)求α角的集合;(2)求α2终边所在的象限;第Ⅱ组:重点选做题巩固基础和能力提升训练1.满足cos α≤-12的角α的集合为________. 2.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为________.。
专题6.1任意角的三角函数(精讲精析篇)提纲挈领点点突破热门考点01 象限角及终边相同的角(1)任意角、角的分类:①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角:终边与角α相同的角可写成α+k ·360°(k ∈Z ). 【典例1】(2019·乐陵市第一中学高三)如果,那么与终边相同的角可以表示为A .B .C .D .【方法技巧】象限角的两种判断方法(1)图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角. (2)转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与已知角终边相同的角α,再由角α终边所在的象限判断已知角是第几象限角.【典例2】若α是第三象限的角, 则2απ-是 ( )A. 第一或第二象限的角B. 第一或第三象限的角C. 第二或第三象限的角D. 第二或第四象限的角【总结提升】象限角与轴线角(终边在坐标轴上的角)的集合表示 (1)象限角:象限角 集合表示第一象限角 {α|k ·360°<α<k ·360°+90°,k ∈Z } 第二象限角 {α|k ·360°+90°<α<k ·360°+180°,k ∈Z } 第三象限角 {α|k ·360°+180°<α<k ·360°+270°,k ∈Z } 第四象限角{α|k ·360°+270°<α<k ·360°+360°,k ∈Z }(2)轴线角:角的终边的位置集合表示终边落在x 轴的非负半轴上 {α|α=k ·360°,k ∈Z } 终边落在x 轴的非正半轴上 {α|α=k ·360°+180°,k ∈Z } 终边落在y 轴的非负半轴上 {α|α=k ·360°+90°,k ∈Z } 终边落在y 轴的非正半轴上 {α|α=k ·360°+270°,k ∈Z } 终边落在y 轴上 {α|α=k ·180°+90°,k ∈Z } 终边落在x 轴上 {α|α=k ·180°,k ∈Z } 终边落在坐标轴上{α|α=k ·90°,k ∈Z }热门考点02 弧度制、扇形的弧长及面积公式(1)弧度制:①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr ,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制.比值lr 与所取的r 的大小无关,仅与角的大小有关.(2)弧度与角度的换算:360°=2π弧度;180°=π弧度. (3)弧度制下l =|α|·r ,S =12lr ,此时α为弧度.扇形面积公式,扇形中弦长公式,扇形弧长公式在角度制下,弧长l =n πr 180,扇形面积S =n πr 2360,此时n 为角度,它们之间有着必然的联系.【典例3】(2018·湖北高考模拟(理))《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中,)A .15B .16C .17D .18【典例4】(2019·河南高考模拟(理))已知圆O 与直线l 相切于A ,点,P Q 同时从点A 出发,P 沿着直线l 向右、Q 沿着圆周按逆时针以相同的速度运动,当Q 运动到点A 时,点P 也停止运动,连接OQ ,OP (如图),则阴影部分面积1S ,2S 的大小关系是( )A .12S S =B .12S S ≤C .12S S ≥D .先12S S <,再12S S =,最后12S S >【典例5】一个扇形的周长为20 cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?并求出这个扇形的最大面积. 【总结提升】应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度;(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决; (3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.热门考点03 三角函数的定义1.任意角的三角函数定义:设α是一个任意角,角α的终边与单位圆交于点P (x ,y ),那么 (1)点P 的纵坐标叫角α的正弦函数,记作sin α=y ; (2)点P 的横坐标叫角α的余弦函数,记作cos α=x ;(3)点P 的纵坐标与横坐标之比叫角α的正切函数,记作tan α=yx .它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.将正弦函数、余弦函数和正切函数统称为三角函数,通常将它们记为: 正弦函数y =sinx ,x ∈R ; 余弦函数 y =cosx ,x ∈R ; 正切函数 y =tanx ,x ≠π2+k π(k ∈Z ).2.三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦 【典例6】(2008·全国高考真题(文))若,且,则是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 【典例7】已知角的终边在射线上,则等于( )A. B. C. D.【典例8】(江西高考真题(文))已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若()4,p y 是角θ终边上一点,且5sin 5θ=-,则y=_______. 【典例9】已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( ) A .(-2,3] B .(-2,3) C .[-2,3)D .[-2,3]【总结提升】1.已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后利用三角函数的定义求解.2.已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义求解相关的问题.若直线的倾斜角为特殊角,也可直接写出角α的三角函数值.热门考点04 同角三角函数的基本关系式同角三角函数的基本关系式(1)平方关系:sin 2α+cos 2α=1(α∈R ). (2)商数关系:tan α=sin αcos α⎝⎛⎭⎫α≠k π+π2,k ∈Z . 【典例10】(2019·北京高考模拟(文))已知3(,)22ππα∈,且tan 2α=sin α=( )A .33-B .36-C .36 D .33【典例11】(2020·金华市江南中学高一月考)已知sin cos sin cos x xx x+-=2,则tan x =____,sin x cos x =____.【规律方法】1.同角三角函数关系式的三种应用方法--“弦切互化法”、“1”的灵活代换法”、“和积转换法”(1)利用sin 2α+cos 2α=1可实现α的正弦、余弦的互化,注意()222124sin cos sin cos sin cos tanπθθθθθθ=+=+-=等;(2)由一个角的任一三角函数值可求出这个角的另外两个三角函数值,因为利用“平方关系”公式,需求平方根,会出现两解,需根据角所在的象限判断符号,当角所在的象限不明确时,要进行分类讨论. 2. 利用sin αcos α=tan α可以实现角α的弦切互化.(1)若已知tan α=m ,求形如a sin α+b cos αc sin α+d cos α(或a sin 2α+b cos 2αc sin 2α+d cos 2α)的值,其方法是将分子、分母同除以cos α(或cos 2α)转化为tan α的代数式,再求值,如果先求出sin α和cos α的值再代入,那么运算量会很大,问题的解决就会变得繁琐.(2)形如a sin 2α+b sin αcos α+c cos 2α通常把分母看作1,然后用sin 2α+cos 2α代换,分子、分母同除以cos 2α再求解.热门考点05 sin α±cos α与sin αcos α的关系及应用三角函数求值与化简必会的三种方法 (1)弦切互化法:主要利用公式tan α=;形如,22asin x bsinxcosx ccos x ++等类型可进行弦化切.(2)“1”的灵活代换法: ()222124sin cos sin cos sin cos tanπθθθθθθ=+=+-=等.(3)和积转换法:利用()()22212,()2sin cos sin cos sin cos sin cos θθθθθθθθ±=±++-=的关系进行变形、转化.【典例12】(2018·河北高考模拟(理))已知,,则的值为( )A .B .C .D .【典例13】(2020·永州市第四中学高一月考)已知22sin 2sin cos 01tan 2k αααπαα+⎛⎫=<< ⎪+⎝⎭.试用k 表示sin cos αα-的值.【典例14】(2019·天津高考模拟)已知,则的值是( )A .B .C .D .【典例15】(2019·山东高三期末(理))已知,,则( )A .B .C .或D .或【总结提升】(1)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(2)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.热门考点06 诱导公式及其应用六组诱导公式角 函数 2k π+α(k ∈Z ) π+α -α π-α π2-α π2+α 正弦 sin_α -sin_α -sin_α sin_α cos_α cos_α 余弦 cos_α -cos_α cos_α -cos_α sin_α -sin_α 正切tan_αtan_α-tan_α-tan_α对于角“k π2±α”(k ∈Z )的三角函数记忆口诀“奇变偶不变,符号看象限”,“奇变偶不变”是指“当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变”.“符号看象限”是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号”【典例16】(2016·全国高考真题(文))已知θ是第四象限角,且sin (θ+)=,则tan (θ–)= .【典例17】(2020·永州市第四中学高一月考)已知α是第四象限角,3sin cos tan()22()tan()sin()f ππααπααπαπα⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭=---.(1)化简()f α. (2)若33cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值.【总结提升】1.用诱导公式求值时,要善于观察所给角之间的关系,利用整体代换的思想简化解题过程.常见的互余关系有-α与+α,+α与-α,+α与-α等,常见的互补关系有-θ与+θ,+θ与-θ,+θ与-θ等.2. 利用诱导公式化简求值的步骤:(1)负化正;(2)大化小;(3)小化锐;(4)锐求值.热门考点07 同角公式、诱导公式的综合应用【典例18】(2020·山东诸城�高一期中)已知3sin 5α=-,且α是第________象限角. 从①一,②二,③三,④四,这四个选项中选择一个你认为恰当的选项填在上面的横线上,并根据你的选择,解答以下问题: (1)求cos ,tan αα的值;(2)化简求值:3sin()cos()sin 2cos(2020)tan(2020)πααπαπαπα⎛⎫--+ ⎪⎝⎭+-.【典例19】设tan(α+8π7)=m ,求证:sin (15π7+α)+3cos (α-13π7)sin (20π7-α)-cos (α+22π7)=m +3m +1.【规律方法】1.利用诱导公式化简三角函数的基本思路:(1)分析结构特点,选择恰当公式;(2)利用公式化成单角三角函数;(3)整理得最简形式.2.化简要求:(1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.3.三角恒等式的证明一般有三种方法:①一端化简等于另一端;②两端同时化简使之等于同一个式子;③作恒等式两端的差式使之为0.4证明条件恒等式,一般有两种方法:一是在从被证等式一边推向另一边的适当时候将条件代入,推出被证等式的另一边,这种方法称作代入法;二是直接将条件等式变形,变形为被证的等式,这种方法称作推出法,证明条件等式时,不论使用哪一种方法,都要依据要证的目标的特征进行变形.巩固提升1.(2020·甘肃省会宁县第四中学高二期末(文))sin780︒的值为( )A .B .12-C .12D .22.(2020·昆明市官渡区第一中学高一月考)若-2π<α<0,则点P(tanα,cosα)位于 ( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.(2019·伊美区第二中学高一月考)已知4sin 5θ=,()0,θπ∈,则tan θ等于( ). A .43B .34C .43±D .34±4.(2020·河南项城市第三高级中学高一月考)已知α是第二象限角,且31cos 24πα⎛⎫+=⎪⎝⎭,则cos α=( )A .B .14-C .14D 5.(2020·江西省铜鼓中学高一期末)一个扇形的圆心角为150°,面积为53π,则该扇形半径为( )A .4B .1CD .26.(2020·吉林高三月考(理))若4sin cos 3θθ-=,且3π,π4θ⎛⎫∈ ⎪⎝⎭,则sin(π)cos(π)θθ---=( )A .3-B .3C .43-D .437.(2018·全国延安�高三一模(文))已知()()sin 3cos sin 2πθπθθ⎛⎫++-=-⎪⎝⎭,则2sin cos cos θθθ+=( )A .15B .25C .35D 8.(2020·四川省绵阳江油中学高三开学考试(文))已知()0,απ∈,1sin 23πα⎛⎫-=- ⎪⎝⎭,则()tan απ+=( )A .4B .4-C .D .-9.(2019·历下·山东师范大学附中高三月考)【多选题】在平面直角坐标系xOy 中,角α顶点在原点O ,以x 正半轴为始边,终边经过点()()1,0P m m <,则下列各式的值恒大于0的是( )A .sin tan ααB .cos sin αα-C .sin cos ααD .sin cos αα+10.(2020·山东临沂·高一期末)【多选题】对于①sin 0θ>,②sin 0θ<,③cos 0θ>,④cos 0θ<,⑤tan 0θ>,⑥tan 0θ<,则θ为第二象限角的充要条件为( ) A .①③B .①④C .④⑥D .②⑤11.(2020·福建泉州·高一期末)在平面直角坐标系中,角α的顶点在原点,始边与x 轴非负半轴重合,角α的终边经过点34,55P ⎛⎫- ⎪⎝⎭,则sin α=___________,tan α=_________. 12.(2019·北京顺义·牛栏山一中高三月考)已知tan 2α,且α为第二象限角,则sin α=______;cos α=_______.13.(2018·浙江丽水·高一期末)在平面直角坐标系中,角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边过点(1)P -,则tan α=_______;cos sin αα-=_______. 14.(2019·海南高三月考)已知角α的终边经过点1(,)33P -- (1)求sin ,cos ,tan ααα的值;(25sin(3)2cos()ππαα-++ 15.(2020·全国高一课时练习)在平面直角坐标系中,角α的终边在直线3x +4y =0上,求sin α-3cos α+tan α的值.16.(2020·永州市第四中学高一月考)已知α是第四象限角,3sin cos tan()22()tan()sin()f ππααπααπαπα⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭=---. (1)化简()f α. (2)若33cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值.。