空间向量的数量积1(教案)
- 格式:doc
- 大小:100.50 KB
- 文档页数:5
人教A版选修2《空间向量的数量积运算》教案及教学反思教学目标通过本节课的学习,学生应该掌握以下知识: - 理解空间向量的数量积运算 - 掌握空间向量的数量积运算的定义和性质 - 熟悉空间向量的数量积运算的计算方法 - 能够应用空间向量的数量积运算解决实际问题教学内容1.空间向量的数量积概念和定义2.空间向量的数量积运算的性质3.空间向量的数量积运算的计算方法4.应用空间向量的数量积运算解决实际问题教学重点•掌握空间向量的数量积运算的定义和性质•熟悉空间向量的数量积运算的计算方法教学难点•理解空间向量的数量积运算的概念•应用空间向量的数量积运算解决实际问题教学方法•讲授法•提问法•实验法教具准备•平面直角坐标系•立体直角坐标系•白板和笔教学过程导入(5分钟)教师通过提问学生上一次课所学的知识,引出本节课所要学习的内容。
讲授(40分钟)1. 空间向量的数量积概念和定义•向量的数量积又叫点积,用符号 $\\vec a \\cdot \\vec b$ 表示,它是两个向量的数量乘积与它们夹角余弦的乘积。
•数量积可以计算向量的模长,夹角余弦,方向余弦等。
•数量积也可以表示两个向量共线或者垂直的关系。
2. 空间向量的数量积运算的性质•交换律:$\\vec a \\cdot \\vec b = \\vec b \\cdot \\vec a$•结合律:$(\\lambda\\vec a) \\cdot \\vec b = \\lambda(\\vec a \\cdot \\vec b) = \\vec a \\cdot (\\lambda \\vec b)$•分配律:$\\vec a \\cdot (\\vec b + \\vec c) = \\vec a \\cdot \\vec b + \\vec a \\cdot \\vec c$•数量积为零的条件:向量相互垂直3. 空间向量的数量积运算的计算方法•模长法:$\\vec a \\cdot \\vec b = |\\vec a| |\\vec b| \\cos \\theta$,其中 $\\theta$ 为两个向量间夹角。
1.1.2空间向量的数量积运算 教学设计(人教A 版普通高中教科书数学选择性必修第一册第一章)一、教学目标1.了解空间向量夹角的概念及表示方法,掌握空间向量数量积的计算方法、几何意义、性质及运算律2.通过学习空间向量的数量积运算,培养学生数学运算的核心素养;通过投影向量概念的学习培养学生直观想象和逻辑推理的核心素养二、教学重难点1.重点:空间向量的数量积的定义、性质、运算律及计算方法2.难点:空间向量的数量积的几何意义,运算律的证明三、教学过程1.类比平面向量,探究空间向量数量积的相关概念和性质1.1两个非零空间向量的夹角问题1:类比平面向量中所学,如何定义空间向量的夹角?【预设的答案】空间向量是自由向量,可以将两个向量平移到共起点的位置(动态演示空间向量平移过程)【定义】已知两个非零向量a ,b ,在空间任取一点O ,作OA→ = a ,OB → = b ,则∠AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉. 规定:〈a ,b 〉∈[0,π].特别地:当〈a ,b 〉= π2时,a ⊥b .【互动练习】(1)〈a ,b 〉=〈b ,a 〉成立吗?(2)〈a ,b 〉= ,则称a 与b 互相垂直,记作 .(3)〈a ,b 〉= 0时,a 与b 方向 ; 〈a ,b 〉= π时,a 与b 方向 .1.2 两个非零空间向量的数量积【定义】已知两个非零向量a ,b ,则|a| |b| cos 〈a ,b 〉叫做a ,b 的数量积,记作a ·b . 即 a ·b = |a| |b| cos 〈a ,b 〉.规定:零向量与任意向量的数量积都等于零.问题2:根据上述定义我们不难发现,空间向量数量积的定义和平面向量数量积定义一致,那么空间向量数量积的性质是否与平面向量中的一致呢?【预设的答案】一致【互动练习】(1)两个向量的数量积是数量还是向量?(数量,它的大小与两个向量的长度及其夹角有关.)(2)0 ·a = (选择0还是0). 零向量与任意向量的数量积为0.(3)对于两个非零向量a ,b ,a ⊥b ⟺ a ·b = (判断垂直关系)(4)a ·a =_____或|a |=a ·a (求模长)(5)若a ,b 同向,则 a ·b =_______;若反向,则a ·b =_______.(6)|a ·b | ____ |a |·|b |(7)若θ为a ,b 的夹角,则cos θ=_______.【设计意图】平面向量中关于数量积的性质可以直接类比到空间向量中来,从学生的口中叙述出来,一是为了巩固,也能让学生体会空间向量数量积定义与平面向量数量积定义的相通之处.【例1】如图所示,在棱长为1的正四面体ABCD 中,E ,F 分别是AB ,AD 的中点,求值: (1)EF →·BA →;(2)EF →·BD →;(3)EF →·DC →.【解】(1)EF →·BA →=12BD →·BA →=12|BD →||BA →|cos 〈BD →,BA →〉=12cos 60°=14.(2)EF →·BD →=12BD →·BD →=12|BD →|2=12.(3)EF ·DC →=12BD →·DC →=-12DB →·DC →=-12×cos 60°=-14.1.3 空间向量的数量积的几何意义问题3:在平面向量的学习中,我们学习了向量的投影.类似地,在空间,向量a 向向量b 的投影有什么意义?【预设的答案】将两空间向量平移至同一平面,转化为平面向量问题,找出投影向量.在空间中,由于向量a 与向量b 是自由向量,将向量a 与向量b 平移到同一平面内α内,进而利用平面上向量的投影,得到与向量b 共线的向量:||cos ,b c a a b b=<>追问: 空间中,向量a 能否向一条直线l 作投影?向量a 能否向一个平面β作投影?图1动态演示向量a 向向量b 投影注:图3中向量a 与投影向量的夹角就是向量a 所在直线与平面β所成的角【设计意图】投影向量概念的提出是为了让学生体会空间向量数量积的几何意义;另外,空间向量向直线投影、向平面投影也为后续学生对空间向量与空间角间的关系形成初步认识.1.4 空间向量的数量积的运算律问题4: 类比平面向量数量积的运算律,空间向量数量积满足哪些运算律?【预设的答案】结合律;交换律;分配律数乘向量与向量数量积的结合律(λa )·b =λ(a ·b ), λ∈R 交换律a ·b =b ·a 分配律a ·(b +c )=a ·b +a ·c追问:你能否证明上述运算律?【教师分析】证明前两条运算律,可以将向量a 与向量b 平移至同一个平面当中,则证明过程与平面向量中的证明方法无异;证明分配律时则涉及到三个不共面的向量.分配律的证明:,,OA a OB b BC c ===令, 'OC OA OC 向投影,投影向量为,OC OA θ记与的夹角为()OA OB BC OA OC ∴=⋅+=⋅左边||||cos OA OC θ=|||'|OA OC ='OB OA OB 向投影,投影向量为,1OB OAθ记与的夹角为 ''BC OA B C 同理,向投影,投影向量为,2BC OAθ记与的夹角为 OA OB OA BC ∴=⋅+⋅右边12||||cos ||||cos OA OB OA BC θθ=+|||'||||''|OA OB OA B C =+ ||(|'||''|)OA OB B C =+|||'|OA OC ==左边图2动态演示向量a 向直线l 投影 图3 动态演示向量a 向平面β投影2. 对比思考,深入了解思考问题1: 对于三个均不为0的数a ,b ,c ,若ab=ac ,则b=c.对于非零向量a ,b ,c ,由a ·b =a ·c ,能得到b =c 吗?分析:由a ·b =a ·c ,有a·(b -c )=0. 从而有b =c 或a ⊥(b -c ).追问:能否从几何意义的角度举出反例?思考问题2: 向量有除法吗?分析:向量没有除法. 追问:ak 的结果唯一吗? 思考问题3: 向量数量积满足结合律吗?分析:两个向量的数量积为一个实数,(a ·b )c 和a (b ·c )分别表示与向量c 和向量a 共线的向量,它们不一定相等.向量的数量积运算没有结合律!【设计意图】通过三个问题的思考 ,与数字运算进行对比,深刻体会向量运算与数字运算的区别所在;学会用数形结合的思想解决问题,了解向量是与几何密切相关的工具.四、课堂小结(1)空间向量夹角的定义及范围;(2)空间向量数量积运算的定义、性质及几何意义;(3)空间向量数量积运算的运算律及简单计算.五、课后思考【变式训练1】例1条件不变,如何求AB →·CD →的值?【解】AB →·CD →=AB →·(AD →-AC →)=AB →·AD →-AB →·AC →=|AB →||AD →|cos 〈AB →,AD →〉-|AB →||AC →|cos 〈AB →,AC →〉=cos 60°-cos 60°=0.【设计意图】感受向量数量积的逆用,数量积运算的结果可以推导出夹角及位置关系. 思考:(1)能否利用空间向量的数量积证明空间中两条直线垂直?(2)能否利用空间向量的数量积求出空间中异面直线所成角?(3)能否利用空间向量的数量积解决更多的立体几何中的问题?。
空间向量的数量积运算教案一、教学目标1. 知识目标:了解空间向量的概念和数量积运算的定义;掌握空间向量数量积的计算方法;理解空间向量数量积的几何意义。
2. 能力目标:能运用数量积的性质解决实际问题;能够运用向量的数量积计算向量的长度和夹角;能够通过数量积判断向量的垂直和平行关系。
3. 情感态度目标:培养学生对数学的兴趣和热爱;培养学生观察问题、分析问题、解决问题的能力;培养学生学会合作、分享以及互相帮助的品质。
二、教学重难点1. 教学重点:(1)空间向量的概念和性质;(2)空间向量数量积的定义和计算;(3)向量数量积的几何意义。
2. 教学难点:(1)利用数量积计算向量的长度和夹角;(2)判断空间向量的垂直和平行关系。
三、教学过程1.导入新课通过一个实际问题引入,例如:有一个空间中的物体用向量表示力,物体受力的情况如何影响其运动?引导学生思考并激发学生学习的兴趣。
2.概念讲解介绍空间向量的概念和性质,讲解向量的数量积的定义和性质,并通过具体的例子加深学生对概念的理解。
3. 数量积的计算方法(1)介绍向量数量积的计算公式;(2)讲解向量数量积的几何意义,如何通过数量积计算向量的长度和夹角。
4.练习与实践为了帮助学生更好地掌握数量积的计算方法,老师可以设计一些简单的计算练习题,并让学生进行练习,在练习中体会数量积的计算方法和几何意义。
5. 垂直和平行关系的判断介绍如何利用数量积判断向量的垂直和平行关系,通过具体的实例让学生掌握判断方法。
6. 课堂讨论让学生结合实际问题进行讨论和分享,提高学生自主探究和解决问题的能力。
7. 拓展与应用将向量数量积与实际问题相结合,引导学生解决实际问题,拓展学生的应用能力。
8. 归纳总结总结本节课的重点内容,强调向量数量积在几何问题中的应用,并巩固学生对相关概念的理解。
9. 作业布置布置相关的作业,让学生巩固所学内容,并在课后检查学生的作业情况。
四、教学反思通过本节课的教学,学生能够掌握空间向量数量积的概念、性质和计算方法,能够运用数量积解决实际问题,提高了学生的数学运算能力和应用能力。
新教材高中数学教案新人教A 版选择性必修第一册:1.1.2 空间向量的数量积运算学习 目 标核 心 素 养1.掌握空间向量夹角的概念及表示方法.2.掌握空间向量的数量积的定义、性质、运算律及计算方法.(重点)3.掌握投影向量的概念.(重点)4.能用向量的数量积解决立体几何问题.(难点)1.通过学习空间向量的数量积运算,培养学生数学运算的核心素养.2.借助投影向量概念的学习,培养学生直观想象和逻辑推理的核心素养.3.借助利用空间向量数量积证明垂直关系、求夹角和距离运算,提升学生的逻辑推理和数学运算核心素养.已知两个非零向量a 与b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角.如果a 与b 的夹角为90°,则称a 与b 垂直,记作a ⊥b .已知两个非零向量a 与b ,它们的夹角为θ,把a ·b =|a ||b |cos θ叫做a 与b 的数量积(或内积)类比探究一下:两个空间向量的夹角以及它们的数量积能否像平面向量那样来定义呢?1.空间向量的夹角 (1)夹角的定义已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉.(2)夹角的范围空间任意两个向量的夹角θ的取值范围是[0,π].特别地,当θ=0时,两向量同向共线;当θ=π时,两向量反向共线,所以若a ∥b ,则〈a ,b 〉=0或π;当〈a ,b 〉=π2时,两向量垂直,记作a ⊥b .2.空间向量的数量积(1)定义:已知两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做a ,b 的数量积,记作a ·b .即a ·b =|a ||b |cos 〈a ,b 〉.规定:零向量与任何向量的数量积为0. (2)常用结论(a ,b 为非零向量) ①a ⊥b ⇔a ·b =0.②a ·a =|a ||a |cos 〈a ,a 〉=|a |2.③cos〈a ,b 〉=a ·b|a ||b |.(3)数量积的运算律数乘向量与数量积的结合律(λa )·b =λ(a ·b )=a ·(λb )交换律 a ·b =b ·a 分配律a ·(b +c )=a ·b +a ·ca b a b (2)若a ·b >0,则〈a ,b 〉一定是锐角吗?[提示] (1)若a ·b =0,则不一定有a ⊥b ,也可能a =0或b =0.(2)当〈a ,b 〉=0时,也有a ·b >0,故当a ·b >0时,〈a ·b 〉不一定是锐角. 3.投影向量 (1)投影向量在空间,向量a 向向量b 投影,可以先将它们平移到同一个平面内,进而利用平面上向量的投影,得到与向量b 共线的向量c ,c =|a |cos 〈a ,b 〉b|b |,则向量c 称为向量a 在向量b 上的投影向量,同理向量b 在向量a 上的投影向量是|b |cos 〈a ,b 〉a |a |. (2)向量a 在平面β上的投影向量向量a 向平面β投影,就是分别由向量a 的起点A 和终点B 作平面β的垂线,垂足分别为A ′,B ′,得到向量A ′B ′→,则向量A ′B ′→称为向量a 在平面β上的投影向量.这时,向量a ,A ′B ′→的夹角就是向量a 所在直线与平面β所成的角.[提醒] (1)两个向量的数量积是数量,而不是向量,它可以是正数、负数或零; (2)向量数量积的运算不满足消去律、作商和乘法的结合律 ,即a ·b =a ·c ⇒b =c ,a ·b =k ⇒b =ka,(a ·b )·c =a ·(b·c )都不成立.1.思考辨析(正确的打“√”,错误的打“×”) (1)对于非零向量a ,b ,〈a ,b 〉与〈a ,-b 〉相等.( )(2)对于任意向量a ,b ,c ,都有(a ·b )c =a (b ·c ). ( ) (3)若a ·b =b ·c ,且b ≠0,则a =c . ( ) (4)(3a +2b )·(3a -2b )=9|a |2-4|b |2. ( )[提示] (1)× (2)× (3)× (4)√2.(教材P 8练习T 1改编)在正三棱柱ABC A 1B 1C 1中,若AB =BB 1,则AB 1与BC 1所成角的余弦值为( )A .38B .14C .34D .18B [令底面边长为1,则高也为1,AB 1→=AB →+BB 1→,BC 1→=B C →+CC 1→,∴AB 1→·BC 1→=(AB →+BB 1→)·(BC →+CC 1→)=AB →·BC →+BB 1→·CC 1→=1×1×cos 120°+12=12,又|AB 1→|=|BC 1→|= 2.∴cos〈AB 1,BC 1〉=122×2=14.故选B.] 3.已知a =3p -2q ,b =p +q ,p 和q 是相互垂直的单位向量,则a·b =( ) A .1 B .2 C .3 D .4A [由题意知,p·q =0,p 2=q 2=1.所以a ·b =(3p -2q )·(p +q )=3p 2+p ·q -2q 2=3-2=1.]4.设a ⊥b ,〈a ,c 〉=π3,〈b ,c 〉=π6,且|a |=1,|b |=2,|c |=3,则向量a +b +c的模是________.17+63 [因为|a +b +c |2=(a +b +c )2=|a |2+|b |2+|c |2+2(a ·b +a ·c +b ·c )=1+4+9+2⎝ ⎛⎭⎪⎫0+1×3×12+2×3×32=17+63,所以|a +b +c |=17+6 3.]空间向量数量积的运算则AB →·CD →等于( )A .-2B .2C .-2 3D .2 3(2)在四面体OABC 中,棱OA ,OB ,OC 两两垂直,且OA =1,OB =2,OC =3,G 为△ABC 的重心,求OG →·(OA →+OB →+OC →)的值.(1)A [∵CD →=AD →-AC →,∴AB →·CD →=AB →·(AD →-AC →)=AB →·AD →-AB →·AC →=0-2×2×cos 60°=-2.](2)[解] OG →=OA →+AG →=OA →+13(AB →+AC →)=OA →+13[(OB →-OA →)+(OC →-OA →)]=13OB →+13OC →+13OA →. ∴OG →·(OA →+OB →+OC →)=⎝ ⎛⎭⎪⎫13OB →+13OC →+13OA →·(OA →+OB →+OC →)=13OB →2+13OC →2+13OA →2=13×22+13×32+13×12=143.在几何体中求空间向量的数量积的步骤1首先将各向量分解成已知模和夹角的向量的组合形式.2利用向量的运算律将数量积展开,转化成已知模和夹角的向量的数量积. 3根据向量的方向,正确求出向量的夹角及向量的模. 4代入公式a·b =|a ||b |cos 〈a ,b 〉求解.[跟进训练]1.在长方体ABCD A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AA 1B 1B 的中心,F 为A 1D 1的中点,求下列向量的数量积:(1)BC →·ED 1→;(2)BF →·AB 1→.[解] 如图,设AB →=a ,AD →=b ,AA 1→=c ,则|a |=|c |=2,|b |=4,a·b =b·c =c·a =0.(1)BC →·ED 1→=BC →·(EA 1→+A 1D 1→)=b ·12(c -a )+b =|b |2=42=16.(2)BF →·AB 1→=(BA 1→+A 1F →)·(AB →+AA 1→)=c -a +12b ·(a +c )=|c |2-|a |2=22-22=0.利用数量积证明空间垂直关系【例2】 已知空间四边形OABC 中,∠AOB =∠BOC =∠AOC ,且OA =OB =OC ,M ,N 分别是OA ,BC 的中点,G 是MN 的中点,求证:OG ⊥BC .[思路探究] 首先把向量OG →和BC →均用OA →、OB →、OC →表示出来,通过证明OG →·BC →=0来证得OG ⊥BC .[证明] 连接ON ,设∠AOB =∠BOC =∠AOC =θ, 又设OA →=a ,OB →=b ,OC →=c , 则|a |=|b |=|c |. 又OG →=12(OM →+ON →)=12⎣⎢⎡⎦⎥⎤12OA →+12OB →+OC→=14(a +b +c ),BC →=c -b . ∴OG →·BC →=14(a +b +c )·(c -b )=14(a ·c -a ·b +b ·c -b 2+c 2-b ·c ) =14(|a |2·cos θ-|a |2·cos θ-|a |2+|a |2)=0.∴OG →⊥BC →,即OG ⊥BC .用向量法证明垂直关系的步骤 (1)把几何问题转化为向量问题; (2)用已知向量表示所证向量;(3)结合数量积公式和运算律证明数量积为0; (4)将向量问题回归到几何问题.[跟进训练]2.如图,四棱锥P ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .证明:PA ⊥BD .[证明] 由底面ABCD 为平行四边形,∠DAB =60°,AB =2AD 知,DA ⊥BD ,则BD →·DA →=0.由PD ⊥底面ABCD 知,PD ⊥BD ,则BD →·PD →=0.又PA →=PD →+DA →,∴PA →·BD →=(PD →+DA →)·BD →=PD →·BD →+DA →·BD →=0,即PA ⊥BD .夹角问题b 〉为( )A .30°B .45°C .60°D .以上都不对(2)如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,求异面直线OA 与BC 的夹角的余弦值.[思路探究] (1)根据题意,构造△ABC ,使AB →=c ,AC →=b ,BC →=a ,根据△ABC 三边之长,利用余弦定理求出向量a 与b 之间的夹角即可.(2)求异面直线OA 与BC 所成的角,首先来求OA →与BC →的夹角,但要注意异面直线所成角的范围是⎝⎛⎦⎥⎤0,π2,而向量夹角的取值范围为[0,π],注意角度的转化.(1)D [∵a +b +c =0,|a |=2,|b |=3,|c |=4, ∴以这三个向量首尾相连组成△ABC ;令AB →=c ,AC →=b ,BC →=a ,则△ABC 三边之长分别为BC =2,CA =3,AB =4;由余弦定理,得:cos∠BCA =BC 2+CA 2-AB 22BC ·CA =22+32-422×2×3=-14,又向量BC →和CA →是首尾相连,∴这两个向量的夹角是180°-∠BCA , ∴cos〈a ,b 〉=14,即向量a 与b 之间的夹角〈a ,b 〉不是特殊角.](2)[解] ∵BC →=AC →-AB →,∴OA →·BC →=OA →·AC →-OA →·AB →=|OA →|·|AC →|·cos〈OA →,AC →〉-|OA →|·|AB →|·cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120° =24-16 2.∴cos〈OA →,BC →〉=OA →·BC →|OA →|·|BC →|=24-1628×5=3-225,∴异面直线OA 与BC 的夹角的余弦值为3-225.利用向量数量积求夹角问题的思路(1)求两个向量的夹角有两种方法:①结合图形,平移向量,利用空间向量夹角的定义来求,但要注意向量夹角的范围;②先求a ·b ,再利用公式cos 〈a ,b 〉=a ·b|a ||b |求出cos 〈a ,b 〉的值,最后确定〈a ,b 〉的值.(2)求两条异面直线所成的角,步骤如下:①根据题设条件在所求的异面直线上取两个向量(即直线的方向向量); ②将异面直线所成角的问题转化为向量夹角问题; ③利用数量积求向量夹角的余弦值或角的大小;④异面直线所成的角为锐角或直角,利用向量数量积求向量夹角的余弦值时应将余弦值加上绝对值,从而求出异面直线所成的角的大小.[跟进训练]3.如图,在正方体ABCD A 1B 1C 1D 1中,求BC 1→与AC →夹角的大小.[解] 不妨设正方体的棱长为1,则BC 1→·AC →=(BC →+CC 1→)·(AB →+BC →) =(AD →+AA 1→)·(AB →+AD →)=AD →·AB →+AD →2+AA 1→·AB →+AA 1→·AD → =0+AD 2→+0+0=AD 2→=1, 又∵|BC 1→|=2,|AC →|=2,∴cos〈BC 1→,AC →〉=BC 1→·AC →|BC 1→||AC →|=12×2=12.∵〈BC 1→,AC →〉∈[0,π],∴〈BC 1→,AC →〉=π3.即BC 1→与AC →夹角的大小为π3.距离问题1.用数量积解决的距离问题一般有哪几种? [提示] 线段长度即点点距、点线距、点面距. 2.求模的大小常用哪些公式?[提示] 由公式|a |=a ·a 可以推广为|a ±b |=a ±b2=a 2±2a ·b +b 2.3.如图,已知线段AB ⊥平面α,BC ⊂α,CD ⊥BC ,DF ⊥平面α,且∠DCF =30°,D 与A 在平面α的同侧,若AB =BC =CD =2,试求A ,D 两点间的距离.[提示] ∵AD →=AB →+BC →+CD →,∴|AD →|2=(AB →+BC →+CD →)2=|AB →|2+|BC →|2+|CD →|2+2AB →·BC →+2AB →·CD +2BC →·CD →=12+2(2·2·cos 90°+2·2·cos 120°+2·2·cos 90°)=8,∴|AD →|=22,即A ,D 两点间的距离为2 2.【例4】 如图所示,在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,沿着它的对角线AC 将△ACD 折起,使AB 与CD 成60°角,求此时B ,D 间的距离.[思路探究] BD →=BA →+AC →+CD →―→|BD →|2注意对〈BA →,CD →〉的讨论,再求出B ,D 间距离.[解] ∵∠ACD =90°,∴AC →·CD =0,同理可得AC →·BA →=0.∵AB 与CD 成60°角,∴〈BA →,CD →〉=60°或〈BA →,CD →〉=120°.又BD →=BA →+AC →+CD →,∴|BD →|2=|BA →|2+|AC →|2+|CD →|2+2BA →·AC→+2BA →·CD →+2AC →·CD →=3+2×1×1×cos〈BA →,CD →〉.∴当〈BA →,CD →〉=60°时,|BD →|2=4,此时B ,D 间的距离为2;当〈BA →,CD →〉=120°时,|BD →|2=2,此时B ,D 间的距离为 2.求两点间的距离或线段长的方法(1)将相应线段用向量表示,通过向量运算来求对应向量的模.(2)因为a ·a =|a |2,所以|a |=a·a ,这是利用向量解决距离问题的基本公式.另外,该公式还可以推广为|a ±b |=a ±b2=a 2±2a ·b +b 2.(3)可用|a ·e |=|a ||cos θ|(e 为单位向量,θ为a ,e 的夹角)来求一个向量在另一个向量所在直线上的投影.[跟进训练]4.如图所示,在平面角为120°的二面角αAB β中,AC ⊂α,BD ⊂β,且AC ⊥AB ,BD ⊥AB ,垂足分别为A ,B .已知AC =AB =BD =6,求线段CD 的长.[解] ∵AC ⊥AB ,BD ⊥AB ,∴CA →·AB →=0,BD →·AB →=0.∵二面角αAB β的平面角为120°,∴〈CA →,BD →〉=180°-120°=60°. ∴CD →2=(CA →+AB →+BD →)2=CA →2+AB →2+BD →2+2CA →·AB →+2CA →·BD →+2BD →·AB →=3×62+2×62×cos 60°=144,∴CD =12.1.空间两向量的数量积与平面向量的数量积类似,由于数量积不满足结合律,因此在进行数量积运算时,一次、二次式与实数运算相同,运算公式也相同,三次及以上必须按式中的运算顺序依次进行运算.2.空间向量数量积运算的两种方法(1)利用定义:利用a ·b =|a ||b |cos 〈a ,b 〉并结合运算律进行计算.(2)利用图形:计算两个向量的数量积,可先将各向量移到同一顶点,利用图形寻找夹角,再代入数量积公式进行运算.3.在几何体中求空间向量数量积的步骤(1)首先将各向量分解成已知模和夹角的向量的组合形式.(2)利用向量的运算律将数量积展开,转化为已知模和夹角的向量的数量积. (3)代入a ·b =|a ||b |cos 〈a ,b 〉求解.4.空间向量中求两向量夹角与平面向量中的求法完全相同,都是应用公式cos 〈a ,b 〉=a·b |a |·|b |,解题的关键就是求a ·b 和|a |、|b |.求模时注意|a |2=a ·a 的应用.1.如图,空间四边形ABCD 的每条边和对角线的长都等于1,E ,F ,G 分别是AB ,AD ,DC的中点,则FG →·AB →=( )A .34 B .14 C .12 D .32B [由题意可得FG →=12AC →,∴FG →·AB →=12×1×1×cos 60°=14.] 2.已知两异面直线的方向向量分别为a ,b ,且|a |=|b |=1,a·b =-12,则两直线的夹角为( )A .30°B .60°C .120°D .150°B [设向量a ,b 的夹角为θ,则cos θ=a·b |a ||b |=-12,所以θ=120°,则两个方向向量对应的直线的夹角为180°-120°=60°.]3.在空间四边形ABCD 中,AB →·CD →+BC →·AD →+CA →·BD →=________.0 [原式=AB →·CD →+BC →·AD →+CA →·(AD →-AB →)=AB →·(CD →-CA →)+AD →·(BC →+CA →)=AB →·AD →+AD →·BA →=0.]4.如图所示,在一个直二面角αAB β的棱上有两点A ,B ,AC ,BD 分别是这个二面角的两个面内垂直于AB 的线段,且AB =4,AC =6,BD =8,则CD 的长为________.229 [∵CD →=CA →+AB →+BD →=AB →-AC →+BD →,∴CD →2=(AB →-AC →+BD →)2=AB →2+AC →2+BD →2-2AB →·AC →+2AB →·BD →-2AC →·BD →=16+36+64=116,∴|CD →|=229.]5.如图,已知空间四边形ABCD 的每条边和对角线的长都等于a ,点M ,N 分别是边AB ,CD 的中点.(1)求证:MN 为AB 和CD 的公垂线;(2)求MN 的长;(3)求异面直线AN 与MC 所成角的余弦值.[解] 设AB →=p ,AC →=q ,AD →=r .由题意,可知|p |=|q|=|r|=a ,且p ,q ,r 三向量两两夹角均为60°.(1)证明:MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p=12(q ·p +r ·p -p 2)=12(a 2·cos 60°+a 2·cos 60°-a 2)=0∴MN ⊥AB ,同理可证MN ⊥CD .∴MN 为AB 与CD 的公垂线.(2)由(1)可知MN →=12(q +r -p ),∴|MN →|2=(MN →)2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -q·p -r ·p )]=14(a 2+a 2+a 2+2⎝ ⎛⎭⎪⎫a22-a22-a22]=14×2a 2=a22.∴|MN →|=22a ,∴MN 的长度为22a .(3)设向量AN →与MC →的夹角为θ,∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·⎝ ⎛⎭⎪⎫q -12p =12⎝ ⎛⎭⎪⎫q 2-12q ·p +r·q -12r ·p =12⎝ ⎛⎭⎪⎫a 2-12a 2·cos 60°+a 2cos 60°-12a 2·cos 60° =12⎝ ⎛⎭⎪⎫a 2-a24+a22-a24=a22.又∵|AN →|=|MC →|=32a , ∴AN →·MC →=|AN →|·|MC →|·cos θ=32a ·32a ·cos θ=a22.∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23.从而异面直线AN 与MC 所成角的余弦值为23.。
§3.1.3 空间向量的数量积运算一.教学目标1.知识与技能(幻灯片2)(1)通过类比平面向量数量积的运算,掌握空间向量数量积的概念、性质和运算律; (2)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体 几何问题转化为向量问题;(3)通过向量的运算,研究空间中点、线、面之间的位置关系以及它们之间的距离和夹角等问题。
2.过程与方法引导学生注重知识间的联系,不断地与平面向量和立体几何知识进行类比,做到温故而知新,并且经历向量及其运算由平面到空间的推广过程,使学生的思维过程螺旋上升。
3.情感态度与价值观通过本节课的学习,使学生对于以往的知识有一个全新的认识,培养学生积极探索数学的本质,提高学生的数学素养。
二.教学重点空间向量数量积的概念以及实际应用。
三.教学难点建立空间向量与空间图形的内在联系; 四.教学过程 教学环节教学过程设计意图新 课 引入同学们,你们还记得平面向量数量积的定义吗?你能类比平面向量所成夹角说一说什么是空间中两条向量夹角及范围吗?注重了与旧知识的联系,使学生对知识的理解更为透彻。
学生容易对向量夹角和两直线夹角产生混淆,这里要对范围进行明确。
(幻灯片4) 讲 授 新 课零向量与任何向量的数量积为0。
性质1:这个性质是证明两向量垂直的依据;性质2: 这个性质是求向量模的依据。
思考:类比平面向量,你能说出空间向量数量积的几何意义吗?(幻灯片9)空间向量数量积和平面向量数量积相似,在教学中可采用类比的方法,并且还要向学生再次强调数量积的结果为常数,而不是向量。
空间向量数量积的几何意义同平面向量数量积是一样的。
只要让同学们理解空间中任意两个向量都是共面向量,此时就可以把空间向量的数量积转化为平面向量上来了。
(幻灯片5--8)(幻灯片10)=空间向量数量积的概念:已知两个非零向量a,,则a cos a,叫做a,的数量积.记作,即a cos a,.b b b b a b a b b b 22cos ,a a a a a a a a === cos 的几何意义:数量积等于的长度与在方向上的投影的乘积。
空间向量的数量积运算》教学设计教学设计3.1.3 空间向量的数量积运算整体设计本节课在平面向量的夹角和向量长度的概念的基础上,引入了空间向量的夹角和向量长度的概念和表示方法,介绍了空间两个向量数量积的概念、计算方法、性质和运算律,并举例说明利用向量的数量积解决问题的基本方法。
传统的解立体几何题需要有较强的空间想象能力、逻辑推理能力以及作图能力,学生往往由于这些能力的不足造成解题困难。
用向量处理立体几何问题,可使学生克服空间想象力的障碍而顺利解题,为研究立体几何提供了新的思想方法和工具,具有相当大的优越性;而且,在丰富学生思维结构的同时,应用数学的能力也得到了锻炼和提高。
课时分配:1课时教学目标知识与技能:1.掌握空间向量夹角的概念及表示方法;2.掌握两个向量数量积的概念、性质和计算方法及运算律;3.掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题。
过程与方法:1.运用类比方法,经历向量的数量积运算由平面向空间推广的过程;2.引导学生借助空间几何体理解空间向量数量积运算的意义。
情感、态度与价值观:1.培养学生的类比思想、转化思想,培养探究、研讨、综合自学应用能力;2.培养学生空间向量的应用意识。
重点难点教学重点:1.空间向量的数量积运算及其运算律、几何意义;2.空间向量的数量积运算及其变形在空间几何体中的应用。
教学难点:1.空间想象能力的培养,思想方法的理解和应用;2.空间向量的数量积运算及其几何应用和理解。
教学过程引入新课提出问题:已知在正方体ABCD—A′B′C′D′中,E为AA′的中点,点F在线段D′C′上,D′F=FC′,如何确定BE,FD的夹角?活动设计:教师设问:平面向量的夹角问题是如何求得的?是否可将平面内求得两向量的夹角公式推广到空间?公式的形式是否会有所变化?学生活动:回顾平面向量数量积、向量夹角公式;类比猜想空间向量夹角公式的形式。
设计意图:问题的给出,一时之间可能会使学生感到突然,但预计应该会联想到平面向量的夹角公式,由此作一番类比猜想,起到温故知新的作用。
空间向量的数量积本次课课堂教学内容要点一:空间向量的数量积1.两个向量的数量积.已知两个非零向量a 、b ,则|a |·|b |cos 〈a ,b 〉叫做向量a 与b 的数量积,记作a ·b ,即a ·b =|a |·|b |cos 〈a ,b 〉.要点诠释:①由于空间任意两个向量都可以转化为共面向量,所以空间两个向量的夹角的定义和取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同.①两向量的数量积,其结果是数而非向量,它的值为两向量的模与两向量夹角的余弦的乘积,其符号由夹角的余弦值决定.①两个向量的数量积是两向量的点乘,与以前学过的向量之间的乘法是有区别的,在书写时一定要将它们区别开来,不可混淆.2.空间向量数量积的性质设是非零向量,是单位向量,则 ①; ①;①或;①;①3.空间向量的数量积满足如下运算律 ①(a )·b =(a ·b ); ①a ·b =b ·a (交换律);,a b e ||cos ,a e e a a a e ⋅=⋅=<>0a b a b ⊥⇔⋅=2||a a a =⋅||a a a =⋅cos ,||||a ba b a b ⋅<>=⋅||||||a b a b ⋅≤⋅λλ①a ·(b +c )=a ·b +a ·c (分配律). 要点诠释:①对于三个不为0的向量a 、b 、c ,若a ·b =a ·c ,则b =c ;对于三个不为0的向量,若不能得出,即向量不能约分.①若a ·b =k ,不能得出(或),就是说,向量不能进行除法运算. ①对于三个不为0的实数,a 、b 、c 有(a b )c =a (b c ),对于三个不为0的向量a 、b 、c ,有,向量的数量积不满足结合律. 要点二:空间两个向量的夹角1.定义:已知两个非零向量a 、b ,在空间任取一点D ,作,,则①AOB 叫做向量a 与 b 的夹角,记作〈a ,b 〉,如下图。
1.1.2 空间向量的数量积运算一、教学内容及解析(一)教学内容本节主要学习空间向量的夹角、数量积和投影向量(二)内容解析空间向量的数量积运算,是继空间向量的加减法、数乘运算之后的又一种运算,是又一个从平面到空间推广的实例.学生在学习过程中,充分体验类比、归纳的数学学习方式,深刻理解空间向量的数量积运算本质,逐步体会数量积运算在解决垂直等问题中的应用价值,为后续学习坐标表示下的向量方法解决空间角、长度、垂直等问题奠定重要基础.高中数学中的多个核心素养贯穿本节课始终,数学运算素养、逻辑推理素养尤为凸显,因此本节课的教学过程是核心素养落地生根的过程,是一次知识、方法、思想、素养的融会贯通之旅。
二、教学目标及分析(一)教学目标1、掌握空间向量夹角的概念及表示方法2、掌握两个向量数量积的概念、性质和计算方法及运算律3、掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题(二)目标分析1、第一节学生已经学习过空间中的任意两个向量通过平移转化为同一平面内的向量,空间向量的夹角即可转化为平面向量的夹角,以此掌握空间向量的夹角的概念及表示方法2、学生通过类比平面向量的数量积得出空间向量的数量积的概念、性质和计算方法及运算律3、教师利用例题讲解如何利用向量解决立体几何中的夹角、距离等一些简单问题,学生利用变式练习进一步巩固空间向量的运用三、教学重难点1、重点:空间向量数量积的概念及运算律2、难点:用向量的方法解决立体几何问题四、教学过程问题一、如何定义空间向量的夹角及数量积?问题1、平面向量的夹角及数量积是如何定义的?师生活动:学生回顾平面向量的夹角的定义及范围,教师指导设计意图:复习旧知,引入新知问题2、空间向量和平面向量有何关系?如何定义空间向量的夹角及数量积?师生活动:教师指出上节课已经探究过空间任意两个向量通过平移都可以平移到一个平面内,转化为同一平面内的向量,因此两个空间向量的夹角和数量积就可以像平面向量那样来定义,教师提问并板书,学生回答夹角、夹角范围、数量积及相关结论设计意图:通过类比转化,得出空间向量的夹角及数量积定义,学生容易接受并掌握新知问题二、类比平面向量投影的得到过程,在空间中一个向量在另一个向量上的投影,该怎么作呢?师生活动:学生回忆平面向量中投影向量的知识,教师板书平面中向量的投影向量推导过程,帮助学生回顾旧知,为空间向量的投影做准备。
高二 数 学 新 授 课
选修2-3第一章第一节 空间向量的数量积
一、自主学习的目标与任务: 自学选修2-1第三章第一节空间向量的数量积第80页~81页,结合平面向量的数量积的知识点,自学空间向量的数量积公式以及应用. 二、自主学习内容思考: 空间向量的数量积公式的应用中的注意点 三、自主解答下列各题:
.
________,2,2
2,22.1所夹的角为则-=⋅==)()4)()()3)()
()()2)(,,01.22
22q p q p c b a c b a -=-+⋅=⋅⋅⋅=⋅⋅===⋅则若)判断真假:
【学习目标】
1、掌握空间向量夹角和模的概念及表示方法;
2、掌握两个向量的数量积的计算方法,并能利用两个向量的数量积解决立体几何中的一些简单问题.
【重点及难点】
空间向量夹角和模、数量积的计算
【学习内容】
一、课前自主学习检查:自查自纠
二、构建知识框架、剖析典型概念(学生总结,教师点拨)
三、小组合作交流、师生研讨
【例题1】已知|a|=4,|b|=3 2, a·b=12,求a与b的夹角<a,b>.
【例题2】已知空间四边形ABCD的每条边长都是a,点M,N分别是边AB,CD的中点.
求证: MN⊥AB, MN⊥CD .
【例题3】已知四棱柱ABCD-A1B1C1D1的底面ABCD是矩形,AB=4,AD=3,AA1=5,
∠BAA1=∠DAA1=600,,求AC1的长.
四、总结提升
五、当堂检测
六、布置作业
自我检测
1、|a|=2,|b|=3,| a·b|=-3 ,则〈a,b〉= .
2、|a|=1,|b|=2,|a-b|=2,则|a+b|= .
3、在空间四边形OABC中,OA⊥BC,OB⊥AC,求证:OC⊥AB
七、课后反思
一、课前自主学习检查:
1、如图,在空间四边形OABC 中,8OA =,6AB =,4AC =,5BC =,45OAC ∠=,60OAB ∠=,求OA 与BC 的夹角的余弦值。
2、已知向量a b ⊥,向量c 与,a b 的夹角都是60,且||1,||2,||3a b c ===,
试求:(1)2()a b +;(2)2(2)a b c +-;(3)(32)(3)a b b c -⋅-.
3、已知a ,b ,c 中任意两个向量的夹角都是
3
∏,且|a|=4,|b|=6,|c|=2,求|a+b+c|.
五、当堂检测
1. 若向量a ,b 满足(a-b )·(2a+b )=-4,且|a|=2,|b|=4,则<a,b>=________.
2. 已知a ,b 是两个非零向量,那么当a ·b=|a||b|时,<a,b>=_______;当a ·b=0
时,<a,b>=_____;当a ·b=-|a||b|时,<a,b>=_______.
AC EF DC EF BD EF BA EF AD AB F
E ABCD ⋅⋅⋅⋅)4()3()2(11.3)(计算:的中点。
、分别是、,点等于的每条边和对角线长都如图:已知空间四边形A
D F C
B
E。