分式方程第三课时
- 格式:ppt
- 大小:193.50 KB
- 文档页数:7
义务教育教科书《数学》八年级上册第七章第三课时
分式方程的应用课标分析
新课程标准对本节课的要求是,在已经掌握一元一次方程的应用的基础上,学生能够准确把握题目的相等关系,并能准确列出分式方程,熟练掌握列分式方程解决实际问题的方法和技巧。
从新课标要求不难看出,《课标》对分式方程的应用“非常重视”,等级是“熟练掌握”,作为初中数学重要的数学思想和方法,这种要求并不过分,笛卡尔说过,任何数学问题都可以转化成方程问题,方程思想在数学史上也占有重要一席。
故应通过适当的有层次的训练使全体学生均能实现课标的要求。
华师大版数学八年级下册16.3《可化为一元一次方程的分式方程》(第3课时)教学设计一. 教材分析《可化为一元一次方程的分式方程》是华师大版数学八年级下册第16.3节的内容。
本节课的主要内容是让学生掌握分式方程的解法,通过将分式方程转化为整式方程,让学生理解分式方程的解法实质,提高学生解决实际问题的能力。
二. 学情分析学生在八年级上册已经学习了分式的概念、性质和运算,对分式有了一定的认识。
但是,对于分式方程的解法,学生可能还比较陌生。
因此,在教学过程中,教师需要引导学生将分式方程转化为整式方程,让学生通过已有的知识解决新的问题。
三. 教学目标1.知识与技能目标:让学生掌握分式方程的解法,并能运用到实际问题中。
2.过程与方法目标:通过自主学习、合作交流,培养学生解决问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生学习数学的积极性。
四. 教学重难点1.重点:分式方程的解法。
2.难点:如何将分式方程转化为整式方程,以及如何运用分式方程解决实际问题。
五. 教学方法1.自主学习:让学生在课堂上自主探究分式方程的解法。
2.合作交流:引导学生分组讨论,分享解题心得。
3.实例讲解:通过具体例子,让学生理解分式方程的解法在实际问题中的应用。
六. 教学准备1.课件:制作课件,展示分式方程的解法。
2.练习题:准备一些分式方程的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用实例引入分式方程的概念,让学生回顾分式的性质和运算。
2.呈现(10分钟)展示分式方程的解法,引导学生将分式方程转化为整式方程。
3.操练(10分钟)让学生独立解决一些简单的分式方程,巩固所学知识。
4.巩固(10分钟)讲解一些典型的分式方程案例,让学生进一步理解分式方程的解法。
5.拓展(10分钟)引导学生运用分式方程解决实际问题,提高学生的应用能力。
6.小结(5分钟)总结本节课所学内容,让学生明确分式方程的解法及其在实际问题中的应用。
3.4.3 分式方程(三)●教学目标(一)教学知识点1.用分式方程的数学模型反映现实情境中的实际问题.2.用分式方程来解决现实情境中的问题.(二)能力训练要求1.经历运用分式方程解决实际问题的过程,发展抽象概括、分析问题和解决问题的能力.2.认识运用方程解决实际问题的关键是审清题意,寻找等量关系,建立数学模型.(三)情感与价值观要求1.经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣.2.培养学生的创新精神,从中获得成功的体验.●教学重点1.审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型.2.根据实际意义检验解的合理性.●教学难点寻求实际问题中的等量关系,寻求不同的解决问题的方法.●教具准备实物投影仪投影片三张第一张:做一做,(记作§3.4.3 A)第二张:例3,(记作§3.4.3 B)第三张:随堂练习,(记作§3.4.3 C)●教学过程Ⅰ.提出问题,引入新课[师]前两节课,我们认识了分式方程这样的数学模型,并且学会了解分式方程.接下来,我们就用分式方程解决生活中实际问题.Ⅱ.讲授新课出示投影片(§3.4.3 A )[生]第二年每间房屋的租金=第一年每间房屋的租金+500元. (1) [生]还有一个等量关系:第一年租出的房屋间数=第二年租出的房屋的间数.[师]根据“做一做”的情境,你能提出哪些问题呢?在我们的数学学习中,提出问题比解决问题更重要.同学们尽管提出符合情境的问题.[生]问题可以是:每年各有多少间房屋出租?[生]问题也可以是:这两年每年房屋的租金各是多少?[师]下面我们就来先解决第一个问题:每年各有多少间房屋出租?[师生共析]解:设每年各有x 间房屋出租,那么第一年每间房屋的租金为x 96000元,第二年每间房屋的租金为x102000元,根据题意,得 x 102000=x96000+500 解这个方程,得x=12经检验x=12是原方程的解,也符合题意.所以每年各有12间房屋出租.[师]我们接着再来解决第二个问题:这两年每间房屋的租金各是多少? [生]根据第一问的答案可计算,得:第一年每间房屋的租金为1296000=8000(元), 第二年每间房屋的租金为12102000=8500(元).[师]如果没有第一问,该如何解答第二问?[生]解:设第一年每间房屋的租金为x 元,第二年每间房屋的租金为(x+500)元.第一年租出的房间为x 96000间,第二年租出的房间为500102000+x 间,根据题意,得x 96000= 500102000+x 解,得x=8000x+500=8500(元)经检验:x=8000是原分式方程的解,也符合题意.所以这两年每间房屋的租金分别为8000元,8500元.[师]我们利用分式方程解决了实际问题.现在我们再来看一个例题,我们可以从中感受到节约用水是每个公民应该关心的事情.出示投影片(§3.4.3 B )[生]审清题意,找出题中的等量关系.[师]很好.某自来水公司水费计算办法可用表格表示出来(如下表)[生]此题主要的等量关系是:1月份张家用水量是李家用水量的32. [师]怎样表示出张家1月份的用水量和李家1月份的用水量呢?[生]根据自来水公司水费计算的办法,用水量可以用水费除以单价得出,但计算时要将水费分成两部分:5 m 3的水费与超出5 m 3部分的水费.[师]下面我们就来用等量关系列出方程.[师生共析]设超出5 m 3部分的水,每立方米收费设为x 元,则1月份, 张家超出 5 m 3的部分水费为(17.5-1.5×5)元,超出 5 m 3的用水量为x 55.15.17⨯-m 3,总用水量为5+x55.15.17⨯-; 李家超出 5 m 3部分的水费为(27.5-1.5×5)元,超出 5 m 3的用水量为x 55.15.27⨯-m 3,总用水量为(5+x55.15.27⨯-) m 3 根据等量关系,得x 55.15.17⨯-+5=(x 55.15.27⨯-+5)×32 解这个方程,得x=2.经检验x=2是所列方程的根.所以超出5 m 3部分的水,每立方米收费2元.Ⅲ.随堂练习出示投影片(§3.4.3 C )[生]题中的等量关系有两个:15元钱买的软皮本的本数=15元钱买的硬皮本的本数+1本.硬皮本的价格=软皮本的价格×(1+21) [师]我们找到了等量关系,接下来请同学们在练习本上完成第1题. [生]解:设软皮本的价格为x 元,则硬皮本的价格为(1+21)x 元,那么15元钱可买软皮本x 15本,硬皮本x )21(15+本.根据题意,得, x 15= x )211(15++1解,得x=5经检验x=5是原方程的根,也符合题意,所以(1+21)x=23×5=7.5(元) 故这种软皮本和硬皮本的价格各为5元、7.5元.Ⅳ.课时小结列方程解决实际情境中的具体问题,是数学实用性最直接的体现,而解决这一问题是如何将实际问题建立方程这样的数学模型,关键则在于审清题意,找出题中的等量关系,找到它就为列方程指明了方向.Ⅴ.课后作业习题3.8图3-4Ⅵ.活动与探究如图,小明家、王老师家、学校在同一条路上.小明家到王老师家路程为 3 km ,王老师家到学校的路程为0.5 km,由于小明父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?(2003年吉林省中考题)[过程]分析题目中的等量关系:王老师骑车速度=王老师步行速度×3;王老师从家出发骑车接小明所用的时间=平时步行上学所用时间+20分钟. [结果]设王老师步行速度为x km/h ,则骑自行车的速度为3x km/h. 依题意,得x 35.032+⨯=x 5.0+6020 解得x=5经检验x=5是原方程的根,这时3x=15答:王老师步行速度为5 km/h,骑自行车的速度为15 km/ h.●板书设计。
徐闻县和安中学 数学教研组 ◆八年级数学导学案 ◆◆我们的约定:我的课堂 我作主! 执笔:林朝清 第 周 星期 第 节 本学期学案累计: 16 课时 姓名:________课题:16.3 分式方程(第3课时)学习目标 我的目标 我实现 1.会分析题意找出等量关系.2.会列出可化为一元一次方程的分式方程解决实际问题.学习过程 我的学习 我作主导学活动1:知识回顾解下列方程 1.1441222-=-x x 2.xx x -=+--23123解分式方程的步骤: 。
导学活动2:知识引入1.引导说出列方程解应用题的步骤 .2.相关背景:相关背景:时间速度路程⨯= 时间路程速度= 速度路程时间= 导学活动3:知识转化例4:从2004年5月起,某列车平均速度提速40千米/小时,用相同的时间,列车提速前行驶125千米,提速后比提速前多行驶50千米,求提速前列车的平均速度为多少千米/小时?练习1.从2004年5月起,某列车平均速度提速v 千米/小时,用相同的时间,列车提速前行驶s 千米,提速后比提速前多行驶50千米,求提速前列车的平均速度为多少千米/小时?徐闻县和安中学 数学教研组 ◆八年级数学导学案 ◆◆我们的约定:我的课堂 我作主!学习评价 我的评价 我自信当堂检测(限时:12分钟 )我自信 我进取1、解方程: 22122=-+-x x x x2.八年级学生去距学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发.结果他们同时到达,已知汽车的速度是骑自行车同学速度的2倍,求骑车同学的速度.3.两个小组同时开始攀登一座450米高的山,第一组的攀登速度是第二组的2倍,他们比第二组早15分钟到达了顶峰,求两个小组的攀登速度各是多少?自我小结:列方程解应用题的步骤 自我评价:我完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差课后作业 我的作业 我承担课本(P32)习题16.3 第6、7题。