八年级下册数学第十九章一次函数单元测试卷-b
- 格式:doc
- 大小:205.00 KB
- 文档页数:10
人教版八年级数学 第19章 《一次函数》 单元提优姓名 成绩一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)1.函数y =1x -3+x -1的自变量x 的取值范围是( ) A .x ≥1 B .x ≥1且x ≠3 C .x ≠3 D .1≤x ≤32.下列各曲线中表示y 是x 的函数的是( )A B C D3.若等腰三角形的周长为60 cm ,底边长为x cm ,一腰长为y cm ,则y 关于x 的函数解析式及自变量x 的取值范围是( )A .y =60-2x (0<x <60)B .y =60-2x (0<x <30)C .y =12(60-x )(0<x <60)D .y =12(60-x )(0<x <30)4.李大爷想围成一个如图所示的长方形菜园,已知长方形菜园ABCD的面积为24平方米,设BC边的长为x米,AB边的长为y米,则y与x之间的函数解析式为()A.y=24x B.y=-2x+24 C.y=2x-24 D.y=12x-12第4题图第9题图第10题图5.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A B C D6.若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m<12D.m>127.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在平面直角坐标系内它的大致图象是()A B C D8.若点M(-7,m),N(-8,n)都在函数y=-(k2+2k+4)x+1(k为常数)的图象上,则m 和n的大小关系是()A.m>n B.m<n C.m=n D.不能确定9.如图,函数y1=-2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式-2x>ax +3的解集是()A.x>2 B.x<2 C.x>-1 D.x<-110.如图是本地区一种产品30天的销售图象,图1是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图2是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×每件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元二、填空题(每题5分,共20分)11.在函数y=x-1x-2中,自变量x的取值范围是.12.如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为.第12题图第13题图第14题图13.有甲、乙两个长方体的蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水的高度y(米)与注水时间x(小时)之间的函数图象如图所示,若要使甲、乙两个蓄水池的蓄水深度相同,则注水的时间应为小时.14.如图,经过点B(-2,0)的直线y=kx+b与直线y=4x+2相交于点A(-1,-2),则不等式4x+2<kx+b<0的解集为.15.(8分)已知y=(m+1)x2-|m|+n+4.(1)当m,n取何值时,y是x的一次函数?(2)当m,n取何值时,y是x的正比例函数?16.已知y与x+2 成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当y=36时x的值;(3)判断点(-7,-10)是否是函数图象上的点.17.(8分)已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.18.(8分)已知y=y1+y2,y1与x成正比例,y2与x-2成正比例,当x=1时,y=0;当x=-3时,y=4.(1)求y与x的函数解析式,并说明此函数是什么函数;(2)当x=3时,求y的值.19.(10分)某机动车出发前油箱内有42升油,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(升)与行驶时间t(时)之间的函数关系如图所示,回答下列问题.(1)机动车行驶几小时后加油?(2)求加油前油箱剩余油量Q与行驶时间t的函数关系,并求自变量t的取值范围;(3)中途加油多少升?(4)如果加油站距目的地还有230千米,车速为40千米/时,要到达目的地,油箱中的油是否够用?请说明理由.20.(10分)两摞相同规格的饭碗整齐地叠放在桌面上,如图,请根据图中给出的数据信息,解答问题:(1)求整齐叠放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式(不要求写出自变量x的取值范围);(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度.21.(12分)为更新果树品种,某果园计划购进A,B两个品种的果树苗栽植培育.若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种树苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.求y与x的函数解析式.22.(12分)如图,直线y=2x+3与直线y=-2x-1.(1)求两直线与y轴交点A,B的坐标;(2)求两直线交点C的坐标;(3)求△ABC的面积.23.(14分)为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y(元)与骑行时间x(时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.人教版八年级数学第19章《一次函数》单元同步检测试题参考答案姓名成绩一、选择题(本大题10小题,每小题4分,共40分。
八年级数学(下)第十九章《一次函数》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数中,y 是x 的一次函数的是①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x .A .①②③B .①③④C .①②③④D .②③④ 【答案】C【解析】根据一次函数的定义,可知是一次函数的有①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x ,故选C . 2.如果23(2)2my m x -=-+是一次函数,那么m 的值是 A .2B .-2C .±2D .±1 【答案】B【解析】由题意得:22031m m -≠⎧⎨-=⎩,解得m =-2,故选B . 3.下列说法中正确的是A .一次函数是正比例函数B .正比例函数不是一次函数C .不是正比例函数就不是一次函数D .不是一次函数就不是正比例函数 【答案】D【解析】A .一次函数不一定是正比例函数,故本选项说法错误;B .正比例函数是一次函数,故本选项说法错误;C .不是正比例函数,但有可能是一次函数,故本选项说法错误;C .不是一次函数就不是正比例函数,故本选项说法正确,故选D .4.一次函数y =-2x +1的图象经过A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】B【解析】在一次函数y =-2x +1中,k =-2<0,b =1>0,∴一次函数y =-2x +1的图象经过第一、二、四象限,故选B .5.把直线3y x =-+向上平移m 个单位后,与直线24y x =+的交点在第一象限,则m 的取值范围是A .1<m <7B .3<m <4C .m >1D .m <4【答案】C 【解析】直线3y x =-+向上平移m 个单位后可得:3y x m =-++,联立两直线解析式得:324y x m y x =-++⎧⎨=+⎩,解得132103m x m y -⎧=⎪⎪⎨+⎪=⎪⎩,∴交点坐标为1210()33m m -+,, ∵交点在第一象限,∴10321003m m -⎧>⎪⎪⎨+⎪>⎪⎩,解得m >1,故选C . 6.如果函数y =3x +m 的图象一定经过第二象限,那么m 的取值范围是A .m >0B .m ≥0C .m <0D .m ≤0【答案】A【解析】图象一定经过第二象限,则函数一定与y 轴的正半轴相交,因而0m >,故选A . 7.关于函数y =-x +1,下列结论正确的是A .图象必经过点(-1,1)B .y 随x 的减小而减小C .当x >1时,y <0D .图象经过第二、三、四象限 【答案】C【解析】选项A ,∵当x =-1时,y =2,∴图象不经过点(-1,1),选项A 错误;选项B ,∵k =-1<0,∴y 随x 的增大而减小,选项B 错误;选项C ,∵y 随x 的增大而减小,当x =1时,y =0,∴当x >1时,y <0,选项C 正确;选项D ,∵k =-1<0,b =1>0,∴图象经过第一、二、四象限,选项D 错误.故选C .8.一次函数y =kx +b 的图象如图所示,则k 、b 的值分别为A .k =−12,b =1B .k =-2,b=1C.k=12,b=1 D.k=2,b=1【答案】B【解析】由图象可知:过点(0,1),(12,0),代入一次函数的解析式得:112bk b=⎧⎪⎨=+⎪⎩,解得:k=−2,b=1,故选B.二、填空题:请将答案填在题中横线上.9.已知一次函数y=(m-3)x-2的图象经过一、三、四象限,则m的取值范围为__________.【答案】m>3【解析】∵y=(m-3)x-2的图象经过一、三、四象限,∴m-3>0,解得m>3.故答案为:m>3.10.点(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1__________y2(填“>”或“=”或“<”).【答案】<【解析】∵k=2>0,y将随x的增大而增大,2>−1,∴y1<y2,故y1与y2的大小关系是:y1<y2,故答案为:<.11.已知一次函数的图象与直线y=12x+3平行,并且经过点(-2,-4),则这个一次函数的解析式为__________.【答案】y=12x-3【解析】∵一次函数的图象与直线y=12x+3平行,∴设一次函数的解析式为y=12x+b.∵一次函数经过点(-2,-4),∴12×(-2)+b=-4,解得b=-3,所以这个一次函数的表达式是:y=1 2x-3.故答案为:y=12x-3.12.若点M(x1,y1)在函数y=kx+b(k≠0)的图象上,当-1≤x1≤2时,-2≤y1≤1,则这条直线的函数解析式为__________.【答案】y=x-1或y=-x【解析】∵点M(x1,y1)在在直线y=kx+b上,-1≤x1≤2时,-2≤y1≤1,∴点(-1,-2)、(2,1)或(-1,1)、(2,-2)都在直线上,则有:221k bk b-+=-⎧⎨+=⎩,或122k bk b-+=⎧⎨+=-⎩,解得11kb=⎧⎨=-⎩或1kb=-⎧⎨=⎩,∴y=x-1或y=-x,故答案为:y=x-1或y=-x.三、解答题:解答应写出文字说明、证明过程或演算步骤.13.已知一次函数经过点A(3,5)和点B(-4,-9).(1)求此一次函数的解析式;(2)若点C(m,2)是该函数上一点,求C点坐标.【解析】(1)设其解析式为y=kx+b(k、b是常数,且k≠0),则5394k bk b=+⎧⎨-=-+⎩,∴k=2,b=−1.∴其解析式为y=2x-1,(2)∵点C(m,2)在y=2x-1上,∴2=2m-1,∴m=32,∴点C的坐标为(32,2).14.已知一次函数的图象经过点A(2,1),B(-1,-3).(1)求此一次函数的解析式;(2)求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.【解析】(1)根据一次函数解析式的特点,可得出方程组213 k bk b+=⎧⎨-+=-⎩,解得4353 kb⎧=⎪⎪⎨⎪=-⎪⎩,则得到y=43x-53.(2)根据一次函数的解析式y=43x-53,得到当y=0,x=54;当x=0时,y=-53.所以与x轴的交点坐标(54,0),与y轴的交点坐标(0,-53).(3)在y=43x-53中,令x=0,解得:y=-53,在y=43x-53中,令y=0,解得:x=54.因而此一次函数的图象与两坐标轴所围成的三角形面积是:15525 23424⨯⨯=.15.已知一次函数y=(4-k)x-2k2+32.(1)k为何值时,它的图象经过原点;(2)k为何值时,它的图象经过点(0,-2);(3)k为何值时,它的图象平行于直线y=-x;(4)k为何值时,y随x的增大而减小.【解析】(1)∵一次函数y=(4-k)x-2k2+32的图象经过原点,∴-2k2+32=0,解得:k=±4,∵4-k≠0,∴k=-4.(2)∵一次函数y=(4-k)x-2k2+32的图象经过(0,-2),∴-2k2+32=-2,解得:k.(3)∵一次函数y=(4-k)x-2k2+32的图象平行于直线y=-x,∴4-k=-1,∴k=5.(4)∵一次函数y=(4-k)x-2k2+32中y随x的增大而减小,∴4-k<0,∴k>4.16.已知一次函数图象经过(-4,-9)和(3,5)两点.(1)求一次函数解析式.(2)求图象和坐标轴交点坐标.并画出图象.(3)求图象和坐标轴围成三角形的面积.(4)若点(2,a)在函数图象上,求a的值.【解析】(1)设一次函数解析式为y=kx+b,把点(3,5),(-4,-9)分别代入解析式,则3549 k bk b+=⎧⎨-+=-⎩,解得21 kb=⎧⎨=-⎩,∴一次函数解析式为y=2x-1.(2)当x=0时,y=-1,当y=0时,2x-1=0,解得:x=0.5,∴与坐标轴的交点为A(0,-1)、B(0.5,0),图象如图,(3)S△AOB1122=⨯⨯|-1|=0.25.(4)∵点(2,a)在图象上,∴a=2×2-1=3,∴a=3.。
第十九章《一次函数》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.(跨学科融合)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中自变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器2.函数y=√x+1中自变量x的取值范围是()A.x≥2B.x≥-1C.x≤1D.x≠13.下列函数中,不是一次函数的是()A.y=x+1B.y=-xC.y=x2D.y=1-x4.直线y=2x经过()A.第二、四象限B.第一、二象限C.第三、四象限D.第一、三象限5.将函数y=-3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)6.已知关于x的正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是()A.k>5B.k<5C.k>-5D.k<-57.已知点(-1,y1),(4,y2)在一次函数y=3x-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y18.如图,已知一次函数y=kx+b的图象,则k,b的值为()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0第8题第9题第10题图9.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900 mB.小涛从家去报亭的平均速度是60 m/minC.小涛从报亭返回家中的平均速度是80 m/minD.小涛在报亭看报用了15 min10.(创新题)如图,若输入x的值为-5,则输出的结果为()A.-6B.-5C.5D.6二、填空题(共5小题,每小题3分,共15分)11.若y与x的函数关系式为y=2x-2,当x=2时,y的值为.12.直线y=2x-3与x轴的交点坐标是.13.如图,已知一次函数y1=kx+b与y2=x+a的图象,若y1<y2,则x的取值范围是.14.(跨学科融合)测得一根弹簧的长度与所挂物体质量的关系如下表:(重物不超过20千的函数关系式是(015.(创新题)如图1,在矩形ABCD中,BC=5,动点P从点B出发,沿BC-CD-DA运动至点A 停止.设点P运动的路程为x,△ABP的面积为y,若y关于x的函数图象如图2所示,则DC=,y的最大值是.三、解答题(一)(共3小题,每小题8分,共24分)16.已知一次函数y=2x-6.(1)判断点(4,3)是否在此函数的图象上;(2)此函数的图象不经过第象限,y随x的增大而.17.已知直线y=kx+b经过点A(3,7)和B(-8,-4),求直线AB的解析式.18.如图,已知直线l:y=kx+3经过A,B两点,点A的坐标为(-2,0).(1)求直线l的解析式;(2)当kx+3>0时,根据图象直接写出x的取值范围.。
人教版八年级数学下册第十九章一次函数单元测试题一、选择题1.下列关系式中,y不是x的函数的是( )(A)y=√x-1(B)y2=2x(C)y=x(D)y=x2-22.有一天,兔子与乌龟赛跑,比赛开始后,兔子飞快地奔跑,乌龟慢慢地爬行,不一会儿,乌龟就被远远地甩在了后面,兔子想:“这比赛也太轻松了,不如先睡一会儿.”而乌龟一刻不停地继续爬行,当兔子醒来跑到终点时,发现乌龟已经到达了终点.正确反映这则寓言故事的大致图象是( )3.下列函数解析式中,y是x的正比例函数的是( )(A)y=-2x+1(B)y=3(x+2)(C)y=πx (D)y=3x4.若函数y=(1-k)x2|k|-3是正比例函数,且y随x的增大而减小,则(k-3)2 019 ()(A)-2(B)-1 (C)1(D)25.一个蓄水池有15 m3的水,以每分钟0.5 m3的速度向池中注水,蓄水池中的水量Q(m3)与注水时间t(分钟)之间的函数解析式为( ) (A)Q=0.5t (B)Q=15t(C)Q=15+0.5t(D)Q=15-0.5t6.函数y=(a-√3)x-1的函数值y随自变量x的增大而减小,下列描述中:①a<√3;②函数图象与y轴的交点为(0,-1);③函数图象经过第一象限;④点(a+√3,a2-4)在该函数图象上,正确的描述有()(A)①②④(B)①②③④(C)①②③(D)②③④7.如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,点O落在BC边上的点E处.则直线DE的解析式为( )x+5(A)y=34(B)y=2x+55(C)y=1x+54(D)y=4x+558.如图,直线y1=x+b与y2=kx-1相交于点P,若点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集是( )(A)x≥-1(B)x>-1(C)x≤-1(D)x<-19.已知一次函数y=kx-1,若y随x的增大而增大,则它的函数图象经过的象限是( )(A)一、二、三(B)一、二、四(C)一、三、四(D)二、三、四10.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是()(A)-2(B)-1 (C)1(D)2二、填空题的自变量x的取值范围是11.函数y=√x+312.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.根据图中提供的信息,下列说法:①以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多②以低于80 km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少③以高于80 km/h的速度行驶时,行驶相同路程,乙车比丙车省油④以80 km/h的速度行驶时,行驶100 km,甲车消耗的汽油量约为10 L正确的是(填写正确说法的序号).13.已知正比例函数y=kx 的图象经过(-2,4),则当x=1时,函数y 的值为.14.据调查,某地铁自行车存放处在某星期天的存车量为4 000辆次,其中每辆变速车存车费是0.30元/次,普通自行车存车费是每辆0.20元/次,若普通自行车存车数为x 辆,存车费总收入为y 元,则y 关于x 的函数解析式为15.在同一直角坐标系内分别作出一次函数y=12x+1和y=2x-2的图象,则①函数y=2x-2的图象与y 轴的交点是(-2,0);②方程组{2y -x =2,2x -y =2的解是{x =2,y =2;③两直线与y 轴所围成的三角形的面积为3. 其中正确的有.(填序号)三、解答题16.分别写出下列各题中的函数解析式及自变量的取值范围.(1)已知等腰三角形的面积为20,设它的底边长为x,底边上的高y 随x 的变化而变化.(2)水池中有水10 L,此后每小时漏水0.05 L,水池中的水量V随时间t 的变化而变化.17.已知y与x+2成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当x=5时,y的值;(3)求当y=36时,x的值.18.已知y=(m+1)x2-|m|+n+4.(1)当m,n为何值时,y是x的一次函数?(2)当m,n为何值时,y是x的正比例函数?19.甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60 km/h.(1)求甲车的速度;(2)当甲、乙两车相遇后,乙车速度变为a km/h,并保持匀速行驶,甲车速度不变,结果乙车比甲车晚38分钟到达终点,求a的值.20.已知y+2与x-2成正比例,且当x=3时,y=-3.(1)求y关于x的函数解析式;(2)若点P(a1,b1),Q(a2,b2)在该函数的图象上,且b1>b2,试判断a1与a2的大小关系;(3)点M(-1,2)与N(3,-3)是否在该函数的图象上?21.直线y=2x+3与x轴交于点A,与y轴交于点B.(1)求A,B点坐标;(2)过B点作直线BP与x轴交于点P,且OP=2OA,求△ABP的面积.22.某大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别建立两种方案中y与x的函数关系式;(2)请计算并确定出最节省费用的购票方案.参考答案:一、选择题1.下列关系式中,y不是x的函数的是( B )(A)y=√x-1(B)y2=2x(C)y=x(D)y=x2-22.有一天,兔子与乌龟赛跑,比赛开始后,兔子飞快地奔跑,乌龟慢慢地爬行,不一会儿,乌龟就被远远地甩在了后面,兔子想:“这比赛也太轻松了,不如先睡一会儿.”而乌龟一刻不停地继续爬行,当兔子醒来跑到终点时,发现乌龟已经到达了终点.正确反映这则寓言故事的大致图象是( D )3.下列函数解析式中,y是x的正比例函数的是( C )(A)y=-2x+1(B)y=3(x+2)(C)y=πx (D)y=3x4.若函数y=(1-k)x2|k|-3是正比例函数,且y随x的增大而减小,则(k-3)2 019 (B )(A)-2(B)-1 (C)1(D)25.一个蓄水池有15 m3的水,以每分钟0.5 m3的速度向池中注水,蓄水池中的水量Q(m3)与注水时间t(分钟)之间的函数解析式为( C ) (A)Q=0.5t (B)Q=15t(C)Q=15+0.5t(D)Q=15-0.5t6.函数y=(a-√3)x-1的函数值y随自变量x的增大而减小,下列描述中:①a<√3;②函数图象与y轴的交点为(0,-1);③函数图象经过第一象限;④点(a+√3,a2-4)在该函数图象上,正确的描述有( A )(A)①②④(B)①②③④(C)①②③(D)②③④7.如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,点O落在BC边上的点E处.则直线DE的解析式为( A )(A)y=3x+54(B)y=2x+55(C)y=1x+54x+5(D)y=458.如图,直线y1=x+b与y2=kx-1相交于点P,若点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集是( B )(A)x≥-1(B)x>-1(C)x≤-1(D)x<-19.已知一次函数y=kx-1,若y随x的增大而增大,则它的函数图象经过的象限是( C )(A)一、二、三(B)一、二、四(C)一、三、四(D)二、三、四10.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是( D )(A)-2(B)-1 (C)1(D)2二、填空题的自变量x的取值范围是x>-311.函数y=√x+312.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.根据图中提供的信息,下列说法:①以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多②以低于80 km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少③以高于80 km/h的速度行驶时,行驶相同路程,乙车比丙车省油④以80 km/h的速度行驶时,行驶100 km,甲车消耗的汽油量约为10 L正确的是③④(填写正确说法的序号).13.已知正比例函数y=kx 的图象经过(-2,4),则当x=1时,函数y 的值为 -2 .14.据调查,某地铁自行车存放处在某星期天的存车量为4 000辆次,其中每辆变速车存车费是0.30元/次,普通自行车存车费是每辆0.20元/次,若普通自行车存车数为x 辆,存车费总收入为y 元,则y 关于x 的函数解析式为 y=-0.10x+1 200(0≤x ≤4 000) .15.在同一直角坐标系内分别作出一次函数y=12x+1和y=2x-2的图象,则①函数y=2x-2的图象与y 轴的交点是(-2,0);②方程组{2y -x =2,2x -y =2的解是{x =2,y =2;③两直线与y 轴所围成的三角形的面积为3. 其中正确的有 ②③ .(填序号)三、解答题16.分别写出下列各题中的函数解析式及自变量的取值范围.(1)已知等腰三角形的面积为20,设它的底边长为x,底边上的高y 随x 的变化而变化.(2)水池中有水10 L,此后每小时漏水0.05 L,水池中的水量V随时间t 的变化而变化.,x>0.解:(1)y=40x(2)V=10-0.05t,0≤t≤200.17.已知y与x+2成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当x=5时,y的值;(3)求当y=36时,x的值.解:(1)设y=k(x+2),因为当x=4时,y=12,所以12=k(4+2),解得k=2,所以y=2(x+2)=2x+4.(2)当x=5时,y=2×5+4=14.(3)当y=36时,36=2x+4,解得x=16.18.已知y=(m+1)x2-|m|+n+4.(1)当m,n为何值时,y是x的一次函数?(2)当m,n为何值时,y是x的正比例函数? 解:(1)若y是x的一次函数,则{m+1≠0, 2−|m|=1,解得m=1,所以当m=1,n为任意实数时,y是x的一次函数.(2)若y是x的正比例函数,则{m+1≠0,2−|m|=1,n+4=0,解得{m=1,n=−4,所以当m=1,n=-4时,y是x的正比例函数.19.甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60 km/h.(1)求甲车的速度;(2)当甲、乙两车相遇后,乙车速度变为a km/h,并保持匀速行驶,甲车速度不变,结果乙车比甲车晚38分钟到达终点,求a 的值. 解:(1)由图象可得,甲车的速度为280−1202=80 km/h. (2)相遇时间为28080+60=2 h, 由题意可得,60×280+3860=80×2a ,解得,a=75, 经检验,a=75是所列分式方程的解,即a 的值是75.20.已知y+2与x-2成正比例,且当x=3时,y=-3.(1)求y 关于x 的函数解析式;(2)若点P(a 1,b 1),Q(a 2,b 2)在该函数的图象上,且b 1>b 2,试判断a 1与a 2的大小关系;(3)点M(-1,2)与N(3,-3)是否在该函数的图象上?解:(1)因为y+2与x-2成正比例,所以可设y+2=k(x-2),因为当x=3时,y=-3,所以-3+2=k(3-2),解得k=-1,所以y+2=-(x-2),即y=-x.(2)因为y=-x,所以y随x的增大而减小,因为b1>b2,所以a1<a2,(3)因为当x=-1时,y=-(-1)=1≠2,当x=3时,y=-3,所以点M(-1,2)不在该函数的图象上,N(3,-3)在该函数的图象上.21.直线y=2x+3与x轴交于点A,与y轴交于点B.(1)求A,B点坐标;(2)过B点作直线BP与x轴交于点P,且OP=2OA,求△ABP的面积.,解:(1)令x=0,则y=3,令y=0,则x=-32所以A(-32,0),B(0,3). (2)因为A(-32,0),所以AO=32, 因为OP=2OA,所以OP=3.如图,当点P 与点A 在y 轴异侧时,AP=OA+OP,即AP=32+3=92, 所以S △ABP =12AP ·OB=12×92×3=274,当点P 与点A 在y 轴同侧时,AP=OP-OA=3-32=32,所以S △ABP =12AP ·OB=12×32×3=94, 故△ABP 的面积为274或94. 22.某大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别建立两种方案中y 与x 的函数关系式;(2)请计算并确定出最节省费用的购票方案.解:(1)按优惠方案1可得y 1=20×4+(x-4)×5=5x+60(x ≥4); 按优惠方案2可得y 2=(5x+20×4)×90%=4.5x+72(x ≥4).(2)因为y1-y2=0.5x-12(x≥4),①当y1-y2=0时,解得x=24,②当y1-y2<0时,解得x<24,③当y1-y2>0时,解得x>24,所以当购买24张票时,两种方案付款一样多. 当4≤x<24时,y1<y2,方案1付款较少.当x>24时,y1>y2,方案2付款较少.。
人教版八年级数学下册《第19章一次函数》单元测试一、单选题1.下列关于变量x ,y 的关系,其中y 不是x 的函数的是()A .B .C .D .2.下列变量之间的关系不是函数关系的是()A .长方形的宽一定,其长与面积B .正方形的周长与面积C .等腰三角形的底边与面积D .速度一定时,行驶的路程与时间3.小明以4km /h 的速度匀速前进,则他行走的路程()km s 与时间()h t 之间的函数关系式是()A .4s t=B .4000s t=C .4t s =D .4s t=4.平面直角坐标系中,直线y =2x ﹣6不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.一次函数y =kx +b (k ≠0)的图象如图所示,则k ,b 的取值范围是()A .k >0,b <0B .k >0,b >0C .k <0,b <0D .k <0,b >06.要从直线43y x =得到直线423x y +=,就要把直线43y x =()A .向上平移23个单位B .向下平移23个单位C .向左平移23个单位D .向右平移23个单位7.下列一次函数中,y 随x 增大而增大的有()①87y x =-;②65y x =-;③83y x =-+;④(57)y x =-;⑤9y x =.A .①②③B .①②⑤C .①③⑤D .①④⑤8.一次函数26y x =-+的图象与两坐标轴交于点A 、B ,则AOB 的面积等于().A .18B .12C .9D .69.如图是一次函数y kx b =+的图象,若0y >,则x 的取值范围是()A .0x >B .2x >C .3x >-D .32x -<<10.小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h (米)与小强出发后的时间t (分钟)的函数关系如右图所示,给出结论①山的高度是720米,②1l 表示的是爷爷爬山的情况,2l 表示的是小强爬山的情况,③小强爬山的速度是爷爷的2倍,④爷爷比小强先出发20分钟.其中正确的有().A .1个B .2个C .3个D .4个二、填空题11.已知函数26y x =-,当3x =时,y =_______;当19y =时,x =_______.12.如图中的两条直线1l 、2l 的交点坐标可以看做方程组__________的解.13.已知O 为坐标原点,点(2,)A m 在直线2y x =上,在x 轴上有一点B 使得AOB 的面积为8,则直线AB 与y 轴的交点坐标为________.14.某商场销售某种商品时,顾客一次购买20件以内的(含20件)按原价付款,超过20件的,超出部分按原价的7折付款.若付款的总数y (元)与顾客一次所购买数量x (件)之间的函数关系如图,则这种商品每件的原价为______元.15.某工厂生产甲乙两种产品,共有工人200名,每人每天可以生产5件甲产品或3件乙产品,若甲产品每件可获利4元,乙产品每件可获利7元,工厂每天安排x 人生产甲产品,其余人生产乙产品,则每日的利润y (元)与x 之间的函数关系式为________.三、解答题16.小明说,在式子y kx b =+中,x 每增加1,kx 增加了k ,b 没变,因此y 也增加了k .而如图所示的一次函数图象中,x 从1变成2时,函数值从3变为5,增加了2,因此该一次函数中k 的值是2.小明这种确定k 的方法有道理吗?说说你的认识.17.如图,直线1是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.h与温度t(℃)之间的关系,某日研究人员在该地的不18.为了研究某地的高度()km同高度处同时进行了若干次测量,测得的数据如下表:h00.51 1.52 2.53/kmt/℃2521.818.615.3128.7 5.5(1)在直角坐标系内,描出各组有序数对(h,t)所对应的点;(2)这些点是否近似地在一条直线上?(3)写出h与t之间的一个近似关系式;(4)估计此时3.5km高度处的温度.19.如图(单位:cm ),规格相同的某种盘子整齐地摞在一起.(1)设x 个这种盘子摞在一起的高度为y cm ,求y 与x 之间的关系式;(2)求10个这种盘子摞在一起的高度.20.已知一次函数的图象经过()2,3M --,()1,3N 两点.(1)求这个一次函数的解析式;(2)设图象与x 轴、y 轴交点分别是A 、B ,求点A 、B 的坐标;(3)求此函数图象与x 轴、y 轴所围成的三角形的面积.21.如图,1l 、2l 分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(1)根据图象分别求出12l l 、的函数解析式;(2)如果电费是0.5元/度,求两种灯各自的功率;(注:功率单位:瓦,1度=1000瓦×1小时)(3)若照明时间不超过2000小时,如何选择两种灯具,能使使用者更合算?22.一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部,三款手机的进价和售价如下表:手机型号A型B型C型进价(单位:元/部)90012001100预售价(单位:元/部)120016001300(1)请求出y与x之间的函数关系式,并求出x的取值范围;(2)假设所购进的手机全部售出,在此过程中经销商需额外支出各种费用共1500元,请求出预估利润P(元)与x之间的函数关系;(注:预估利润=预售总额-购机款-额外费用)(3)在(2)的条件下,请求出P的最大值,并求出此时购进三款手机各多少部.参考答案1.D 2.C3.A4.B5.C6.A7.C8.C9.C10.B11.35±12.421t s t s +=ìí-=-î13.()0,8或80,3æöç÷èø14.215.4200y x=-16.解:将x +1代入得:y 2=k (x +1)+b ,∴y 2-y =k (x +1)+b -kx -b =k ,∵y 2-y =2,∴k =2;所以小明的说法是正确的;实际上,当x 增加1时,y 的值的增加量为:()()1k x b kx b k ++-+=.17.解:∵由题意x =0,y =1;x =3,y =-3,∴1033k b k b =´+ìí-=+î解得:431k b ì=-ïíï=î∴413y x =-+∴直线与坐标轴的交点分别为(0,1),(34,0),∴函数413y x =-+与两坐标轴围成三角形的面积=31142´´=38.18.解:(1)如图:(2)这些点近似地在一条直线上.(3)设t =kh +b ,∵过点(0,25),(2,12),∴25122b k b =ìí=+î,∴ 6.525k b =-ìí=î,∴t =25−6.5h ,(4)当h =3.5时,t =25−6.5×3.5=2.25℃所以3.5千米高度处的温度约为2.25℃.19.(1)解:设解析式为y=kx+b 由题意得:6497k bk b =+ìí=+î解得:12k b =ìí=î∴解析式为2y x =+(2)把x =10代入2y x =+得102y =+=12(cm)20.解:(1)设一次函数的解析式为y kx b =+,由题意得:233k b k b -+=-ìí+=î,解得21k b =ìí=î,∴一次函数的解析式为:21y x =+;(2)令x =0,则y =1,∴B (0,1),令y =0,则210x +=,解得12x =-,∴A (12-,0);(3)∵A (12-,0),B (0,1),∴12OA =,1OB =,∴111112224AOB S OA OB =×=´´=.21.(1)设1:(0)l y kx b k =+¹,将(0,2)、(500,17)代入得250017b k b =ìí+=î解得0.032k b =ìí=î1:0.032l y x \=+设2:(0)l y mx n m =+¹,将(0,20)和(500,26)代入得2050026n m n =ìí+=î解得0.01220m n =ìí=î2:0.01220l y x \=+(2)将x =2000分别代入12l l 、得162y =、244y =12l l 、的灯泡售价分别是2元和20元\2000小时12l l 、的用电量分别为(62-2)0.5120¸=(度)、(4420)0.548-¸=(度)\1l 灯泡的功率:1201000602000´=(瓦),2l 灯泡的功率481000242000´=(瓦)(3)令12=l l 得0.0320.01220x x +=+,解得x =1000照明时间少于1000小时时,选择白炽灯合算;照明时间等于1000小时时,二者均可;照明时间大于1000小时时,选择节能灯合算22.解:(1)根据题意,知购进C 型手机的部数为60-x -y ;根据题意,得:900x +1200y +1100(60-x -y )=61000,整理,得:y =2x -50;购进C 型手机部数为60-x -y =110-3x ,根据题意,可列不等式组:8250811038x x x ³ìï-³íï-³î,解得:29≤x ≤34,综上,y =2x -50(29≤x ≤34);(2)由题意,得:P =1200x +1600y +1300(60-x -y )-61000-1500=500x +500;(3)由(1)知29≤x ≤34,由(2)得P =500x +500,∵P 是x 的一次函数,k =500>0,∴P 随x 的增大而增大,∴当x =34时,P 取得最大值,最大值为17500元,此时购进A 型手机34部、B 型手机18部、C 型手机8部.。
八年级数学下册《十九章 一次函数》单元测试卷及答案解析-人教版一、单选题1.一本笔记本5元,买x 本共付y 元,则变量是( )A .5B .5和xC .xD .x 和y2.下列各曲线中,表示y 是x 的函数的是( )A .B .C .D .3.下列各点中,在一次函数21y x =-+的图像上的是( )A .()11-,B .()01,C .()22,D .()23-,4.如图,直线()0y kx b k =+≠经过点()32A -,,则关于x 的不等式2kx b +<解集为( )A .3x >-B .3x <-C .2x >D .2x <5.函数1x y x+=的自变量x 的取值范围是( ) A .1x >- B .1x ≥- C .1x ≥-或0x ≠D .1x ≥-且0x ≠6.某地出租车计费方式如下:3km 以内只收起步价5元,超过3km 的除收起步价外,每超出1km 另加收1元;不足1km 的按1km 计费.则能反映该地出租车行驶路程 x (km )与所收费用 y (元)之间的函数关系的图象是( )A .B .C .D .7.已知正比例函数y kx =的图象经过点(24)-,,如果(1)A a ,和(1)B b -,在该函数的图象上,那么a 和b 的大小关系是( ) A .a b ≥B .a b >C .a b ≤D .a b <8.点在直线23y x =-+上的是( )A .()23,B .()21-,C .()30,D .()03-,9.如图,函数y =2x 和y =ax+5的图像交于点A (m ,3),则不等式2x <ax+5的解集是( )A .x <32B .x <3C .x >32D .x >310.如图,欣欣妈妈在超市购买某种水果所付金额y (元)与购买x (千克)之间的函数图象如图所示,则一次性购买6千克这种水果比平均分2次购买可节省( )元.A .4B .3C .2D .1二、填空题11.若函数6y x =-在实数范围内有意义,则函数x 的取值范围是 . 12.平面直角坐标系中,点(13)(11)(3)A B C a --,,,,,在同一条直线上,则a 的值为 . 13.如图,直线3y x =和2y kx =+相交于点12P b ⎛⎫ ⎪⎝⎭,,则不等式32x kx ≥+的解集为 .14.小明租用共享单车从家出发,匀速骑行到相距2400米的图书馆还书.小明出发的同时他的爸爸以每分钟96米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了3分钟后沿原路按原速骑车返回.设他们出发后经过t (分)时小明与家之间的距离为 1s (米),小明爸爸与家之间的距离为 2s (米),图中折线OABD 、线段EF 分别表示 1s 、 2s 与t 之间的函数关系的图象.小明从家出发,经过 分钟在返回途中追上爸爸.三、解答题15.如图,在靠墙(墙长8m )的地方围建一个矩形的养鸡场,另外三边用栅栏围成,如果栅栏总长为32m ,求鸡场的一边y (m )与另一边x (m )的函数关系式,并求出自变量的取值范围.16.已知A 、B 两地相距30km ,小明以6km/h 的速度从A 步行到B 地的距离为y km ,步行的时间为x h .(1)求y 与x 之间的函数表达式,并指出y 是x 的什么函数; (2)写出该函数自变量的取值范围.17.一次函数y=kx+b ,当x=1时y=5;当x=-1时y=1.求k 和b 的值.18.由于灯管老化,现某学校要购进A 、B 两种节能灯管320只,A 、B 两种灯管的单价分别为25元和30元,现要求B 种灯管的数量不少于A 种灯管的3倍,那么购买A 种灯管多少只时可使所付金额最少?最少为多少元?19.一辆轿车在高速公路上匀速行使,油箱存油量Q (升)与行使的路程S (km )成一次函数关系.若行使100km 时油箱存油43.5升,当行使300km 时油箱存油30.5升,请求出这个一次函数关系式,并写出自变量S 的取值范围.四、综合题20.如图,长为32米,宽为20米的长方形地面上,修筑宽度均为m 米的两条互相垂直的小路(图中阴影部分),其余部分作耕地,如果将两条小路铺上地砖,选用地砖的价格是60元/米2.(1)写出买地砖需要的钱数y (元)与m (米)的函数关系式 . (2)计算当m =3时地砖的费用.21.学校组织暑期夏令营,学校联系了报价均为每人200元的两家旅行社,经协商,甲旅行社的优惠条件是:全部师生7.5折优惠;乙旅行社的优惠条件是:可免去一位老师的费用,其余师生8折优惠.(1)分别写出两家旅行社所需的费用y (元)与师生人数x (人)的函数关系式; (2)当师生人数是多少时甲旅行社比乙旅行社更便宜.22.将正比例函数3y x =的图象平移后经过点()14,. (1)求平移后的函数表达式;(2)求平移后函数的图象与坐标轴围成的三角形的面积.23.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x 构成一种函数关系.每平方米种植2株时平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克. (1)求y 关于x 的函数表达式;(2)每平方米种植多少株时能获得12.5kg 的产量?参考答案与解析1.【答案】D【解析】【解答】解:一本笔记本的单价是5元不变的,因此5是常量而购买的本数x ,总费用y 是变化的量,因此x 和y 是变量 故答案为:D .【分析】结合题意,利用变量的定义求解即可。
八年级数学(下)第十九章单元检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2016·扬州)函数y =x -1中,自变量x 的取值范围是( B ) A .x >1 B .x ≥1 C .x <1 D .x ≤12.若函数y =kx 的图象经过点(1,-2),那么它一定经过点( B )A .(2,-1)B .(-12,1)C .(-2,1)D .(-1,12)3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车的速度,下面是小明离家后他到学校剩下的路程s 关于时间t 的函数图象,那么符合小明行驶情况的图象大致是( D )4.已知一次函数y =kx +b 的图象如图所示,当x <0时,y 的取值范围是( C ) A .y >0 B .y <0 C .y >-2 D .-2<y <0,第4题图) ,第9题图),第10题图)5.当kb <0时,一次函数y =kx +b 的图象一定经过( B )A .第一、三象限B .第一、四象限C .第二、三象限D .第二、四象限6.已知一次函数y =(2m -1)x +1的图象上两点A(x 1,y 1),B(x 2,y 2),当x 1<x 2时,有y 1<y 2,那么m 的取值范围是( B )A .m <12B .m >12C .m <2D .m >07.已知一次函数的图象过点(3,5)与(-4,-9),则该函数的图象与y 轴交点的坐标为( A )A .(0,-1)B .(-1,0)C .(0,2)D .(-2,0)8.把直线y =-x -3向上平移m 个单位后,与直线y =2x +4的交点在第二象限,则m 的取值范围是( A )A .1<m <7B .3<m <4C .m >1D .m <49.(2016·天门)在一次自行车越野赛中,出发m h 后,小明骑行了25 km ,小刚骑行了18 km ,此后两人分别以a km /h ,b km /h 匀速骑行,他们骑行的时间t(h )与骑行的路程s(km )之间的函数关系如图,观察图象,下列说法:①出发m h 内小明的速度比小刚快;②a =26;③小刚追上小明时离起点43 km ;④此次越野赛的全程为90 km .其中正确的说法有( C )A .1个B .2个C .3个D .4个10.(2016·苏州)矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( B )A .(3,1)B .(3,43)C .(3,53) D .(3,2)二、填空题(每小题3分,共24分)11.(2015·上海)同一温度的华氏度数y()与摄氏度数x(℃)之间的函数关系是y =95x +32,如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是__77__.12.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是__0.2__千米/分钟.,第12题图) ,第14题图),第16题图)13.一次函数y =(m -1)x +m 2的图象过点(0,4),且y 随x 的增大而增大,则m =__2__. 14.如图,利用函数图象回答下列问题:(1)方程组⎩⎪⎨⎪⎧x +y =3,y =2x 的解为__⎩⎪⎨⎪⎧x =1,y =2__;(2)不等式2x >-x +3的解集为__x >1__. 15.已知一次函数y =-2x -3的图象上有三点(x 1,y 1),(x 2,y 2),(3,y 0),并且x 1>3>x 2,则y 0,y 1,y 2这三个数的大小关系是__y 1<y 0<y 2__.16.如图,在平面直角坐标系中,点A 的坐标为(0,6),将△OAB 沿x 轴向左平移得到△O ′A ′B ′,点A 的对应点A ′落在直线y =-34x 上,则点B 与其对应点B ′间的距离为__8__.17.过点(-1,7)的一条直线与x 轴、y 轴分别相交于点A ,B ,且与直线y =-32x +1平行,则在线段AB 上,横、纵坐标都是整数的点坐标是__(3,1),(1,4)__.18.设直线y =kx +k -1和直线y =(k +1)x +k(k 为正整数)与x 轴所围成的图形的面积为S k (k =1,2,3,…,8),那么S 1+S 2+…+S 8的值为__49__.三、解答题(共66分)19.(8分)已知2y -3与3x +1成正比例,且x =2时,y =5. (1)求x 与y 之间的函数关系,并指出它是什么函数; (2)若点(a ,2)在这个函数的图象上,求a 的值.解:(1)y =32x +2,是一次函数 (2)a =020.(8分)已知一次函数y =(a +8)x +(6-b). (1)a ,b 为何值时,y 随x 的增大而增大?(2)a ,b 为何值时,图象过第一、二、四象限?(3)a ,b 为何值时,图象与y 轴的交点在x 轴上方?(4)a ,b 为何值时,图象过原点?解:(1)a >-8,b 为全体实数 (2)a <-8,b <6 (3)a ≠-8,b <6 (4)a ≠-8,b =621.(9分)画出函数y =2x +6的图象,利用图象:(1)求方程2x +6=0的解; (2)求不等式2x +6>0的解;(3)若-1≤y ≤3,求x 的取值范围.解:图略,(1)x =-3 (2)x >-3 (3)当-1≤y ≤3,即-1≤2x +6≤3,解得-72≤x≤-3222.(9分)电力公司为鼓励市民节约用电,采取按月用电量分段收费的办法,已知某户居民每月应缴电费y(元)与用电量x(度)的函数图象是一条折线(如图),根据图象解答下列问题.(1)分别写出当0≤x ≤100和x >100时,y 与x 间的函数关系式; (2)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元,则该用户该月用了多少度电?解:(1)y =⎩⎪⎨⎪⎧0.65x (0≤x ≤100)0.8x -15(x >100) (2)40.3元;150度23.(10分)如图,在平面直角坐标系xOy 中,矩形ABCD 的边AD =3,A(12,0),B(2,0),直线l 经过B ,D 两点.(1)求直线l 的解析式;(2)将直线l 平移得到直线y =kx +b ,若它与矩形有公共点,直接写出b 的取值范围.解:(1)y =-2x +4 (2)1≤b ≤724.(10分)今年我市水果大丰收,A ,B 两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两个销售点,从A 基地运往甲、乙两销售点的费用分别为每件40元和20元,从B 基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A 基地运往甲销售点水果x 件,总运费为W 元,请用含x 的代数式表示W ,并写出x 的取值范围;(2)若总运费不超过18300元,且A 地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.解:(1)W =35x +11200(80≤x ≤380) (2)∵⎩⎪⎨⎪⎧W ≤18300,x ≥200,∴⎩⎪⎨⎪⎧35x +11200≤18300,x ≥200,解得200≤x ≤20267,∵35>0,∴W 随x 的增大而增大,∴当x =200时,W 最小=18200,∴运费最低的运输方案为:A →甲:200件,A →乙:180件,B →甲:200件,B →乙:120件,最低运费为18200元25.(12分)一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车,设慢车行驶的时间为x 小时,两车之间的距离为y 千米,图中折线表示y 与x 之间的函数图象,请根据图象解决下列问题:(1)甲、乙两地之间的距离为__560__千米; (2)求快车与慢车的速度;(3)求线段DE 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围.解:(2)设快车速度为m 千米/时,慢车速度为n 千米/时,则有⎩⎪⎨⎪⎧4(m +n )=560,3m =4n ,解得⎩⎪⎨⎪⎧m =80,n =60,∴快车速度为80千米/时,慢车速度为60千米/时 (3)D (8,60),E (9,0),线段DE 的解析式为y =-60x +540(8≤x ≤9)。
第19章《一次函数》整章水平测试一、耐心填一填,一锤定音!(每小题3分,共30分)1.已知函数(1)1y k x k =++-,当k 时,它为一次函数,当k 时,它为正比例函数.2.直线1y x =+与直线22y x =-的交点坐标是 .3.一次函数1y x =-+的图象经过点P (m ,m -1),则m = .4.A ,B 两地的距离是160k m ,若汽车以平均每小时80k m 的速度从A 地开往B 地,则汽车距B 地的路程y (k m )与行驶的时间x (h )之间的函数关系式为 .5.已知函数3y x b =-+的图象过点(1,-2)和(a ,-4),则a = .6.一次函数y kx b =+中,y 随x 的增大而减小,且kb >0,则它的图象一定不经过 第 象限.7.已知某一次函数的图象如图1所示,则其函数表达式是 .8.直线y kx b =+过点(2,-1),且与直线132y x =+相交于y 轴上同一点,则其函数表达式为 .9.某一次函数图象过点(-1,5),且函数y 的值随自变量x 的值的增大而增大,请你写出一个符合上述条件的函数表达式 .10.若三点A (0,3),B (-3,0)和C (6,y )共线,则y = .二、精心选一选,慧眼识金!(每小题3分,共30分)1.下列各函数中,x 逐渐增大y 反而减少的函数是( )A .13y x =-B .13y x =C .41y x =+D .41y x =-2.下面哪个点不在函数23y x =-+的图象上( )A .(-5,13)B .(0.5,2)C .(3,0)D .(1,1)3.已知直线y =x +b ,当b <0时,直线不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.直线y =kx 过点(3,4),那么它还通过点( )A .(3,-4)B .(4,3)C .(-4,-3)D .(-3,-4)5.一次函数y =kx +b 的图象经过点(2,1)和点(0,3),那么这个函数表达式为( )A .132y x =-B .y =-x +3C .y =3x - 2D .y =-3x +26.如果直线y =kx +b 经过一、二、四象限,则有( )A .k >0,b >0B .k >0,b <0C .k <0,b <0D .k <0,b >07.关于正比例函数y =-2x ,下列结论中正确的是( )A .图象过点(-1,-2)B .图象过第一、三象限C .y 随x 的增大而减小D .不论x 取何值,总有y <08.已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限9.汽车由重庆驶往相距400千米的成都.如果汽车的平均速度是100千米/小时,那么汽车距离成都的路程s(千米)与行驶时间t(小时)的函数关系的图象表示为()A.B.C.D.10.甲、乙两人赛跑,所跑路程与时间的关系如图2所示(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四个信息,其中错误的是()A.这是一次1500m赛跑B.甲、乙两人中先到达终点的是乙C.甲、乙同时起跑D.甲在这次赛跑中的速度为5m/s三、用心想一想,马到成功!(本大题共46分)1.(本小题11分)如图3所示,直线m是一次函数y=kx+b的图象.(1)求k、b的值;(2)当12x 时,求y的值;(3)当y=3时,求x的值.2.(本小题11分)某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5米3的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1米3污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元.(1)求出y与x的函数关系式(纯利润=总收入-总支出);(2)当y=106000时,求该厂在这个月中生产产品的件数.3.(本小题12分)某文具店出售书包和文具盒,书包每个定价30元,文具盒每个定价5元,该店制定两种优惠方案:①买一个书包赠送一个文具盒;②按总价九折付款。
人教版八年级数学下册第十九章一次函数单元练习题一、填空题(每题4分,共24分):1、一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第____________象限.2、已知y-3与x+5成正比例,且当x=2时,y=17.则y与x的函数解析式为 .3、若点A(m,n)在直线y=kx(k≠0)上,当-1≤m≤1时,-1≤n≤1,则这条直线的函数解析式为________.4、某人沿直路行走,设此人离出发地的距离s(千米)与行走时间t(分钟)的函数关系如图,则此人在这段时间内最快的行走速度是____________千米/小时.5、弹簧挂上物体后会伸长(物体重量在0~10千克范围内),测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)有如下关系:(1)此弹簧的原长度是____________厘米;(2)物体每增加1千克重量,弹簧伸长____________厘米;(3)直接写出弹簧总长度y(厘米)与所挂物体的重量x(千克)的函数解析式为____________.6、如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为.二、选择题(每题4分,共32分):7、正比例函数y=kx(k≠0)的图象经过第二、四象限,则一次函数y=x+k的图象大致是( )8、若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0)B.(2,0) C.(﹣6,0)D.(6,0)9、在平面直角坐标系中,将直线l1:y=-2x-2平移后,得到直线l2:y=-2x+4,则下列平移作法正确的是( )A.将l1向右平移3个单位长度 B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度 D.将l1向上平移4个单位长度10、如图,平面直角坐标系xOy中,点A的坐标为(9,6),AB⊥y轴,垂足为B,点P从原点O出发向x轴正方向运动,同时,点Q从点A出发向点B运动,当点Q到达点B时,点P、Q同时停止运动,若点P与点Q的速度之比为1:2,则下列说法正确的是()A.线段PQ始终经过点(2,3)B.线段PQ始终经过点(3,2)C.线段PQ始终经过点(2,2)D.线段PQ不可能始终经过某一定点11、已知函数y= -x+m与y= mx- 4的图象的交点在x轴的负半轴上那么m的值为().A.±2 B.±4 C.2 D. -212、如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,一次函数的表达式为().A. y =x +2B. y =x-2C. y =2x +1D. y =-x +213、甲、乙两名自行车运动员同时从A 地出发到B 地,在直线公路上进行骑自行车训练.如图,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程s(千米)与行驶时间t(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时乙在甲前10千米;④3小时时甲追上乙.其中正确的个数有( )A .1个B .2个C .3个D .4个14、已知直线y 1=x ,y 2=1/3x+1,y 3=﹣4/5x+5的图象如图所示,若无论x 取何值,y 总取y 1,y 2,y 3中的最小值,则y 的最大值为( )A.37/17B.3.7C.5/4D.81/16 三、解答题(共44分):15、(8分)已知关于x 的一次函数y =(1-3k)x +2k -1,试回答: (1)k 为何值时,图象交x 轴于点(34,0)?(2)k 为何值时,y 随x 增大而增大?16、(6分)已知两个正比例函数y1=k1x与y2=k2x,当x=2时,y1+y2=-1;当x=3时,y1-y2=12.求这两个正比例函数的解析式.17、(8分)已知y-3与x成正比例,且当x=-2时,y的值为7.(1)求y与x之间的函数解析式;(2)若点(-2,m),点(4,n)是该函数图象上的两点,试比较m,n的大小,并说明理由.18、(10分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?19、(12分)因为一次函数y=kx+b与y=-kx+b(k≠0)的图象关于y轴对称,所以我们定义:函数y=kx+b与y=-kx+b(k≠0)互为“镜子”函数.(1)请直接写出函数y=3x-2的“镜子”函数:____________;(2)如果一对“镜子”函数y=kx+b与y=-kx+b(k≠0)的图象交于点A,且与x轴交于B,C两点,如图所示,若△ABC是等腰直角三角形,∠BAC=90°,且它的面积是16,求这对“镜子”函数的解析式.参考答案一、填空题:1、三2、y=2x+13.3、y=x或y=-x4、85、(1)12 (2)0.5 (3)y=0.5x+126、﹣4≤m≤4二、选择题:7、B 8、B 9、A 10、B 11、D 12、A 13、C 14、A 三、解答题:15、(1)∵关于x 的一次函数y =(1-3k)x +2k -1的图象交x 轴于点(34,0),∴34(1-3k)+2k -1=0,解得k =-1. (2)1-3k >0时,y 随x 增大而增大,解得k <13.16、根据题意,得⎩⎪⎨⎪⎧2k 1+2k 2=-1,3k 1-3k 2=12.解得⎩⎪⎨⎪⎧k 1=74,k 2=-94.∴这两个正比例函数的解析式人教版八年级下册第十九章一次函数作双垂分解坐标巧解题专题人教版八年级下册第十九章一次函数作双垂分解坐标巧解题专题解一次函数问题时,过直线上一点分别作坐标轴的垂线,从而把点的坐标分解表示出来,同时也构造出了三角形的高线,为问题的求解,提供了一种有效的求解途径. 1.过交点作双垂线,探求正比例函数的k 值例1 (2018•包头)如图1,在平面直角坐标系中,直线1l :y=﹣4x+1与x 轴,y 轴分别交于点A 和点B ,直线2l :y=kx (k ≠0)与直线1l 在第一象限交于点C .若∠BOC=∠BCO ,则k 的值为 ( )A B C D .分析:利用直线1l :y=﹣4x+1即可得到A (,0)B (0,1),AB=3,过C 作CD ⊥OA 于D ,过C 作CE ⊥OB 于E ,易证△BEC ∽△CDA ,从而确定点C 的坐标,继而确定k 值.解:因为直线1l :y=﹣4x+1,所以到A (,0)B (0,1),AB=3,因为∠BOC=∠BCO ,所以CB=BO=1,AC=2,如图1,过C 作CD ⊥OA 于D ,过C 作CE ⊥OB 于E ,所以△BEC ∽△CDA ,21==AC BC DA EC ,所以DA=2OD ,所以,所以, 所以△BEC ∽△CDA ,21==EO EB CD EB ,所以EO=2EB ,所以3EB=OB=1,所以OE=32,所以C 23),把C ,23)代入直线2l :y=kx k=23即,所以选B .点评:把表示点的坐标的线段通过构造垂线的方法分解出来,后利用三角形的相似分别求得线段的长度,最后根据点的位置,确定点的坐标,利用点与直线的关系问题得解. 2.过交点作双垂线,探求点的坐标例2 (2018年•淮安)如图2,在平面直角坐标系中,一次函数y=kx+b 的图象经过点A(﹣2,6),且与x 轴相交于点B ,与正比例函数y=3x 的图象相交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足COD S 三角形=13S 三角形BO C ,求点D 的坐标.分析:(1)利用一次函数图象上点的坐标特征可求出点C 的坐标,根据点A 、C 的坐标,利用待定系数法即可求出k 、b 的值;(2)过C 作CD ⊥OA 于D ,过C 作CE ⊥OB 于E ,易证△OCF 的面积=13S 三角形BO C , 从而确定点F 的坐标为(0,4),根据点的对称性可以求得点D 的坐标.解:(1)当x=1时,y=3x=3,所以点C 的坐标为(1,3).将A (﹣2,6)、C (1,3)代入y=kx+b ,得:{-2k+b =6k+b =3,解得{k 1b =4=-人教版八年级数学下册 第十九章 一次函数 单元测试题(解析版)一、选择题(共10小题,每小题3分,共30分)1.一个长方形的面积是10 cm 2,其长是a cm ,宽是b cm ,下列判断错误的是( )A . 10是常量B . 10是变量C .b 是变量D .a 是变量2.若函数⎩⎨⎧>≤+=)2(2)2(22x x x x y ,则当函数值y =8时,自变量x 的值是( )A . ±B . 4C . ±或 4D . 4或-3.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →B →C →D →A ,设P 点经过的路程为x ,以点A ,P ,B 为顶点的三角形的面积是y ,则下列图象能大致反应y 与x 的函数关系的是( )A .B .C .D .4.在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表:则m 与v 之间的关系最接近于下列各关系式中的( )A .v =2m -2B .v =m 2-1C .v =3m -3D .v =m +15.已知y =(m +1),如果y 是x 的正比例函数,则m 的值为( )A . 1B . -1C . 1,-1D .06.已知正比例函数y =kx (k ≠0),当x =-1时,y =-2,则它的图象大致是( )A .B .C .D .7.一次函数y =32x +2中,当x =9时,y 值为( ) A . -4 B . -2 C . 6 D . 88.下列对一次函数y =2x +1的图形描述不正确的是( )A . 图象经过一、二、三象限B . 图象与x 轴、y 轴的交点坐标分别为(-21,0)、(0,1)C .y 的值随着x 的增大而减小D . 图象与坐标轴所围成的三角形面积为41 9.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y (单位:元)与一次性购买该书的数量x (单位:本)之间的函数关系如图所示,则下列结论错误的是( )A . 一次性购买数量不超过10本时,销售价格为20元/本B .a =520C . 一次性购买10本以上时,超过10本的那部分书的价格打八折D . 一次性购买20本比分两次购买且每次购买10本少花80元 10.一次函数y =-32x +4与两坐标轴的交点如图所示,当y <0时,x 的取值范围是( )A .x >0B .x <0C .x <6D .x >6二、填空题(共8小题,每小题3分,共24分)11.一根蜡烛长20厘米,点燃后每小时燃烧4厘米,燃烧时剩下的高度y 厘米与燃烧时间x 小时(0≤x ≤5)的关系式可以表示为______________________. 12.已知点A (a -2,3-a )在函数y =2x +1的图象上,则a =________.13.小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打折优惠,买练习本所花费的钱数y (元)与练习本的本数x (本)之间的关系如图所示,那么在这个超市买20本练习本需要________元.14.函数y =(2-k )x 是正比例函数,则k 的取值范围是________. 15.在函数关系式y =-31x +2中,当x =-3时,y =________. 16.已知函数y =-2x +b ,函数值y 随x 的增大而________.(填“增大”或“减小”)17.“五一节”期间,杨老师一家自驾游去了离家170千米的某地.如图是他们家的距离y (千米)与汽车行驶时间x (小时)的函数图象,当他们离目的地还有40千米时,汽车一共行驶的时间是________.18.如图所示,是某电信公司甲、乙两种业务:每月通话费用y (元)与通话时间x (分)之间的函数关系.某企业的周经理想从两种业务中选择一种,如果周经理每个月的通话时间都在100分钟以上,那么选择________种业务合算.三、解答题(共7小题,共66分)19.(6分)设x是销售某种商品的销售收入,y是所得的毛利润(毛利润=销售收入-成本).要使毛利率(毛利率=)达到40%,写出y关于x的函数表达式.20. (6分)已知点(-3,2)和点(a,a+1)都在一次函数y=kx-1的图象上,求a的值.21. (10分)已知正比例函数y=kx的图象过点P(3,-3).(1)写出这个正比例函数的函数解析式;(2)已知点A(a,2)在这个正比例函数的图象上,求a的值.22. (10分)已知一次函数y=2x-3.(1)当x=-2时,求y.(2)当y=1时,求x.(3)当-3<y<0时,求x的取值范围.23. (10分)做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A、B两种款式的服装合计30件,并且每售出一件A款式和B款式服装,甲店铺获利润分别为30元和35元,乙店铺获利润分别为26元和36元.某日,王老板进A款式服装36件,B款式服装24件,并将这批服装分配给两个店铺各30件.(1)怎样将这60件服装分配给两个店铺,能使两个店铺在销售完这批服装后所获利润相同?(2)怎样分配这60件服装能保证在甲店铺获利润不小于950元的前提下,王老板获利的总利润最大?最大的总利润是多少?24. (12分)画出函数y=-2x+2的图象,观察图象并回答下列问题.(1)方程-2x+2=0的解是多少?(2)当0<y<2时,求出对应的自变量x的取值范围.(3)当-1≤x<1时,求出对应的函数值y的取值范围.25. (12分)有甲、乙两家通讯公司,甲公司每月通话(不区分通话地点)的收费标准如图所示;乙公司每月通话的收费如表所示.(1)观察如图,写出甲公司用户月通话时间不超过400分钟时应付的话费金额;(2)求出甲公司的用户通话时间超过400分钟后,通话费用y(元)与通话时间t(分)之间的函数关系式;(写出计算过程)(3)王先生由于工作需要,从4月份开始经常去外市出差,估计每月各种通话时间的比例是本地接听时间:本地拨打时间:外地通话时间=2:1:1.设王先生每月的各种通话时间总和为t(分),通话费用为y(元).你认为t不少于多少时间时,入乙通讯公司比入甲公司更合算?请用计算方法说明理由.乙公司每月收费标准答案解析1.【答案】B【解析】根据长方形面积公式得:10=ab ,则10是常量,a 和b 是变量;故选B. 2.【答案】D【解析】把y =8直接代入函数⎩⎨⎧>≤+=)2(2)2(22x x x x y 即可求出自变量的值. 把y =8代入函数⎩⎨⎧>≤+=)2(2)2(22x x x x y , 先代入上边的方程得x =±,∵x ≤2,x =不合题意舍去,故x =-;再代入下边的方程x =4,∵x >2,故x =4,综上,x 的值为4或-. 故选D.3.【答案】B【解析】当点P 由点A 向点B 运动,即0≤x ≤4时,y 的值为0;当点P 在BC 上运动,即4<x ≤8时,y 随着x 的增大而增大;当点P 在CD 上运动,即8<x ≤12时,y 不变;当点P 在DA 上运动,即12<x ≤16时,y 随x 的增大而减小,故选B.4.【答案】B【解析】一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.当m =4时,A.v =2m -2=6;B.v =m 2-1=15;C.v =3m -3=9;D.v =m +1=5.故选B. 5.【答案】A【解析】根据正比例函数y =kx 的定义条件是:k 为常数且k ≠0,自变量次数为1. 由2)1(m x m y +=,如果y 是x 的正比例函数,得 ⎩⎨⎧≠+=0112m m , 解得m =1,故选A.6.【答案】C【解析】将x =-1,y =-2代入正比例函数y =kx (k ≠0)得,-2=-k ,k =2>0,∴函数图象过原点和一、三象限,故选C.7.【答案】D【解析】把x =9代入y =32x +2,得y =32×9+2=8, 故选D.8.【答案】C【解析】∵一次函数y =2x +1中,k =2>0,b =1>0,∴图象经过一、二、三象限,故A 正确;∵在y =2x +1中令y =0,可得x =-21; 令x =0,可得y =1,∴直线与x 轴、y 轴的交点坐标分别为(-21,0)、(0,1), 故B 正确;∵一次函数y =2x +1中,k =2>0,∴y 随x 的增大而增大,故C 错误; ∵直线与x 轴、y 轴的交点坐标分别为(-21,0)、(0,1), ∴图象与坐标轴所围成的三角形面积为21×21×1=41, 故D 正确,故选C.9.【答案】D【解析】A.∵200÷10=20(元/本), ∴一次性购买数量不超过10本时,销售价格为20元/本,A 选项正确;C .∵(840-200)÷(50-10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C 选项正确; B .∵200+16×(30-10)=520(元),∴a =520,B 选项正确;D .∵200×2-200-16×(20-10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D 选项错误,故选D.10.【答案】D【解析】当y <0时,图象位于x 轴下方,∴x >6,故选D.11.【答案】y =20-4x (0≤x ≤5)【解析】根据蜡烛的总长减去x 小时燃烧的长度表示出y 与x 的函数解析式即可. 根据题意得:y =20-4x (0≤x ≤5),故答案为y =20-4x (0≤x ≤5)12.【答案】2【解析】因为点A (a -2,3-a )在函数y =2x +1的图象上,所以满足3-a =2(a -2)+1,整理得到a =2.13.【答案】34【解析】通过图象发现,当购买10本或以下时,每本2元;当购买10本以上时,超出部分按每本1.4元收费.所以买20本的价格是20+1.4×10=34元. 14.【答案】k ≠2【解析】根据正比例函数的定义:形如y =kx (k 是常数,k ≠0)的函数,即可写出答案. 由正比例函数的定义可得:2-k ≠0,解得k ≠2.故答案为k ≠2.15.【答案】3【解析】把x =-3代入y =-31x +2,得 y =-31×(-3)+2=3.16.【答案】减小【解析】∵一次函数y =-x +b 中,k =-2<0,∴函数值y 随x 的增大减小.17.【答案】2【解析】设AB 段的函数解析式是y =kx +b ,根据A (1.5,90),B (2.5,170)可得解得∴AB 段函数的解析式是y =80x -30,离目的地还有40千米时,y =170-40=130(千米),当y =130时,80x -30=130,解得x =2.18.【答案】甲【解析】设乙种业务对应的函数解析式为y =kx ,则50k =10,得k =0.2,即乙种业务对应的函数解析式为y =0.2x ,设甲种业务对应的函数解析式为y =ax +b ,解得即甲种业务对应的函数解析式为y =0.1x +10,∴令0.2x =0.1x +10,得x =100,即当通话时间为100分钟时两种业务花费一样多,由图象可知,当通话时间在100分钟以上,甲种业务比较合算,故答案为甲.19.【答案】解 由毛利率(毛利率=)达到40%,得成本=25y . 由毛利润=销售收入-成本,得y =x -25y . 化简,得y =72x . 【解析】根据利率,可得成本的表示方法,根据毛利润=销售收入-成本,可得函数关系式. 20.【答案】解 把(-3,2)代入y =kx -1,得-3k -1=2,所以y =-x -1,把(a ,a +1)代入y =kx -1,得-a -1=a +1,即2a =-2,所以a =-1.【解析】首先可以先求出k 的值,确定解析式,然后再把(a ,a +1)代入解析式即可求得a 的值.21.【答案】解 (1)把P (3,-3)代入正比例函数y =kx ,得3k =-3,k =-1,所以正比例函数的函数解析式为y =-x ;(2)把点A (a,2)代入y =-x 得,-a =2,a =-2.【解析】(1)把P (3,-3)直接代入正比例函数y =kx ,求得函数解析式即可;(2)把点A (a,2)代入(1)中的函数解析式,求出a 的数值即可.22.【答案】解 (1)把x =-2代入y =2x -3中得:y =-4-3=-7;(2)把y =1代入y =2x -3中得:1=2x -3,解得x =2;(3)∵-3<y <0,∴-3<2x -3<0, ∴, 解得0<x <23. 【解析】(1)直接把x =-2代入y =2x -3可得答案;(2)把y =1代入y =2x -3中得1=2x -3,再解方程即可;(3)由题意可得不等式-3<2x -3<0,再解不等式组即可.23.【答案】解 (1)设A 款式服装分配到甲店铺为x 件,则分配到乙店铺为(36-x )件; B 款式分配到甲店铺为(30-x )件,分配到乙店铺为(x -6)件.根据题意得30x +35×(30-x )=26×(36-x )+36(x -6),所以36-x=14(件),30-x=8(件),x-6=16(件),故A款式服装分配到甲店铺为22件,则分配到乙店铺为14件;B款式分配到甲店铺为8件,分配到乙店铺为16件,能使两个店铺在销售完这批服装后所获利润相同;(2)设总利润为w元,根据题意得:30x+35×(30-x)≥950,解得x≤20.∴6≤x≤20.w=30x+35×(30-x)+26×(36-x)+36(x-6)=5x+1770,∵k=5>0,∴w随x的增大而增大,∴当x=20时,w有最大值1870.∴A款式服装分配给甲、乙两店铺分别为20件和16件,B款式服装分配给甲、乙两店铺分别为10件和14件,最大的总利润是1870元.【解析】设A款式服装分配到甲店铺为x件,则分配到乙店铺为(36-x)件;B款式分配到甲店铺为(30-x)件,分。
一次函数单元测试卷新人教版八年级下册《第19章一次函数》单元测试卷一、选择题(每小题3分,共24分)1.下列各图给出了变量x与y之间的函数是(B)。
2.如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有(B)m>,n<0.3.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是(C)y1<y2.4.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为(B)y=﹣x﹣6.5.一次函数y=﹣5x+3的图象经过的象限是(B)二,三,四。
6.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠)的图象的是(D)。
7.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为(A)。
8.甲、乙两人在一次赛跑中,路程s与时间t的关系如图所示(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四个信息,其中错误的是(B)甲,乙两人中先到达终点的是乙。
二、填空题(每小题3分,共24分)9.函数的自变量的取值范围是(未给出)。
10.已知y﹣3与x+1成正比例函数,当x=1时,y=6,则y与x的函数关系式为(y=3x+3)。
11.已知一次函数y=﹣x+a与y=x+b的图象相交于点(m,8),则a+b=(0)。
12.据如图的程序,计算当输入x=3时,输出的结果y=(11)。
13.一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是(m>﹣2)。
14.如图,若直线y=kx+b经过A,B两点,直线y=mx经过A点,则关于x的不等式kx+b>mx的解集是(x<b/(m﹣k))。
15.已知函数 $y=2x+b$ 和 $y=ax-3$ 的图象交于点 $P(-2,-5)$,根据图象可得方程$2x+b=ax-3$ 的解是$\frac{1}{2}x-1$。
人教版数学八年级下册第19章一次函数单元测试卷4份第19章单元测试(1)一、填空题1.若一次函数的图象经过点(1,3)与(2,-1),则它的解析式为___________________,函数y随x的增大而____________.2.若函数y=(m-1)x|m|-2-1是关于x的一次函数,且y随x的增大而减小,则m=_______.3.一次函数y=(m+4)x-5+2m,当m__________时,y随x增大而增大;当m_______时,图象经过原点;当m__________时,图象不经过第一象限.4.一次函数y=2x-3的图象可以看作是函数y=2x的图象向__________平移________个单位长度得到的,它的图象经过_______________象限.5.已知一次函数y=kx-1的图象不经过第二象限,则正比例函数y=(k+1)x必定经过第______________象限.6.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,则y关于x 的关系式.7.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完;销售金额与卖瓜千克数之间的关系如图所示,那么小李赚了______元.8.写出同时具备下列两个条件的一次函数表达式(写出一个即可) .(1)y随着x的增大而减小.(2)图象经过点(1,-3)9.已知一次函数y=kx+b的图象经过点P(2,-1)与点Q(-1,5),则当y 的值增加1时,x的值将_______________________.10.已知直线y=kx+b经过点(252,0)且与坐标轴所围成的三角形的面积是254,则该直线的解析式为_____________________________________.二、选择题11.一次函数y=2x+3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限12.已知一次函数y=(-1-m 2)x+3(m 为实数),则y 随x 的增大而 ( )A .增大B .减小C .与m 有关D .无法确定13.直线y =-x +2和直线y =x -2的交点P 的坐标是 ( )A .P (2,0)B .P (-2,0)C .P (0,2)D .P (0,-2)14.无论实数m 取什么值,直线y=x+21m 与y=-x+5的交点都不能在( )A .第一象限B .第二象限C .第三象限D .第四象限15.已知一次函数y=(m -1)x+1的图象上两点A (x 1,y 1),B (x 2,y 2),当x 1>x 2时,有y 1<y 2,那么m 的取值范围是 ( ) A .m>0 B . m<0 C .m>1 D .m<1 16.若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a 的值是 ( ) A .6或-6 B .6 C .-6 D .6和3 17.一次函数y=kx+b 与y=kbx ,它们在同一坐标系内的图象可能为 ( )18.已知一次函数y=ax+4与y=bx-2的图象在x 轴上相交于同一点,则ba 的值是( )A .4B .-2C .12D . 1219.某公司市场营部的营销人员的个人收入与其每月的销售业绩满足一次函数关系,其图象如图所示,由图中给出的信息可知:营销人员没有销售业绩时的收入是( )元.A .280B .290C .300D .31020.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点.设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是 ( )21.如图中的图象(折线ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为380千米/时;④汽车自出发后3小时至 4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有 ( )A .1个B .2个C .3个D .4个三、解答题22.已知一次函数y=(2m+4)x+(3-n).⑴当m 、n 是什么数时,y 随x 的增大而增大? ⑵当m 、n 是什么数时,函数图象经过原点?⑶若图象经过一、二、三象限,求m 、n 的取值范围.23.已知一次函数y=(3m-7)x+m-1的图象与y轴交点在x轴的上方,且y随x 的增大而减小,求整数m的值.24.作出函数y=1x42的图象,并根据图象回答问题:⑴当x取何值时,y>0?⑵当-1≤x≤2时,求y的取值范围.25.已知直线y=3x+1和x、y轴分别交于点A、B两点,以线段AB为边在第一象限内作一个等边三角形ABC,第一象限内有一点P(m,0.5),且S△ABP =S△ABC,求m值.26.某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元.小彬经常来该店租碟,若每月租碟数量为x张.(1)写出零星租碟方式应付金额y(元)与租碟数量x(张)之间的函数关系1式;(2)写出会员卡租碟方式应付金额y(元)与租碟数量x(张)之间的函数关2系式;(3)小彬选取哪种租碟方式更合算?27.某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5米3的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1米3污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:①求出y与x的函数关系式.(纯利润=总收入-总支出)②当y=106000时,求该厂在这个月中生产产品的件数.28.一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以以0.20元的价格返回报社,在一个月内(以30天计算),有20天每天可卖出100份,其余10天,每天可卖出60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为x,每月所获得的利润为y.(1)写出y与x之间的函数关系式,并指出自变量x的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?答案一、1.47y x =-+ 减小 2.-3 3.4m >- 52m =4m <- 4.下,三,一、三、四象限 5.一、三 6. 1.86y x =- 7.36 8.3y x =-等9.减小1210.22112525y x y x =-=-+或二、11.D 12.B 13.A 14.C 15.D 16.B 17.A 18.D 19.C 20.A 21.A三、22.(1)2m >- n 为任何实数 (2)23m n ≠-⎧⎨=⎩ (3)23m n >-⎧⎨<⎩23.71,23m m m <<∴=又为整数,24.(1)由图像可知,当8,0x y >>时 (2)当912,32x y -≤≤-≤≤-时25.S △ABP m ==26.(1)1(0)y x x =≥ (2)20.412(0)y x x =+≥1212123,0.412,20,0.412,20,0.412,20y y x x x y y x x x y y x x x <<+<==+=>>+>()令则 令则 令则,所以,当租碟少于20张时,选零星租碟方式合算;当租碟20张时,两种方式一样;当租碟大于20张时,选会员卡租碟合算 27.(1)198000y x =- (2)6000x =(件)28.(1)20(10.7)1060(10.7)(0.70.2)(60)10y x x =-+⨯----⨯ 480(60100)x x x =+≤≤且为整数10100580(2)k y x x y =>==∴∴最大值随增大而增大当时(元),第19章单元测试(2)一、填空题 1.已知函数1231x y x -=-,x =__________时,y 的值时0,x=______时,y 的值是1;x=_______时,函数没有意义. 2.已知253x y x+=-,当x=2时,y=_________.3.在函数3y x =-中,自变量x 的取值范围是__________.4.一次函数y =kx +b 中,k 、b 都是 ,且k ,自变量x 的取值范围是 ,当 k ,b 时它是正比例函数. 5.已知82)3(-+=mx m y 是正比例函数,则m .6.函数n m x m y n +--=+12)2(,当m= ,n= 时为正比例函数; 当m= ,n= 时为一次函数.7.当直线y=2x+b 与直线y=kx-1平行时,k________,b___________.8.直线y=2x-1与x 轴的交点坐标是____________;与y 轴的交点坐标是_____________. 9.已知点A 坐标为(-1,-2),B 点坐标为(1,-1),C 点坐标为(5,1),其中在直线y=-x+6上的点有____________.在直线y=3x-4上的点有____________.10.一个长为120米,宽为100米的矩形场地要扩建成一个正方形场地,设长增加x 米,宽增加y 米,则y 与x 的函数关系式是 ,自变量的取值范围是 ,且y 是x 的 函数.11.直线y=kx+b 与直线y=32x -平行,且与直线y=312+-x 交于y 轴上同一点,则该直线的解析式为________________________________.二、选择题:12.下列函数中自变量x 的取值范围是x ≥5的函数是 ( )A .y =B .y =C .yD .y = 13.下列函数中自变量取值范围选取错误..的是( )A .2y x x =中取全体实数B .1y=中x ≠0x-1C .1y=中x ≠-1x+1D .1y x =≥14.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x 升。
第十九章《一次函数》单元检测题一、选择题1.把多项式分解因式的结果是A. B.C. D.2.在同一坐标系中,函数与的图象大致是A. B.C. D.3.已知函数,则A. B. 2 C. 0 D. 14.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的组成为记录寻宝者的进行路线,在BC的中点M处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为第2页,共14页A.B.C.D.5. 下列函数中,自变量x 的取值范围为的是A.B.C.D.6. 若存在过点的直线l 与曲线和都相切,则a的值为A. 1B. C. 1或D. 1或7. 已知函数是定义在上的函数,对任意两个不相等的正数,都有,记,则A.B.C.D.8. 下列对函数的认识正确的是A. 若y 是x 的函数,那么x 也是y 的函数B. 两个变量之间的函数关系一定能用数学式子表达C. 若y 是x 的函数,则当y 取一个值时,一定有唯一的x 值与它对应D. 一个人的身高也可以看作他年龄的函数9. 下列曲线中表示y 是x 的函数的是A.B.C.D.二、填空题 10. 已知正比例函数,点在函数上,则随的增大而增大或减小.11. 将函数的图象向上平移2个单位,所得函数图象的解析式为___________.12. 如图,函数和的图象相交于点,则不等式的解集为 .13. 直线与的位置关系为 ;14. 函数是y 关于x 的正比例函数,则______.三、解答题15.已知一次函数的图象过点,求直线AB的解析式;在给出的直角坐标系中,画出和的图象,并根据图象写出方16.求下列函数中当时的函数值:;;.第4页,共14页17.如图是一辆汽车的速度随时间变化而变化的图象,回答下面的问题:汽车从出发到最后停止共经过了多长时间?最高速度是多少?两点分别表示什么?说一说速度是怎样随时间变化而变化的.18.求下列函数中自变量的取值范围.;;;;.第6页,共14页【答案】1. D2. B3. B4. C5. D6. B7. B8. D9. C10. 减小11.12.13. 平行14. 115. 解:根据题意得,解得,所以直线AB的解析式为;画出函数和函数的图象,它们的交点坐标为,所以方程组的解为.16. 解:;;.17. 解:汽车从出发到最后停止共经过了35分钟,最高速度是90千米时;点表示10分时的速度为点表示30分时的速度是;在0到10分速度在逐渐增大;在10到15分速度保持不变;在15到20分时速度在逐渐增加;在20分到25分时速度保持不变;在25分到35分时速度在逐渐减小.18. 解:的取值范围为全体实数;解不等式,得,故x 的取值范围为;解不等式,得,故x 的取值范围为;第8页,共14页解不等式,得,故x的取值范围为;解不等式组得,故x的取值范围为.赠送以下资料考试知识点技巧大全一、考试中途应饮葡萄糖水大脑是记忆的场所,脑中有数亿个神经细胞在不停地进行着繁重的活动,大脑细胞活动需要大量能量。
【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)一、选择题(每题3分,共30分)1.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( ) A .每小时用电量 B .室内温度 C .开机设置温度 D .用电时间2.【2022·恩施州】函数y =x +1x -3的自变量x 的取值范围是( )A .x ≠3B .x ≥3C .x ≥-1且x ≠3 D.x ≥-13.【教材P 82习题T 7变式】下列图象中,表示y 是x 的函数的是( )4.一个正比例函数的图象经过点(2,-1),则它的解析式为( )A .y =-2xB .y =2xC .y =-12xD .y =12x5.把直线y =x 向上平移3个单位长度,下列点在该平移后的直线上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)6.【2022·邵阳】在直角坐标系中,已知点A ⎝ ⎛⎭⎪⎫32,m ,点B ⎝⎛⎭⎪⎪⎫72,n 是直线y =kx+b (k <0)上的两点,则m ,n 的大小关系是( ) A .m <n B .m >n C .m ≥n D .m ≤n7.【2021·海南】李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是( )8.表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象可能是( )9.【2021·安徽】某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm,则38码鞋子的长度为( )A.23 cm B.24 cm C.25 cm D.26 cm10.【传统文化】北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片,用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③春分和秋分,昼夜时长大致相等.其中正确的是( )A.①②B.②③C.②D.③二、填空题(每题3分,共24分)11.函数y=(m-2)x|m|-1+m+2是关于x的一次函数,则m=________. 12.【开放题】【2022·上海】已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:______________.13.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.14.如图,直线y=x+2与直线y=ax+4相交于点A(1,3),则关于x的不等式ax+4≥x+2的解集为__________.(第14题) (第17题) (第18题)15.关于x的一次函数y=(2-m)x-3m的图象经过第一、三、四象限,则m的取值范围为__________.16.声音在空气中传播的速度简称音速,科学研究发现声音在空气中传播的速度(m/s)与气温(℃)有关,下表列出了一组不同气温时的音速:用y(m/s)表示音速,用x(℃)表示气温,则y与x之间的关系式为____________.17.【教材P97图19.2-8变式】如图,AB,CB表示某工厂甲、乙两车间产品的总量y(t)与生产时间x(天)之间的函数图象,第30天结束时,甲、乙两车间产品总量为________t.18.【2022·天津四十三中模拟】日常生活中常用的二维码是由许多大小相同的黑白两色小正方形按某种规律组成的一个大正方形,图①是一个20×20格式(即黑白两色小正方形个数的和是400)的二维码,左上角、左下角、右上角是三个相同的7×7格式的正方形,将其中一个放大后如图②,除这三个正方形外,图①中其他的黑色小正方形个数y与白色小正方形个数x正好满足图③所示的函数图象,则图①所示的二维码中共有个白色小正方形.三、解答题(19,20题每题12分,其余每题14分,共66分)19.【教材P107复习题T4(2)改编】一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=-x -2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.21.【立德树人】【2022·成都】随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数解析式;(2)何时乙骑行在甲的前面?22.【数学建模】【2022·云南】某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.。
人教版八年级数学下册第十九章-一次函数单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、笔直的海岸线上依次有A,B,C三个港口,甲船从A港口出发,沿海岸线匀速驶向C港口,1小时后乙船从B港口出发,沿海岸线匀速驶向A港口,两船同时到达目的地,甲船的速度是乙船的1.25倍,甲、乙两船与B港口的距离y(km)与甲船行驶时间x(h)之间的函数关系如图所示给出下列说法:①A,B港口相距400km;②B,C港口相距300km;③甲船的速度为100km/h;④乙船出发4h时,两船相距220km,其中正确的个数是()A.1 B.2 C.3 D.42、在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是()A.B.C.D.3、一次函数y=mx+n的图象经过一、二、四象限,点A(1,y1),B(3,y2)在该函数图象上,则()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y24、下列函数中,为一次函数的是()A.12yx=B.2y x C.1y=D.1y x=-+5、如果函数y=(2﹣k)x+5是关于x的一次函数,且y随x的值增大而减小,那么k的取值范围是()A.k≠0B.k<2 C.k>2 D.k≠26、下列各图中,不能表示y是x的函数的是()A.B.C.D.7、已知两个一次函数y1=ax+b与y2=bx+a,它们在同一平面直角坐标系中的图象可能是下列选项中的()A.B.C.D.8、一次函数y=kx+b的图象如图所示,则下列说法错误的是()A.y随x的增大而减小B.k<0,b<0C.当x>4时,y<0x的图象D.图象向下平移2个单位得y=﹣129、如图,图中的函数图象描述了甲乙两人越野登山比赛.(x表示甲从起点出发所行的时间,y甲表示甲的路程,y乙表示乙的路程).下列4个说法:①越野登山比赛的全程为1000米;②甲比乙晚出发40分钟;③甲在途中休息了10分钟;④乙追上甲时,乙跑了750米.其中正确的说法有()个A.1 B.2 C.3 D.410、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B 车的速度为90千米/小时,A,B两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y (千米),则能大致表示y与x之间函数关系的图象是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知直线23y x =-+,则它与x 轴的交点坐标为________,与坐标轴围成的三角形面积为_______.2、甲、乙两施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成任务.下表根据每天工程进度绘制而成的.下列结论:①甲队每天修路20米;②乙队第一天修路15米;③乙队技术改进后每天修路35米;④前7天甲、乙两队修路长度相等.其中正确的结论有_______.(填序号).3、一次函数y =kx +b (k ≠0)中两个变量x 、y 的部分对应值如下表所示:那么关于x 的不等式kx +b ≥-1的解集是________.4、华氏温标与摄氏温标是两大国际主流的计量温度的标准.德国的华伦海特用水银代替酒精作为测温物质,他令水的沸点为212度,纯水的冰点为32度,这套记温体系就是华氏温标.瑞典的天文学家安德斯·摄尔修斯将标准大气压下冰水混合物的温度规定为0摄氏度,水的沸点规定为100摄氏度,这套记温体系就是摄氏温标.两套记温体系之间是可以进行相互转化的,部分温度对应表如下:(1)m =______;(2)若华氏温度为a,摄氏温度为b,则把摄氏温度转化为华氏温度的公式为_______.5、一个长方体的底面是一个边长为10cm的正方形,如果高为h(cm)时,体积为V(cm3),则V与h的关系为_______;三、解答题(5小题,每小题10分,共计50分)y+4的图象分别与x轴、y轴交于点A、B,点C在线段1、在平面直角坐标系中,一次函数y=−43OB上,将△AOB沿AC翻折,点B恰好落在x轴上的点D处,直线DC交AB于点E.(1)求点C的坐标;(2)若点P在直线DC上,点Q是y轴上一点(不与点B重合),当△CPQ和△CBE全等时,直接写出点P的坐标(不包括这两个三角形重合的情况).2、如图,已知△ABC中,∠C=90°,AC=5cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P 从点A开始沿AC运动,且速度为每秒1cm,点Q从点C开始沿CB运动,且速度为每秒2cm,其中一个点到达端点,另一个点也随之停止,它们同时出发,设运动的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求运动时间为几秒时,△PQC是等腰三角形?(3)P、Q在运动的过程中,用含t(0<t<5)的代数式表示四边形APQB的面积.3、某通讯公司推出①、②两种通讯收费方式供用户选择,其中①有月租费,②无月租费,两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系图象均为直线,如图所示.请根据图象回答下列问题:(1)当通讯时间为500分钟时,①方式收费元,②方式收费元;(2)②收费方式中y与x之间的函数关系式是;(3)如果某用户每月的通讯时间少于200分钟,那么此用户应该选择收费方式是(填①或②).4、已知一次函数y=−2y−6.(1)画出函数图象.(2)不等式−2y−6>0的解集是_______;不等式−2y−6<0的解集是_______.(3)求出函数图象与坐标轴的两个交点之间的距离.x+4的图象相交于点A.5、如图,函数y=2x和y=-23(1)求点A的坐标;x+4的解集.(2)根据图象,直接写出不等式2x≥-23---------参考答案-----------一、单选题1、B【解析】【分析】根据图象可知A、B港口相距400km,从而可以判断①;根据甲船从A港口出发,沿海岸线匀速驶向C港,1小时后乙船从B港口出发,沿海岸线匀速驶向A港,两船同时到达目的地.甲船的速度是乙船的1.25倍,可以计算出B、C港口间的距离,从而可以判断②;根据图象可知甲船4个小时行驶了400km,可以求得甲船的速度,从而可以判断③;根据题意和图象可以计算出乙出发4h时两船相距的距离,从而可以判断④.【详解】解:由题意和图象可知,A、B港口相距400km,故①正确;∵甲船的速度是乙船的1.25倍,∴乙船的速度为:100÷1.25=80(km/h),∵乙船的速度为80km/h,S)÷100-1,∴400÷80=(400+BCS=200km,故②错误;解得:BC∵甲船4个小时行驶了400km,∴甲船的速度为:400÷4=100(km/h),故③正确;乙出发4h时两船相距的距离是:4×80+(4+1-4)×100=420(km),故④错误.故选B【点睛】本题考查从函数图象中获取信息,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.2、D【解析】【分析】根据题意分析出托运费y与物品重量x之间的函数关系,画出图像即可.【详解】解:由题意可得,当0<3x≤时, 1.5y=,∵物品重量每增加1kg(不足1kg按1kg计)需增加托运费0.5元,∴托运费y与物品重量x之间的函数图像为:故选:D.【点睛】此题考查了函数的图像,解题的关键是根据题意正确分析出托运费y与物品重量x之间的函数关系.3、A【解析】【分析】先根据图象在平面坐标系内的位置确定m、n的取值范围,进而确定函数的增减性,最后根据函数的增减性解答即可.【详解】解:∵一次函数y=mx+n的图象经过第一、二、四象限,∴m<0,n>0∴y随x增大而减小,∵1<3,∴y1>y2.故选:A.本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系、一次函数的增减性等知识点,图象在坐标平面内的位置确定m 、n 的取值范围成为解答本题的关键.4、D【解析】【分析】根据一次函数的定义即可求解.【详解】 A.12y x=不是一次函数, B.2y x 不是一次函数, C.1y =不是一次函数,D.1y x =-+是一次函数故选D .【点睛】一次函数的定义一般地,形如y=kx+b (k ,b 是常数,k≠0)的函数,叫做一次函数.当b=0时,y=kx+b 即y=kx ,所以说正比例函数是一种特殊的一次函数.5、C【解析】【分析】由题意()25y x k =-+,y 随x 的增大而减小,可得自变量系数小于0,进而可得k 的范围.【详解】解:∵关于x 的一次函数()25y x k =-+的函数值y 随着x 的增大而减小,∴>.k2故选C.【点睛】k>,y随x的增大而增本题主要考查了一次函数的增减性问题,解题的关键是:掌握在y kx b=+中,0k<,y随x的增大而减小.大,06、D【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解.【详解】解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;B、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;C、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;故选:D【点睛】本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量x,y,对于x的每一个取值,y 都有唯一确定的值与之对应,则y是x的函数,x叫自变量是解题的关键.7、B【解析】【分析】先由一次函数y1=ax+b图象得到字母系数的符号,再与一次函数y2=bx+a的图象相比较看是否一致.【详解】解:A、∵一次函数y1=ax+b的图象经过一二四象限,∴a>0,b>0;由一次函数y2=bx+a图象可知,b<0,a>0,两结论矛盾,故错误;B、∵一次函数y1=ax+b的图象经过一三四象限,∴a>0,b<0;由y2的图象可知,a>0,b<0,两结论不矛盾,故正确;C、∵一次函数y1=ax+b的图象经过一二四象限,∴a<0,b>0;由y2的图象可知,a>0,b>0,两结论矛盾,故错误;D、∵一次函数y1=ax+b的图象经过一二四象限,∴a<0,b>0;由y2的图象可知,a<0,b=0,两结论相矛盾,故错误.故选:B.【点睛】本题主要考查了一次函数图象与系数的关系,一次函数y kx b=+的图象有四种情况:①当k>0,b>0时,函数y kx b=+经过一、三、四象限;③当=+经过一、二、三象限;②当k>0,b<0时,函数y kx bk<0,b>0时,函数y kx b=+经过二、三、四象=+经过一、二、四象限;④当k<0,b<0时,函数y kx b限,解题的关键是掌握一次函数图像与系数的关系.8、B【解析】【分析】由一次函数的图象的走势结合一次函数与y 轴交于正半轴,可判断A ,B ,由图象可得:当x >4时,函数图象在x 轴的下方,可判断C ,先求解一次函数的解析式,再利用一次函数图象的平移可判断D ,从而可得答案.【详解】解:一次函数y =kx +b 的图象从左往右下降,所以y 随x 的增大而减小,故A 不符合题意; 一次函数y =kx +b , y 随x 的增大而减小,与y 轴交于正半轴,所以0,0,k b 故B 符合题意; 由图象可得:当x >4时,函数图象在x 轴的下方,所以y <0,故C 不符合题意;由函数图象经过0,2,4,0,240b k b ,解得:1,22k b 所以一次函数的解析式为:12,2y x 把122y x =-+向下平移2个单位长度得:12y x =-,故D 不符合题意; 故选B 【点睛】本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.9、C【解析】【分析】根据终点距离起点1000米即可判断①;根据甲、乙图像的起点可以判断②;根据AB 段为甲休息的时间即可判断③;设乙需要t 分钟追上甲,10006001006006040t t -=+-,求出t 即可判断④. 【详解】解:由图像可知,从起点到终点的距离为1000米,故①正确;根据图像可知甲出发40分钟之后,乙才出发,故乙比甲晚出发40分钟,故②错误;在AB 段时,甲的路程没有增加,即此时甲在休息,休息的时间为40-30=10分钟,故③正确; ∵乙从起点到终点的时间为10分钟,∴乙的速度为1000÷10=100米/分钟,设乙需要t 分钟追上甲,10006001006006040t t -=+-, 解得t =7.5,∴乙追上甲时,乙跑了7.5×100=750米,故④正确;故选C .【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.10、C【解析】【分析】分别求出两车相遇、B 车到达甲地、A 车到达乙地时间,分0≤x ≤45、45<x ≤43、43<x ≤2三段求出函数关系式,进而得到当x =43时,y =80,结合函数图象即可求解.【详解】解:当两车相遇时,所用时间为120÷(60+90)=45小时,B 车到达甲地时间为120÷90=43小时,A 车到达乙地时间为120÷60=2小时,∴当0≤x≤45时,y=120-60x-90x=-150x+120;当45<x≤43时,y=60(x-45)+90(x-45)=150x-120;当43<x≤2是,y=60x;由函数解析式的当x=43时,y=150×43-120=80.故选:C【点睛】本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.二、填空题1、3,02⎛⎫⎪⎝⎭94【解析】【分析】先令y=0即可求出直线与x轴的交点坐标,再令x=0及可求出直线与y轴的交点坐标,由三角形的面积公式即可得出结论.【详解】解:∵令x=0,则y=3,令y=0,则x=32,∴直线y=−2x+3与x轴的交点坐标是(32,0);直线与两坐标轴围成的三角形的面积=12×32×3=94.故答案为:3,02⎛⎫⎪⎝⎭;94【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2、①②③【解析】【分析】根据表格数据准确分析分析计算即可;【详解】由表格可以看出乙队是第五天停工的,所以甲队每天修路:16014020-=(米),故①正确;乙队第一天修路352015-=(米),故②正确;乙队技术改进之后修路:2151602035--=(米),故③正确;前7天,甲队修路:207140⨯=(米),乙队修路:270140130-=,故④错误;综上所述,正确的有①②③.故答案是:①②③.【点睛】本题主要考查了行程问题的实际应用,准确分析判断是解题的关键.3、x≤1【解析】【分析】由表格得到函数的增减性后,再得出1y=-时,对应的x的值即可.【详解】解:当1x =时,1y =-,根据表可以知道函数值y 随x 的增大而减小,∴不等式1kx b +≥-的解集是1x ≤.故答案为:1x ≤.【点睛】此题考查了一次函数与一元一次不等式,认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系,理解一次函数的增减性是解决本题的关键.4、 100 a =32+1.8b【解析】【分析】(1)由表格数据可知华氏温度与摄氏温度满足一次函数关系,利用待定系数法解题;(2)由表格数据规律,得到华氏温度=摄氏温度95⨯+32,据此解题.【详解】解:(1)设华氏温度与摄氏温度满足的一次函数关系为:(0)y kx b k =+≠代入(10,50)(20,68)得10502068k b k b +=⎧⎨+=⎩ 9532k b ⎧=⎪⎨⎪=⎩ 9325y x ∴=+ 当212y =时,9322125m +=100m ∴=故答案为:100;(2)由(1)得,华氏温度=摄氏温度95⨯+32,若华氏温度为a ,摄氏温度为b ,则把摄氏温度转化为华氏温度的公式为:a = 95b +32,故答案为:a =32+1.8b .【点睛】本题考查华氏温度与摄氏温度的换算,是基础考点,掌握相关知识是解题关键.5、V =100h【解析】【分析】根据体积公式:体积=底面积×高进行填空即可.【详解】解:V 与h 的关系为V =100h ;故答案为:V =100h .【点睛】本题主要考查了列函数关系式,题目比较简单.三、解答题1、(1)C (0,32);(2)(﹣2,0)或(2,3)或(﹣65,35)【解析】【分析】(1)首先求出A (3,0),B (0,4),得出AB =5,设OC =x ,则BC =4﹣x ,在Rt △OCD 中,由勾股定理得:x 2+22=(4﹣x )2,解方程即可;(2)首先可证∠BEC =∠COD =90°,分当点D 与P 重合,当CQ =BC =52时,当PC =BE =2,yy =yy =32,∠yyy =∠yyy =90°时,再分别根据图形性质求出点P 的坐标即可.【详解】解:(1)∵ y =−43y +4,令y =0, 则y =4, 令y =0, 则y =3,∴ A (3,0),B (0,4),∴OA =3,OB =4,∵∠AOB =90°,由勾股定理得,AB =√yy 2+yy 2=5,∵将△AOB 沿AC 翻折,点B 恰好落在x 轴上的点D 处,∴AD =AB =5,∴OD =2,设OC =x ,则yy =yy =4−y ,在Rt △OCD 中,由勾股定理得:x 2+22=(4﹣x )2,解得x =32,∴C (0,32);(2)设yy 为y =yy +y ,∴{−2y +y =0y =32解得:{y =34y =32所以直线CD 的解析式为y =34y +32,∵将△AOB 沿AC 翻折,点B 恰好落在x 轴上的点D 处,∴∠ABO =∠CDO ,∵∠BCE =∠DCO ,∴∠BEC =∠COD =90°,①当点D 与P 重合时,OP =2,OC =32,yy =4−32=52, CP =√22+(32)2=52, 而∠yyy =∠yyy ,∠yyy =∠yyy , 则△CPQ ≌△CBE ,此时y ,y 重合,∴P (﹣2,0);yy =yy =yy =2,yy =yy =yy =32,②当CQ =BC =52时,则点Q 的纵坐标为﹣1时,如图,当△CPQ ≌△CEB 时,∴yy =yy =32,yy =yy =2,∠yyy =∠yyy =90°,∴12×(−y y)×52=12×32×2,解得:y y=−65,∴y y=34×(−65)+32=35,∴y(−65,35 );③当PQ=BE=2,yy=yy=32,∠yyy=∠yyy=90°时,如图,△yyy≌△yyy,∴y y=2,y y=34×2+32=3,∴点P(2,3),综上,点P的坐标为(﹣2,0)或(2,3)或(−65,35 ).【点睛】本题考查的是一次函数与坐标轴的交点坐标问题,轴对称的性质,勾股定理的应用,利用待定系数法求解一次函数的解析式,全等三角形的判定与性质,清晰的分类讨论是解(2)的关键.2、(1)PQ=5cm;(2)t=53;(3)S四边形APQB=30﹣5t+t2.【解析】【分析】(1)先分别求出CQ和CP的长,再根据勾股定理解得即可;(2)由∠C=90°可知,当△PCQ是等腰三角形时,CP=CQ,由此求解即可;(3)由S四边形APQB=S△ACB﹣S△PCQ进行求解即可.【详解】解:(1)由题意得,AP=t,PC=5﹣t,CQ=2t,∵∠C=90°,∴PQ=√yy2+yy2=√(5−y)2+(2y)2,∵t=2,∴PQ=√32+42=5cm,(2)∵∠C=90°,∴当CP=CQ时,△PCQ是等腰三角形,∴5﹣t=2t,解得:t=53,∴t=53秒时,△PCQ是等腰三角形;(3)由题意得:S四边形APQB=S△ACB﹣S△PCQ=12yy⋅yy−12yy⋅yy=12×5×12−12×(5−y)×2y=30﹣5t+t2.【点睛】本题主要考查了勾股定理,等腰三角形的定义,列函数关系式,解题的关键在于能够熟练掌握相关知识进行求解.3、(1)80,100;(2)y 2=0.2x ;(3)②【解析】【分析】(1)根据题意由函数图象就可以得出①②收费;(2)根据题意设②中y 与x 的关系式为y 2=k 2x ,由待定系数法求出k 2值即可;(3)根据题意设①中y 与x 的关系式为y 1=k 1x +b ,再讨论当y 1>y 2,y 1=y 2,y 1<y 2时求出x 的取值就可以得出结论.【详解】解:(1)由函数图象,得:①方式收费80元,②方式收费100元,故答案为:80,100;(2)设②中y 与x 的关系式为y 2=k 2x ,由题意,得100=500k 2,∴k =0.2,∴函数解析式为:y 2=0.2x ;(3)设①中y 与x 的关系式为y 1=k 1x +b ,由函数图象,得:{y =30500y 1+y =80, 解得:{y 1=0.1y =30 , ∴y 1=0.1x +30,当y 1>y 2时,0.1x +30>0.2x ,解得:x<300,当y1=y2时,0.1x+30=0.2x,解得:x=300,当y1<y2时,0.1x+30<0.2x,x>300,∵200<300,∴方式②省钱.故答案为:②.【点睛】本题考查待定系数法求一次函数的解析式的运用,分类讨论思想的运用,设计方案的运用,解答时认真分析函数图象的意义是解题的关键.4、(1)见解析;(2)x<-3;x>-3;(3)BC=3√5.【解析】【分析】(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)【详解】(1)当x=0时,y=-2x-6=-6,∴一次函数y=-2x-6与y轴交点C的坐标为(0,-6);当y=-2x-6=0时,解得:x=-3,∴一次函数y =-2x -6与x 轴交点B 的坐标为(-3,0).描点连线画出函数图象,如图所示.(2)观察图象可知:当x <-3时,一次函数y =-2x -6的图象在x 轴上方;当x >-3时,一次函数y =-2x -6的图象在x 轴下方.∴不等式-2x -6>0的解集是x <-3;不等式-2x -6<0的解集是x >-3.故答案是:x <-3,x >-3;(3)∵B (-3,0),C (0,-6),∴OB =3,OC =6,∴BC =√yy 2+yy 2=3√5【点睛】本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x 轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.5、 (1) (32,3);(2) x ≥32.【解析】【分析】(1)联立两直线解析式,解方程组即可得到点A 的坐标;(2)根据图形,找出点A 右边的部分的x 的取值范围即可.【详解】(1)由题意得{y =2y ,y =−23y +4,解得{y =32,y =3.∴点A 的坐标为(32,3);(2)由图象得不等式2x ≥-23x +4的解集为x ≥32.【点睛】本题考查了一次函数图象交点坐标与二元一次方程组解的关系,以及利用函数图象解一元一次不等式,求不等式解集的关键在于准确识图,确定出两函数图象的对应的函数值的大小.。
八年级下册数学第十九章一次函数单元测试卷一、选择题1.函数y =x -1x -2中,自变量x 的取值范围是( ) A .x ≥1 B .x >1 C .x ≥1且x ≠2 D .x ≠2 2.一次函数y =-2x +1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限3.A ,B 两地相距20千米,甲、乙两人都从A 地去B 地,图中l 1和l 2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地.其中正确的个数是( )A .4B .3C .2D .14.对于一次函数y =kx +k -1(k≠0),下列叙述正确的是( ) A .当0<k <1时,函数图象经过第一、二、三象限 B .当k >0时,y 随x 的增大而减小C .当k <1时,函数图象一定交于y 轴的负半轴D .函数图象一定经过点(-1,-2)5.如图,直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( )A .(-32,0) B .(-6,0)C .(-3,0)D .(-52,0)6.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是( )A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元二、填空题7.已知函数y=2x2a+b+a+2b是正比例函数,则a=____,b=____.8.若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为____.9.已知(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1____y2.(填“>”“=”或“<”)10.将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第____象限.11.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是____________.12.正方形A1B1C1O和A2B2C2C1按如图方式放置,点A1,A2在直线y=x+1上,点C 1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为__________.13. 甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是____米.三、解答题14.一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k,b的值;(2)若一次函数y=kx+b的图象与x轴的交点为A(a,0),求a的值.15.若直线y=12x+2分别交x轴、y轴于A,C两点,点P是该直线上在第一象限内的一点,PB⊥x轴,B为垂足,且S△ABC=6.(1)求点B和点P的坐标;(2)过点B作直线BQ∥AP,交y轴于点Q,求点Q的坐标和四边形BPCQ的面积.16.如图,在平面直角坐标系xOy中,直线y=kx+b交x轴于点A,交y轴于点B,线段AB的中点E的坐标为(2,1).(1)求k,b的值;(2)P为直线AB上一点,PC⊥x轴于点C,PD⊥y轴于点D,若四边形PCOD为正方形,求点P的坐标.17.1号探测气球从海拔5 m处出发,以1 m/min的速度上升.与此同时,2号探测气球从海拔15 m处出发,以0.5 m/min的速度上升,两个气球都匀速上升了50 min.设气球上升时间为x min(0≤x≤50).位于什么高度?如果不能,请说明理由;(3)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?18.如图①,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图②为列车离乙地路程y(千米)与行驶时间x(小时)的函数关系图象.(1)填空:甲、丙两地距离_______千米;(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.19.如图,A(0,1),M(3,2),N(4,4),动点P从点A出发,沿y轴以每秒1个单位长度的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.20. A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D 两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36台,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其他费用不变,如何调运,使总费用最少?答案:一、1---6 CCBCAC二、7. 23 -138. 3 9. < 10. 四 11. x <-2 12. (3,2) 13. 175 三、14. 解:(1)由题意得⎩⎨⎧b =2,k +b =3,解得⎩⎨⎧k =1b =2(2)在函数解析式y =x +2中,令y =0,则x =-2,∴a =-2 15. 解:(1)B(2,0),P(2,3)(2)Q(0,-1),S 四边形BPCQ =616. 解:(1)k =-12,b =2(2)点P 的坐标为(43,43)或(-4,4)17. (1) 35 x +5 20 0.5x +15(2) (2)两个气球能位于同一高度.根据题意得x +5=0.5x +15,解得x =20,∴x+5=25,则此时,气球上升了20 min ,都位于海拔25 m 的高度(3)当30≤x≤50时,由题意,可知1号气球所在的位置的海拔始终高于2号气球,设两个气球在同一时刻所在的位置的海拔相差y m ,则y =(x +5)-(0.5x +15)=0.5x -10,∵0.5>0,∴y 随x 的增大而增大,∴当x =50时,y 取得最大值15,即两个气球所在的位置海拔最多相差15 m 18. (1) 1050(2)当0≤x ≤3时,设高速列车离乙地的路程y 与行驶时间x 之间的函数关系式为y =k 1x +b 1,把(0,900),(3,0)代入得⎩⎨⎧b 1=900,3k 1+b 1=0,解得⎩⎨⎧k 1=-300,b 1=900,∴y=-300x +900,高速列车的速度为900÷3=300(千米/小时),150÷300=0.5(小时),3+0.5=3.5(小时),则点A 的坐标为(3.5,150);当3<x ≤3.5时,设高速列车离乙地的路程y 与行驶时间x 之间的函数关系式为y =k 2x +b 2,把(3,0),(3.5,150)代入得⎩⎨⎧3k 2+b 2=0,3.5k 2+b 2=150,解得⎩⎨⎧k 2=300,b 2=-900,∴y =300x -900,∴y =⎩⎨⎧-300x +900(0≤x ≤3)300x -900(3<x ≤3.5)19. (1)直线y =-x +b 交y 轴于点P(0,b),b =1+t ,当t =3时,b =4,∴y =-x +4(2)当直线y =-x +b 过M(3,2)时,2=-3+b ,解得b =5,∴5=1+t ,∴t =4;当直线y =-x +b 过N(4,4)时,4=-4+b ,解得b =8,∴8=1+t ,∴t=7,∴4<t<7(3)t=1时,落在y轴上;t=2时,落在x轴上20. (1)W=250x+200(30-x)+150(34-x)+240(6+x),即W=140x+12540(0≤x≤30)(2)根据题意得140x+12540≥16460,∴x≥28,∵x≤30,∴28≤x≤30,∴有3种不同的调运方案:从A城至C乡运28台,A城至D乡运2台,从B城至C乡运6台,B城至D乡运34台;从A城至C乡运29台,A城至D乡运1台,从B 城至C乡运5台,B城至D乡运35台;从A城至C乡运30台,A城至D乡运0台,从B城至C乡运4台,B城至D乡运36台(3)W=(250-a)x+200(30-x)+150(34-x)+240(6+x)=(140-a)x+12540,当0<a<140时,140-a>0,x=0时,W最小,此时从A城至C乡运0台,A城至D乡运30台,从B城至C乡运34台,B城至D乡运6台;当a=140时,W=12540,各种方案费用一样多;当140<a<200时,140-a<0,x=30时,W最小,此时从A城至C乡运30台,A城至D乡运0台,从B城至C乡运4台,B 城至D乡运36台。
八年级数学(下)第十九章《一次函数》测试卷(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分) 1.函数的自变量的取值范围是( )A. x ≥-2B. x <-2C. x >-2D. x ≤-2 2.在平面直角坐标系中,直线1y x =+经过( ) A. 第一、二、三象限 B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限3.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )A. B. C. D.4.在关于的正比例函数中,随的增大而减小,则的取值范围是( ) A.B.C.D.5.已知两点M (4,2),N (1,1),点P 是x 轴上一动点,若使PM+PN 最短,则点P 为( ) A. (2,0) B. (2.5,0) C. (3,0) D. (4,0)6.如图,直线y 1=kx+b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx >kx+b >mx ﹣2的解集是( )A. 1<x <2B. 0<x <2C. 0<x <1D. 1<x7.根据如图的程序,计算当输入x=3时,输出的结果y=( )A. 2B. 3C. 4D. 58.如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N →P→Q→M 方向运动至点M 处停止,设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②,则当x =9时,点R 应运动到( )A. M 处B. N 处C. P 处D. Q 处9.在矩形ABCD 中, 1AB =, 2AD =, M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM 的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的( )A. B.C. D.10.小聪和小明分别从相距30公里的甲、乙两地同时出发相向而行,小聪骑摩托车到达乙地后立即返回甲地,小明骑自行车从乙地直接到达甲地,函数图象y 1(km )和y 2(km )分别表示小聪离甲地的距离和小明离乙地的距离与已用时间t (h )之间的关系,如图所示.下列说法:①折线段OAB 是表示小聪的函数图象y 1,线段OC 是表示小明的函数图象y 2;②小聪去乙地和返回甲地的平均速度相同;③两人在出发80分钟后第一次相遇;④小明骑自行车的平均速度为15km/h ,其中不正确的个数为( )A. 0个B. 1个C. 2个D. 3个二、填空题(共10小题,每题3分,共30分)11.若一次函数的图象经过二、三、四象限,则__________,__________.12.如果点在直线上,则的值是__________.13.如果一次函数与两坐标轴围成的三角形面积为,则__________.14.已知某一次函数与直线平行,且经过点,则这个一次函数解析式是__________.15.如图,已知y=ax+b和y=kx的图象交于点P,根据图象可得关于x、y的二元一次方程组0 {0 ax y bkx y-+=-=的解是_________________.16.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.17.若函数y=(n+2)x+(n2-4)是一次函数,则n_____;若函数y=(n+2)x+(n2-4)是正比例函数,则n____.18.小明和小亮分别从同一直线跑道A、B两端同时相向匀速出发,小明和小亮第一次相遇后,小亮觉得自己速度太慢便提速至原速的53倍,并匀速运动达到B 端,且小明到达B 端后停止运动,小亮匀速跑步到达A 端后,立即按原速返回B 端(忽略调头时间),回到B 端后停止运动,已知两人相距的路程S (千米)与小亮出发时间t (秒)之间的关系如图所示,则当小明到达B 端后,经过_________秒,小亮回到B 端.19.在全民健身环城越野赛中,甲、乙两名选手的行程y (千米)随时间x (时)变化的图象如图所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).20.如图,点A 2,A 4…分别是x 轴上的点,点A 1,A 3,A 5,…分别是射线OA 2n-1上的点,△OA 1A 2,△OA 2A 3,△OA 3A 4,…分别是以OA 2,OA 3,OA 4 ,OA 5…为底边的等腰三角形,若OA 2n-1与x 轴正半轴的夹角为30°,OA 1=1,则可求得点A 2的坐标是________;A 2n-1的坐标_______.三、解答题(共60分)21.(6分)已知一次函数2(4)232y k x k =--+(1)k为何值时,y随x的增大而减小?(2)k为何值时,它的图象经过原点?22.(7分)已知y+3与x+2成正比例,且当x=3时,y=7.(1)写出y与x之间的函数关系式;(2)当x=-1时,求y的值;(3)当y=0时,求x的值.23.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.24.(6分)如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式.25.(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?26.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?27.(7分)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.28.(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.答案(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分) 1.函数的自变量的取值范围是( )A. x ≥-2B. x <-2C. x >-2D. x ≤-2【答案】A【解析】二次根式有意义的条件是根号下被开方数非负,所以x +2≥0,即x ≥2, 故选A.2.在平面直角坐标系中,直线1y x =+经过( ) A. 第一、二、三象限 B. 第一、二、四象限 C. 第一、三、四象限 D. 第二、三、四象限 【答案】A故选A.3.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )A. B. C. D.【答案】A【解析】由图知蓄水池上宽下窄,深度h 和放水时间t 的比不一样,前者慢后者快,即前者的斜率小,后者斜率大,分析各选项知只有A 正确.B 斜率一样,C 前者斜率大,后者小,D 也是前者斜率大,后者小,因此B 、C 、D 排除.故选A . 4.在关于的正比例函数中,随的增大而减小,则的取值范围是( )A. B. C. D.【答案】A【解析】∵随的增大而减小,∴∴.故选A. 学科#网5.已知两点M(4,2),N(1,1),点P是x轴上一动点,若使PM+PN最短,则点P为()A. (2,0)B. (2.5,0)C. (3,0)D. (4,0)【答案】A6.如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是()A. 1<x<2B. 0<x<2C. 0<x<1D. 1<x【答案】A【解析】由于直线y1=kx+b过点A(0,2),P(1,m),故选A .7.根据如图的程序,计算当输入x=3时,输出的结果y=( )A. 2B. 3C. 4D. 5 【答案】A【解析】∵x=3>1, ∴y=-x+5=-3+5=2. 故选A. 学!科网8.如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N→P→Q→M 方向运动至点M 处停止,设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②,则当x =9时,点R 应运动到( )A. M 处B. N 处C. P 处D. Q 处 【答案】D【解析】观察图象可得:当R 在PN 上运动时,面积不断在增大,当点R 运动到PQ 上时,△MNR 的面积y 达到最大,且保持一段时间不变;到Q 点以后,面积y 开始减小;故当x=9时,点R 应运动到Q 处.故选D . 9.在矩形ABCD 中, 1AB =, 2AD =, M 是CD 的中点,点P 在矩形的边上沿A B C M→→→运动,则APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的( )A. B.C. D.【答案】A10.小聪和小明分别从相距30公里的甲、乙两地同时出发相向而行,小聪骑摩托车到达乙地后立即返回甲地,小明骑自行车从乙地直接到达甲地,函数图象y1(km)和y2(km)分别表示小聪离甲地的距离和小明离乙地的距离与已用时间t(h)之间的关系,如图所示.下列说法:①折线段OAB是表示小聪的函数图象y1,线段OC是表示小明的函数图象y2;②小聪去乙地和返回甲地的平均速度相同;③两人在出发80分钟后第一次相遇;④小明骑自行车的平均速度为15km/h,其中不正确的个数为()A. 0个B. 1个C. 2个D. 3个【答案】B【解析】①小聪离甲地的距离先增加至最大然后减小直至为0,小明离乙地的距离逐渐增大直至最大30千故选B.二、填空题(共10小题,每题3分,共30分)11.若一次函数的图象经过二、三、四象限,则__________,__________.【答案】<<【解析】∵经过二、三、四象限,∴且12.如果点在直线上,则的值是__________.【答案】-3【解析】∵点在直线上,∴,解得.故答案为:-3.13.如果一次函数与两坐标轴围成的三角形面积为,则__________.【答案】【解析】∵在中,当x=0时,y=4;当时,,∴的图象与x轴的交点坐标为,与y轴的交点坐标为(0,4),由题意可得:,解得:.故答案为:.14.已知某一次函数与直线平行,且经过点,则这个一次函数解析式是__________.【答案】【解析】设一次函数解析式∵与平行,∴,∴.∵一次函数经过,∴,,∴.15.如图,已知y=ax+b和y=kx的图象交于点P,根据图象可得关于x、y的二元一次方程组0 {0 ax y bkx y-+=-=的解是_________________.【答案】4 {2 xy=-=-16.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.【答案】6.【解析】小红家与学校的距离为6km,从图象可知她从学校到家用时为3-2=1小时,故从学校到家的平均速度等于6÷1=6 km/h,故答案为:6.17.若函数y=(n+2)x+(n2-4)是一次函数,则n_____;若函数y=(n+2)x+(n2-4)是正比例函数,则n____.【答案】≠-2 =218.小明和小亮分别从同一直线跑道A、B 两端同时相向匀速出发,小明和小亮第一次相遇后,小亮觉得自己速度太慢便提速至原速的53倍,并匀速运动达到B端,且小明到达B端后停止运动,小亮匀速跑步到达A端后,立即按原速返回B端(忽略调头时间),回到B端后停止运动,已知两人相距的路程S(千米)与小亮出发时间t(秒)之间的关系如图所示,则当小明到达B端后,经过_________秒,小亮回到B端.【答案】45【解析】由题意得:设小明的速度为xm/s,小亮的速度为ym/s,则85 {{53103x yxyx y+==⇒= +=小明到达B端,所需时间为36072s 5=()小亮往返需要的总时间为7204531175-⨯=,则117-72=45(s)故答案:45.19.在全民健身环城越野赛中,甲、乙两名选手的行程y(千米)随时间x(时)变化的图象如图所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).【答案】①③④⑤20.如图,点A 2,A 4…分别是x 轴上的点,点A 1,A 3,A 5,…分别是射线OA 2n-1上的点,△OA 1A 2,△OA 2A 3,△OA 3A 4,…分别是以OA 2,OA 3,OA 4 ,OA 5…为底边的等腰三角形,若OA 2n-1与x 轴正半轴的夹角为30°,OA 1=1,则可求得点A 2的坐标是________;A 2n-1的坐标_______.【答案】)3,0 11333,2n n --⎫⎪⎪⎝⎭【解析】根据等腰三角形的三线合一的性质和30°角直角三角形的性质可求得131,22A ⎛⎫⎪ ⎪⎝⎭,)23,0A ,再由等腰三角形的三线合一的性质和30°角直角三角形的性质可求得3333,22A ⎛⎫⎪ ⎪⎝⎭, 5939,22A ⎛⎫⎪ ⎪⎝⎭,由此可得A 2n-1的坐标11333,22n n --⎛⎫⋅ ⎪ ⎪⎝⎭.三、解答题(共60分)21.(6分)已知一次函数2(4)232y k x k =--+(1)k 为何值时,y 随x 的增大而减小? (2)k 为何值时,它的图象经过原点? 【答案】(1)k >4;(2)k=-4. 【解析】考点:一次函数图象与系数的关系.22.(7分)已知y+3与x+2成正比例,且当x =3时,y =7. (1)写出y 与x 之间的函数关系式; (2)当x =-1时,求y 的值; (3)当y =0时,求x 的值. 【答案】(1)y=2x+1;(2)-1;(3)12-. 【解析】试题分析:(1)已知y+3与x+2成正比例,所以,设y+3=k( x+2),把x =3,y =7代入求出k 的值,即可写出y 与x 之间的函数关系式,(2)把x =-1代入y 与x 之间的函数关系式,求出y 的值. (3)把y =0代入y 与x 之间的函数关系式,求出x 的值.试题解析:(1)设y+3=k( x+2),把x =3,y =7代入得:7+3=(3+2)k,解得k=2,∴y+3=2(x+2),∴y=2x+1; (2)当x=-1时,y=2x+1=2×(-1)+1=-1;(3)当y=0时,有0=2x+1,解得x=12 .考点:1.正比例函数关系式.2.函数值和自变量值.23.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.【答案】(1)m=2,一次函数解析式为y=2x﹣2;(2)S△AOB=2;(3)自变量x的取值范围是x>2.学科&网【解析】(3)自变量x的取值范围是x>2.考点:两条直线相交或平行问题24.(6分)如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式.【答案】见解析【解析】考点:1、一次函数性质的应用;2、分类思想.25.(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?【答案】(1)1000;(2)y=300x-5000;(3)40.【解析】试题分析::(1)由图可知第20天的总用水量为1000m3;(2)设y=kx+b.把已知坐标代入解析式可求解;(3)令y=7000代入方程可得.试题解析:(1)第20天的总用水量为1000米3(2)当x≥20时,设y=kx+b∵函数图象经过点(20,1000),(30,4000)∴100020400030k bk b+⎨⎩+⎧==,解得,3005000kb-⎧⎨⎩==,∴y与x之间的函数关系式为:y=300x-5000(3)当y=7000时,有7000=300x-5000,解得x=40;种植时间为40天时,总用水量达到7000米3考点:一次函数的应用.26.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B 出发后几小时,两人相遇?【答案】(1)1,10 km/h;(2)1.8.【解析】考点:1.一次函数的应用;2. 待定系数法的应用;3.直线上点的坐标与方程的关系.27.(7分)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.【答案】当学生人数少于40时,选择远航旅行社更优惠,当学生人数等于40时,选择两家旅行社都一样,当学生人数大于40时,选择吉祥旅行社更优惠.【解析】考点:一次函数的应用.28.(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段C D所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.【答案】(1)900;(2)y=75x(6≤x≤12);(3)0.75,6.75.【解析】考点:1、待定系数法;2、一次函数的应用.21。
八年级数学(下)第十九章《一次函数》单元测试卷一、选择题(每题3分,共30分。
每题只有一个正确答案,请将正确答案的代号填在下面的表格中)米)和行驶时间t(小时)的关系的是()C2.如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误..的是()A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时3.在函数12yx=-+中,自变量x的取值范围是()A.2x≠B.2x-≤C.2x≠-D.2x-≥4.如果函数y=ax+b(a<0,b<O)和y=kx(k>0)的图象交于点P,那么点P应该位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限5.已知一次函数(1)y a x b=-+的图象如图所示,那么a的取值范围是()A、a>1B、a<1C、a>0D、a<06.函数y=x-2+31-x中自变量x的取值范围是( )A.x≤2 B.x=3 C.x<2且x≠3 D.x≤2且x≠3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的/分O xy解析式为( )A .2--=x yB .6--=x yC .10+-=x yD .1--=x y 8.下列四个点中,有三个点在同一条直线上,不在这条直线上的点是( ) A .(31)--,B .(11),C .(32),D .(43),9.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <10. 2007年我国铁路进行了第六次大提速,一列火车由甲市匀速驶往相距600千米的乙市,火车的速度是200千米/小时,火车离乙市的距离S (单位:千米)随行驶时间t (单位:小时)变化的函数关系用图象表示正确的是( )二、填空题(每题3分,共30)11.已知一次函数y kx b =+的图象经过点(02)A -,,(10)B ,,则b = ,k = . 12.函数34x y x -=-的自变量x 的取值范围是 . 13.某函数的图象经过(1、-1),且函数y 的值随自变量的值增大而增大,请你写出一个符合上述条件的函数关系式:14.若正比例函数kx y =(k ≠0)经过点(1-,2),则该正比例函数的解析式为=y __ _____。
第十九章一次函数一、选择题(每小题3分,共30分)1.某型号的汽车在路面上的制动距离s=v2256,其中变量是( )A.v B.s,v2C.s D.s,v2.已知正比例函数y=(3k-1)x,若y随x的增大而增大,则k的取值范围是( )A.k<0 B.k>0C.k<13D.k>133.如图1,表示y是x的函数关系的是( )4.下列图象中,有可能是一次函数y=ax-a(a≠0)的大致图象的是( )图25.若点A(-3,y1),B(2,y2),C(4,y3)是函数y=kx+2(k<0)的图象上的点,则( )A.y1<y2<y3B.y1>y2>y3C.y1<y3<y2D.y2>y3>y16.如图3,已知一条直线经过点A(0,2),B(1,0),将这条直线向左平移与x轴、y轴分别交于点C,D,若DB=DC,则直线CD的函数解析式为( )图3A.y=-x+2 B.y=-2x-2 C.y=2x+2 D.y=-2x+27.小李骑自行车沿笔直的公路去公园钓鱼,先前进了1000米发现手机不见了,又原路返回800米捡到了手机,然后再朝着之前的方向前进了1200米,则他离起点的距离s(米)与时间t(时)的关系图象大致是( )图48.如图5,在平面直角坐标系中,每个小正方形的顶点称为格点.每个小正方形的边长都是1,正方形ABCD的顶点都在格点上,若直线y=kx(k≠0)与正方形ABCD有公共点,则k的值不可能是( )A.1 B.12C.3 D.2图59.已知点M为某封闭图形边界上一定点,动点P从点M出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段MP的长为y,表示y与x的函数关系的图象大致如图6所示,则该封闭图形可能是( )图6图710.如图8,在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形AnBnCnCn-1,使得点A1,A2,A3,…在直线l上,点C1,C2,C3,…在y轴正半轴上,则点Bn的坐标是( )图8A.(2n-1,2n-1) B.(2n,2n-1) C.(2n-1,2n+1) D.(2n-1,2n) 请将选择题答案填入下表:题号 1 2 3 4 5 6 7 8 9 10 总分答案11.根据如图9所示的计算程序,若输入的值x=8,则输出的值y为________.图912.在平面直角坐标系中,对于点P(x,y)和Q(x,y′),给出如下定义:如果当x≥0时,y′=y;当x<0时,y′=-y,那么称点Q为点P的“关联点”.例如:点(-5,6)的“关联点”为(-5,-6).若点N(n+1,2)是一次函数y=x +3图象上点M的“关联点”,则点M的坐标为________.13.在函数y=x-1x-2中,自变量x的取值范围是________.14.如图10,函数y=mx和y=kx+b的图象相交于点P(1,m),则关于x 的不等式-b≤kx-b≤mx的解集为________.图1015.已知关于x的一次函数y=mx+2m-7在-1≤x≤5上的函数值总是正数,则m的取值范围是________.16.在△ABC中,点P从点B出发沿BC向点C运动,运动过程中,设线段AP的长为y,线段BP的长为x(如图11甲),而y与x的函数图象如图11乙所示,Q是图象上的最低点,请观察图甲、图乙,则AC=________.图11三、解答题(共52分)17.(本小题6分)如图12是某地方春季一天的气温随时间的变化图象.请根据图象回答:(1)何时气温最低?最低气温是多少?(2)当天的最高气温是多少?这一天最大温差是多少?图1218.(本小题6分)将直线l:y=2x-3向下平移2个单位长度后得到直线1.l2的函数解析式;(1)写出直线l2上.(2)判断点P(-1,3)是否在直线l219.(本小题6分)在平面直角坐标系中,过一点分别作两坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等,则这个点叫做公正点.例如:图13中过点P分别作x轴、y轴的垂线,与坐标轴围成的矩形OAPB的周长与面积相等,则点P是公正点.(1)判断点M(1,2),N(-4,4)是不是公正点,并说明理由;(2)若公正点P(m,3)在直线y=-x+n(n为常数)上,求m,n的值.图1320.(本小题6分)如图14①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28 s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图14②所示.(1)正方体的棱长为________ cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t s恰好将此水槽注满,直接写出t的值.图1421.(本小题6分)如图15,已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的函数解析式;(2)若直线y=2x-4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x-4≤kx+b的解集.图1522.(本小题7分)小慧根据学习函数的经验,对函数y=|x-1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y=|x-1|的自变量x的取值范围是________;(2)x …-1 0 1 2 3 …y … b 1 0 1 2 …其中,b=(3)在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质: __________________________________.23.(本小题7分)某市制米厂接到加工大米的任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工途中停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间x(天)之间的关系如图16①所示,未加工大米数量w(吨)与甲车间加工时间x(天)之间的关系如图②所示,请结合图象回答下列问题:(1)甲车间每天加工大米________吨,a=________;(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间的函数关系式;(3)如果55吨大米恰好装满一节车厢,那么加工多长时间可装满第一节车厢?再加工多长时间恰好装满第二节车厢?图1624.(本小题8分)无锡某校准备组织学生及学生家长到上海进行社会实践,为了便于管理,所有人员必须乘坐同一列火车.根据报名人数,若都买一等座单程火车票需17010元,若都买二等座单程火车票且花钱最少,则需11220元.已知学生家长与老师的人数之比为2∶1,无锡到上海的火车票价格(部分)如下表运行区间公布票价学生票价上车站下车站一等座二等座二等座无锡上海81元68元51元(2)由于各种原因,二等座火车票单程只能买x张(x小于参加社会实践的人数且大于0),其余的人需买一等座火车票,在保证每名参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y(元)与x(张)之间的函数解析式;(3)按第(2)小题中的购票方案,请你做一个预算,购买这次单程火车票最少要花多少钱?最多要花多少钱?答案1.D 2.D 3.A 4.B 5.B 6.B 7.A 8.C [9.A 10.A 11.3 12.(-5,-2)13.x ≥1且x ≠2 14.-1≤x ≤0 15.m >7 16.2 317.解:(1)4时气温最低,最低气温是-2 ℃.(2)由图象看出当天的最高气温是9 ℃,这一天最大温差是9-(-2)=11(℃).18.解:(1)直线y =2x -3向下平移2个单位长度得到的直线的函数解析式为y =2x -3-2=2x -5.(2)当x =-1时,y =2×(-1)-5=-7≠3, ∴点P (-1,3)不在直线l 2上.19.解:(1)∵1×2≠2×(1+2),4×4=2×(4+4), ∴点M 不是公正点,点N 是公正点. (2)由题意得:①当m >0时, (m +3)×2=3m ,∴m =6,而点P (m ,3)在直线y =-x +n 上, ∴3=-6+n ,∴n =9.②当m <0时,(-m +3)×2=-3m , ∴m =-6,而点P (m ,3)在直线y =-x +n 上, ∴3=6+n ,n =-3.综上,m =6,n =9或m =-6,n =-3.20.解:(1)由题意可得:12 s 时,水槽内水面的高度为10 cm ,12 s 后水槽内高度变化趋势改变,故正方体的棱长为10 cm.(2)设线段AB 所在直线对应的函数解析式为y =kx +b , ∵图象过点A (12,10),B (28,20),∴⎩⎨⎧12k +b =10,28k +b =20,解得⎩⎪⎨⎪⎧k =58,b =52,∴线段AB 对应的函数解析式为y =58x +52(12≤x ≤28).(3)t =4.21.解:(1)根据题意,得⎩⎨⎧5k +b =0,k +b =4,解得⎩⎨⎧k =-1,b =5,则直线AB 的函数解析式是y =-x +5. (2)根据题意,得 ⎩⎨⎧y =-x +5,y =2x -4,解得⎩⎨⎧x =3,y =2,则点C 的坐标是(3,2).(3)根据图象可得不等式的解集是x ≤3. 22.解:(1)全体实数 (2)2(3)如图所示:(4)函数的最小值为0(答案不唯一)23.解:(1)由图象可知,第一天甲、乙两车间共加工220-185=35(吨),第二天,乙停止工作,甲单独加工185-165=20(吨),则a =35-20=15. 故答案为20,15.(2)设y =kx +b ,把(2,15),(5,120)代入,得⎩⎨⎧15=2k +b ,120=5k +b ,解得⎩⎨⎧k =35,b =-55,∴y =35x -55(2≤x ≤5).(3)由图②可知,当w =220-55=165时,恰好是第二天加工结束,即加工1天可装满第一节车厢.当2≤x ≤5时,两个车间每天加工速度为1655-2=55(吨),∴再加工1天恰好装满第二节车厢.24.解:(1)设参加社会实践的老师有m 人,学生有n 人,则学生家长有2m 人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座学生票,依题意,得⎩⎨⎧81(3m +n )=17010,68×3m +51n =11220,解得⎩⎨⎧m =10,n =180,则2m =20.答:参加社会实践的老师、家长与学生分别有10人、20人、180人. (2)由(1)知所有参与人员总共有210人,其中学生有180人. ①当180≤x <210时,最经济的购票方案为:学生都买学生票共180张,(x -180)名成年人买二等座火车票,(210-x )名成年人买一等座火车票.∴火车票的总费用(单程)y (元)与x (张)之间的函数解析式为y =51×180+68(x -180)+81(210-x ),即y =-13x +13950(180≤x <210).②当0<x <180时,最经济的购票方案为: 一部分学生买学生票共x 张,其余的学生与家长、老师一起购买一等座火车票共(210-x )张,∴火车票的总费用(单程)y (元)与x (张)之间的函数解析式为y =51x +81(210-x ),即y =-30x +17010(0<x <180).∴购买火车票的总费用(单程)y (元)与x (张)之间的函数解析式是y =⎩⎨⎧-30x +17010(0<x <180,x 为整数),-13x +13950(180≤x <210,x 为整数).(3)由第(2)小题知,当180≤x <210时,y =-13x +13950, ∵-13<0,∴y 随x 的增大而减小,∴当x =209时,y 的值最小,最小值为11233; 当x =180时,y 的值最大,最大值为11610. 当0<x <180时,y =-30x +17010, ∵-30<0,∴y 随x 的增大而减小,∴当x =179时,y 的值最小,最小值为11640; 当x =1时,y 的值最大,最大值为16980元. 综上,按第(2)小题中的购票方案,购买这次单程火车票最少要花11233元,最多要花16980元.。
第十九章一次函数测试题
一、填一填,要相信自己的能力!(每小题3分,共30分). 1.一次函数y=-3x-1的图像经过点(0, )和( ,-7). 2.函
数
2-=
x
y 中自
变量
x 的
取值范围是 .
3.若点P (3,2)在函数y=3x-b 的图像上,则b= .
4.若一次函数y=(m-3)x+(m-1)的图像经过原点,则m= ,此时y 随x 的增大而 .
5.某市出租车的收费标准是:3千米以内(包括3千米)收费5元,超过3千米。
每增加1千米加收1.2元,则路程x (x ≥3)时,车费y (元)与路程x (千米)之间的关系式为: .
6.若函数
1
)2(--=m x
m y 是一次函数,则m 的值是 .
7.直线y=-2x-6与两坐标轴围成的三角形的面积为 .
8.甲和乙同时加工一种产品,如图所示,图⑴、图⑵分别表示甲和乙的工作量与工作时间的关系,如果甲已经 加工了75kg ,则乙加工了 kg.
图(2)
图(1)
80
2
工作量(kg)时间(分钟)
O
506
O
时间(分钟)
工作量(kg)
9.已知一次函数y=kx+b (k 、b 是常数,且k ≠0)中,x 与y 的部分对应值如下表所示,那么一次函数y=kx+b 的关系式为 .
10.如果点A (1,m )在连接点B (-1,-5)和C (3,3)的线段上,则m= . 二、选一选,看完四个选项后再做决定呀!(每小题3分,共30分) 1.下列函数中,是一次函数的有( )个.
①y=x; ②x
y 3
=;③
65+=x y ;④11
-=x y ;
⑤
2
3x
y =.
A.1
B.2
C.3
D.4 2.下列哪个点在一次函数
43-=x y 上( ).
A.(2,3)
B.(-1,-1)
C.(0,-4)
D.(-4,0)
3.一次函数y=-2x+3的图像所经过的象限是( ). A.一、二、三 B.二、三、四 C.一、三、四 D.一、二、四
4.如图所示,表示直线y=-x-2的是( ).
2
-2-2
2
-2
-2
22
D
C
B
A y
x
O
y
x
O y x
O O x
y
5.点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x + 3 图象上的两个点,且 x 1<x 2,则y 1与y 2的大小关系是( ). A .y 1>y 2 B .y 1>y 2 >0 C .y 1<y 2 D .y 1=y 2
6.一次函数y=kx+b 的图像经过第一、三、四象限,则( ).
A.k >0,b >0
B.k >0,b <0
C.k <0,b <0
D.k <0,b >0
7.已知正比例函数y=kx 的图像经过第一、三象限,则一次函数y=kx-k 的图像可能是图中的( ).
D
C B A y
x
O
y
x
O
y
x
O
O
x
y
8.一根蜡烛长30cm ,点燃后每小时燃烧5cm ,燃烧时蜡烛剩余的长度h (cm )和燃烧时间t (小时)之间的函数关系用图像可以表示为图中的( ).
D
B
A
9.一次函数y=kx+b 的图像经过点(
12
+m ,1)和(-1,12
+m )(m ≠0),
则k 、b 应满足的条件是( ).
A.k >0,b >0
B.k >0,b <0
C.k <0,b <0
D.k <0,b >0
10.小红骑自行车到离家为2千米书店买书,行驶了5分钟后,遇到一个同学因说话停留10分钟,继续骑了5分钟到书店.图中的哪一个图象能大致描述她去书店过程中离书店的距离......s (千米)与所用时间t (分)之间的关系( ).
三、做一做,要注意认真审题呀!(每小题10分,共60分) 1.等腰三角形的周长为30cm.
(1)若底边长为xcm ,腰长为ycm ,写出y 与x 的关系式,并注明自变量的取值范围.
(2)若腰长为xcm ,底边长为ycm ,写出y 与x 的关系式. 并注明自变量的取值
范围
3.某旅游团上午8时从旅馆出发,乘汽车到距离180千米的某著名旅游景点游玩,该汽车离旅馆的距离S(千米)与时间t (时)的关系可以用图6的折线表示.
)
根据图象提供的有关信息,解答下列问题: ⑴求该团去景点时的平均速度是多少? ⑵该团在旅游景点游玩了多少小时?
⑶求出返程途中S(千米)与时间t (时)的函数关系式,并求出自变量t 的取值范围.
4.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如右下图所示,其中BA 是线段,且AB ∥x 轴,BC 是射线. (1)当x ≥30时,求y 与x 之间的函数关系.
(2)若小王4月份上网26小时,他应付多少元的上网费用?
(3)若小王5月份上网费用为98元,则他在该月份的上网时间是多少? 解:(1) 当x ≥30时,设y 与x 之间的函数关系为y=kx+b ,根据题意得
月可得工资为y 元,则y (元)和x (元)之间的函数图像如图所示: ⑴根据图像请计算出当某员工的销售额为15000元时,他的工资应是多少元? ⑵员工小张五月份共领工资1200元,请计算他这个月的销售额是多少万元. 解:⑴设销售额在2万元以内时,工资y 与销售额x 的关系式为 y=kx+b ,根据题意得
⎩
⎨⎧=+=.6002,
400b k b 解得⎩⎨⎧==.400,100b k 即y=100x+400.
当x=1.5时,y=100×1.5+400=550.
即员工的销售额为15000元时,他的工资应是550元.
⑵由题意可知,小张五月份的销售额超过了2万元,设销售额在2万元以上时,
x
工资y 与销售额x 的关系式为 y=kx+b ,根据题意得 ⎩
⎨⎧=+=+.8003,6002b k b k 解得,⎩⎨
⎧==.200,
200b k
即 y=200x+200.
当y=1200时,即200x+200=1200,解得x=5.因此小张这个月的销售额是5万元.
6. 某电信公司开设了甲、乙两种市内移动通信业务。
甲种使用者每月需缴18元月租费, 然后每通话1分钟, 再付话费0.2元; 乙种使用者不缴月租费, 每通话1分钟, 付话费0.6元.若一个月内通话时间为x分钟, 甲、乙两种的费用分别为y1和y2元.
(1)试分别写出y1、y2与x之间的函数关系式;
(2)在如图所示的坐标系中画出y1、y2的图像;
(3)根据一个月通话时间, 你认为选用哪种通信业务更优惠?
∴直线y1和y2的交点是(45,27)
故当一个月通话时间为45分钟时, 两种业务一样优惠;
当一个月通话时间少于45分钟时, 乙种业务更优惠;
当一个月通话时间大于45分钟时, 甲种业务更优惠.
(3)结合函数的图像:
当y1=y2时,0.2x+18=0.6x,解得 x=45;
当y1<y2时,0.2x+18<0.6x,解得 x>45;
当y1>y2时,0.2x+18>0.6x,解得 x<45.
故当一个月通话时间为45分钟时, 两种业务一样优惠;
当一个月通话时间少于45分钟时, 乙种业务更优惠;
当一个月通话时间大于45分钟时, 甲种业务更优惠.。