摄像机sensor介绍
- 格式:docx
- 大小:18.75 KB
- 文档页数:2
摄像机的性能指标更新日期:2009-10-24 14:58在常用的摄像机中,根据数据接口的不同,可分为常规摄像机和数字式摄像机,前者输出标准的AV和S端子信号,后者以USB和IEEE1394为通信标准。
1. 常规摄像机的主要性能指标(1)CCD尺寸(Image Sensor)由于生产工艺的不同,CCD所采用的原材料可接受的刻蚀精度也不同,厂家常用的CCD尺寸有1/4寸和1/3寸两种规格,近期出现了1/2.7寸和1/1.8寸规格。
(2)CCD有效像素(Effective Pixels)有效像素指CCD感光元件可受光信号、并转换成电信号的最大区域。
PAL制下的CCD一般有效像素为:752(H)×585(V)。
(3)水平扫描线(Horizontal Resolution)由于CCD元件的电信号采样是采用垂直和水平两方向交叉定位的方式来提取单点元素的RGB数值,所以水平和垂直扫描的精度直接影响着图像的精度。
人们常以水平扫描的线数来衡量镜头的精度等级,作为通信用的专业摄像机,该数值一般要求在450以上,目前市面上的产品以480线为主流。
(4)光学变焦倍数(Lens Zoom)目标物体的反射的光信号,需要经过光学镜头组,才能聚焦在CCD上,形成清晰的图像,光学镜头组所采用的玻璃透光性、滤光性是各厂家需要保证的根本要素。
此外,光学镜头组在超声波电机的带动下,能够实现的光学变焦倍数成为了一个面对用户最主要的指标。
常见的倍数有8x、10x和12x,某厂家推出来的产品,该参数可以达到22x。
(5)数字变焦倍数(Digital Zoom)数字变焦是采用软件差值计算的方式,将CCD形成的当前的图像进行局部取样,形成指定像素的信号。
数字变焦倍数的数值依赖于CCD的有效像素和内置DSP芯片的处理能力,各厂家一般都提供10x和12x两档常规指标。
(6)信号制式(Video Signal)信号制式一般有NTSC和PAL两种。
sony sensor 命名规则
Sony Sensor命名规则
在摄影领域中,索尼传感器享有很高的声誉,并被广泛应用于各种相机和摄像
机设备中。
为了保持统一性和易于识别,索尼公司为其不同型号的传感器制定了一套命名规则。
索尼传感器的命名规则包括一个字母和一串数字的组合,用于标识不同的传感
器型号和规格。
这个字母通常代表传感器类型,而数字则代表具体的规格和性能。
首先,让我们来了解一些常见的字母代表的传感器类型:
- A: 这是索尼的全画幅传感器(35mm画幅)的标志。
这些传感器具有更大的
像素尺寸,能够提供更高的图像质量和更好的低光性能。
- E: 这个字母代表“APS-C”尺寸的传感器。
APS-C传感器比全画幅传感器小一些,但仍然具有较高的图像质量和性能。
- X: 特殊用途传感器的标志。
这些传感器具有特殊的特性,如高速连拍、高解
析度或高敏感度等。
接下来是一串数字,用于区分不同的传感器型号和规格。
这些数字的含义可以
根据索尼官方发布的规格表来查找。
通过遵循这一命名规则,用户可以轻松地识别索尼传感器的类型和规格。
例如,一款传感器被命名为"A7 III",表示它是一款采用全画幅传感器的索尼相机,并且
是第三代产品。
总结一下,索尼传感器的命名规则是以一个字母标识传感器类型(如A代表全画幅、E代表APS-C等),然后是一串数字用于区分不同的传感器型号和规格。
这种规则的使用使得索尼传感器在市场上得到了广泛认可和应用。
光感sensor工作原理一、引言光感sensor是一种通过感知周围环境中的光线来实现自我控制或自我调节的设备。
它通常用于自动化控制系统中,如智能家居、工业自动化、机器人等领域。
本文将详细介绍光感sensor的工作原理。
二、光感sensor的分类根据其工作原理和应用场景,光感sensor可以分为多种类型。
其中最常见的是基于光电效应的传感器和基于图像处理技术的传感器。
1. 光电效应传感器基于光电效应的传感器是利用物质对光线的吸收和发射特性来检测环境中光线强度变化的一种传感器。
它们通常由一个发射元件和一个接收元件组成,发射元件产生红外或可见光信号,接收元件通过测量这些信号在环境中反射或散射后返回到接收元件上所需时间来计算距离或检测物体。
2. 基于图像处理技术的传感器基于图像处理技术的传感器则是通过对环境中图像进行采集、处理和分析,从而获得环境信息并做出相应反应的一种传感器。
这种传感器通常包括一个相机和一个处理器,相机负责采集环境中的图像信息,处理器则对这些信息进行分析和处理,从而实现自我控制或自我调节。
三、基于光电效应的光感sensor工作原理基于光电效应的光感sensor是通过物质对光线的吸收和发射特性来检测环境中光线强度变化的一种传感器。
它们通常由一个发射元件和一个接收元件组成。
1. 发射元件发射元件通常是一颗红外LED或可见光LED。
当它被电流激活时,会产生红外或可见光信号,并将其发射到环境中。
2. 接收元件接收元件通常是一个光敏二极管或者一个光敏电阻。
当发射元件产生信号并将其发射到环境中时,这些信号会被环境中的物体吸收、反射或散射。
接收元件会通过测量这些信号在环境中反射或散射后返回到接收元件上所需时间来计算距离或检测物体。
3. 工作原理在工作时,发射元件会产生红外或可见光信号,并将其发射到环境中。
这些信号会被环境中的物体吸收、反射或散射。
接收元件会通过测量这些信号在环境中反射或散射后返回到接收元件上所需时间来计算距离或检测物体。
摄像机参数详细介绍摄像机是一种拍摄和记录视频的设备,广泛应用于电影、电视、摄影、监控等领域。
在选择和购买摄像机时,了解摄像机的参数是非常重要的。
下面将详细介绍摄像机的各项参数。
1. 像素(Pixel)像素是指图像的最小单位,也是摄像机中成像的基本要素之一、像素决定了图像的清晰度和细节表现力。
常见的摄像机像素有720p、1080p、4K等,分别表示图像的宽度和高度像素数。
2. 帧率(Frame Rate)帧率是指每秒钟播放的图像帧数,决定了视频流畅度和动态效果。
常见的摄像机帧率有24fps,30fps,60fps等。
较高的帧率能够捕捉更多的细节,但也需要更大的存储空间。
3. 感光元件(Image Sensor)4. 焦距(Focal Length)焦距是指摄像机镜头到成像面的距离,决定了图像中的视角和放大倍率。
较长的焦距可以使目标物体看起来更大,适合拍摄远距离的景象。
较短的焦距则可拍摄更广的场景。
5. 光圈(Aperture)光圈是指镜头的光线通过孔径的大小,也决定了图像的明暗程度和景深效果。
较大的光圈可以让更多的光线进入镜头,使图像明亮。
较小的光圈则仅允许少量的光线进入,适合拍摄景深较大的画面。
6. 白平衡(White Balance)白平衡是指根据环境光线的颜色温度调整图像的色彩偏差,使白色看起来真实无色偏。
常见的白平衡模式有自动、日光、白炽灯、荧光灯等,在不同光线下可选择相应的白平衡模式。
7. 录像格式(Recording Format)录像格式是指摄像机保存视频的数据格式。
常见的录像格式有AVI、MP4、MOV等,不同的格式对视频质量和文件大小有不同的影响。
8. 麦克风(Microphone)麦克风是摄像机中用于录制声音的装置。
常见的麦克风有内置麦克风和外置麦克风两种。
内置麦克风通常质量较低,容易捕捉到周围环境的噪音。
外置麦克风则可以提供更高质量的音频录制。
9. 对焦(Focus)对焦是指摄像机镜头调节焦距,使目标物体清晰显示。
摄像头sensor工作原理
摄像头sensor的工作原理是利用光电效应将光信号转化为电信号。
摄像头sensor通常由一个光敏元件(如CCD或CMOS)组成,在光敏元件上覆盖有一层光敏感材料。
当光线照射到光敏元件上时,光敏元件中的光敏感材料会产生电子-空穴对。
光敏敏感材料的光电导属性使电子和空穴在光敏元件中分离,并且这些电子和空穴会在电场的作用下被收集到不同的电极上。
在摄像头sensor中,光敏元件上的电极会将收集到的电荷转化为电压信号。
这些电压信号被放大并转换为数字信号,然后通过数据总线传输到图像处理器或相机中。
图像处理器或相机会利用这些数字信号来重建图像。
它会对每个像素的电荷进行处理、转换和编码,最终生成一个完整的图像。
sensor规格书参数的使用(1)分辨率:常见分辨率的感性表述即30万、100万、200万,正确表述应该为0.3M、1M、2M,其中M代表百万,是像素单位。
Sensor分辨率即指在单位面积上,像素的个数,数值越大,则代表像素点越多,捕获的图像细节越多,或者说图像更清晰。
像素阵列如下如所示,其中每一个像素块中均包含有RGB三原色。
(2)有效像素阵列:有效像素阵列是指在sensor的水平H(Horizontal)和垂直V (Virtical)方向上,分别含有的有效像素点的个数,很多时候,并不是所有感应器上的像素都能被运用。
通常其余部分被用来表示黑色,H与V 的乘积一般等于或大于分辨率数值。
(3)像素尺寸:像素尺寸即每个像素点的大小,单位为um(微米)。
(4)灵敏度:灵敏度表示当sensor被光均匀的照射时,当照度是1LUX(勒克斯:照度单位)时,在1s内,光电转换器所能达到的电压幅值的最大值。
单位一般是LUX/s(5)动态范围:(6)信噪比:信噪比即信号和噪声的比例,反映了sensor压制噪声的能力,单位一般是dB,数值越大,说明sensor抑制噪声的能力越强。
(7)镜头光学尺寸:镜头光学尺寸是指sensor感光面积的大小,一般常见有1/3‘’、1/4‘’、1/2.7‘’等等,其单位为英寸,表述的为sensor感光面对角线的长度。
(8)最大输出帧率:(9)数据输出格式:数据输出格式,表示sensor输出的图像数据的格式,一般常见有MONO、YUV、RAW、RGB等。
(10)数据输出接口:数据输出接口表示sensor可以与外界进行通信的接口,常见有DVP、MIPI、SPI等。
(11)工作温度范围:表示sensor能够正常工作的环境温度范围。
(12)封装:指sensor的封装形式,一般常见有CLCC、WLP、PLCC、SM等等。
摄像机SENSOR介绍
Sensor即传感器,是摄像机的核心部件,作用是将光信号转换成电信号,方便处理和存储。
Sensor的类型有两种,CCD和CMOS。
CCD即电荷耦合器( charge-couled device),CMOS即互补金属氧化物半导体(Complementary Metal Oxide Semiconductor),两种传感器原理上都是光敏元件在光照的条件下产生电荷,电荷转移产生电流,电流经过整流放大、模数转换形成数字信号,最终以二进制数字图像矩阵的形式输出给专门的DSP处理芯片。
CCD和CMOS两者在结构原理上的主要区别有两点:1、感光元件不同,CCD的感光元件除了感光二极管之外,还包括一个用于控制相邻电荷的存储单元,感光二极管占据了绝大多数面积,即CCD的开口率(有效感光区域与整个感光元件的面积比值)很大。
而CMOS 感光元件的构成就比较复杂,除处于核心地位的感光二极管之外,它还包括放大器与模数转换电路,每个像点的构成为一个感光二极管和四个晶体管,而感光二极管占据的面积只是整个元件的一小部分,造成的后果是CMOS的开口率很小。
这样在接受同等光照及元件大小相同的情况下,CMOS感光元件所能捕捉到的光信号就明显小于CCD元件,灵敏度较低;体现在输出结果上,就是CMOS传感器捕捉到的图像内容不如CCD传感器来得丰富,图像细节丢失情况严重且噪声明显;2、噪声大小不同,CCD传感器电荷是转移之后统一输出放大,即每个像点的电信号强度都获得同样幅度的增大。
而CMOS 传感器中每一个感光元件都直接整合了放大器和模数转换,每个像素点的电信号先单独放大转换成数字信号,再汇聚一起形成二进制数字图像矩阵。
CMOS感光元件中的放大器属于模拟器件,无法保证每个像点的放大率都保持严格一致,因此产生的噪声较大。
通过以上比较同等条件下CMOS的性能不如CCD,但CMOS的优势在于成本上,CMOS 传感器采用一般半导体电路最常用的CMOS工艺,工艺相对简单,成本低;而CCD的工艺复杂,外围外围芯片的成本高。
另一方面由于CCD采用电荷传递的方式传送数据,只要其中有一个象素不能运行,就会导致一整排的数据不能传送,因此控制CCD传感器的成品率低。
因此,CCD传感器的成本会高于CMOS传感器。
CCD技术已经成熟,CMOS技术还在进步中。
就图像质量而言,今天两者已经不相上下。
即使有些区别,和后端的图像处理器相比,也是微不足道了。
因此在高清IP摄像机中图像传感器的选择还是以CMOS为主。
针对高清与全高清摄像机,CMOS现在常用的芯片包括:
APTINA:MT9P031(5M@12)、MT9P006(5M@12)、AR0331(3M,WDR)、9M034(720P,WDR) ;
OMNIVISION:OV2715(2M)、OV5656(5M)、OV10633(720P,WDR)、OV9715/2(720P) ;
PANASONIC:MN34031(LOW LIGHT, 720P/30 WDR,720P/60)、MN34041(LOW LIGHT,1080P/30,1080P/30WDR,1080P/60) ;
SONY:IMX035(LOW LIGHT, 720P/30, 720P/60). IMX036(LOW LIGHT, 1080P/30,1080P/60)、IMX122(LOW LIGHT, 1080P/30,1080P/30 WDR,1080P/60;
ALTANSENS:3372E。