数据挖掘基础知识
- 格式:docx
- 大小:16.52 KB
- 文档页数:3
数据挖掘基础一、数据挖掘的概念和基本流程数据挖掘是指从大量数据中提取出有价值的信息和知识的过程,是一种自动化的发现模式和规律的方法。
其基本流程包括:数据预处理、特征选择、建立模型、模型评估和应用。
二、数据预处理1. 数据清洗:去除重复值、缺失值和异常值等。
2. 数据集成:将多个数据源中的数据合并成一个整体。
3. 数据变换:对原始数据进行转换,如归一化、离散化等。
4. 数据规约:对原始数据进行压缩,如抽样等。
三、特征选择特征选择是指从原始特征中选取一部分对分类或回归有用的特征。
其目的是减少维度,提高模型效率和精度。
四、建立模型建立模型是指根据已选取的特征,使用各种算法构建分类或回归模型。
常用算法包括决策树、神经网络、支持向量机等。
五、模型评估模型评估是指通过交叉验证等方法对建立好的模型进行评估,以确定其预测效果是否良好。
六、应用应用是指将建立好的模型应用到实际问题中,进行预测和决策。
七、数据挖掘的应用领域1. 金融:如信用评估、风险管理等。
2. 医疗:如疾病预测、药物研发等。
3. 零售业:如销售预测、客户细分等。
4. 航空航天:如飞机维修优化、航班调度等。
5. 电信业:如用户行为分析、网络优化等。
八、数据挖掘的常用算法1. 决策树算法:通过对数据进行分类和回归,构建决策树模型,可用于分类和预测。
2. 神经网络算法:通过模拟人类神经系统,构建神经网络模型,可用于分类和预测。
3. 支持向量机算法:通过寻找最大间隔超平面,构建支持向量机模型,可用于分类和回归。
4. 聚类算法:将数据分成若干个类别,常见的聚类算法包括K-Means 和层次聚类等。
5. 关联规则挖掘算法:通过寻找频繁项集和关联规则,发现数据中隐藏的关联关系。
九、数据挖掘的发展趋势1. 大数据时代:随着数据量的增加,数据挖掘将更加重要。
2. 人工智能:机器学习和深度学习等技术将广泛应用于数据挖掘中。
3. 可视化分析:通过可视化技术,更好地呈现和理解数据。
数据挖掘基础题库
以下是一些关于数据挖掘基础的常见问题,可以用作题库的一部分。
这些问题涵盖了数据挖掘的基本概念、技术和应用。
可以根据需要进行修改或扩展。
1.数据挖掘的定义是什么?它在实际应用中起到什么作用?
2.请解释数据挖掘的主要任务和目标。
3.什么是数据预处理,为什么在数据挖掘中它是一个重要的步骤?
4.解释数据挖掘中的特征选择和特征提取的区别。
5.什么是关联规则,在数据挖掘中如何应用关联规则?
6.解释聚类和分类在数据挖掘中的用途,并提供它们之间的区别。
7.什么是决策树,如何使用决策树进行分类?
8.请解释支持向量机(SVM)在数据挖掘中的作用。
9.数据挖掘中常用的评估指标有哪些,它们分别用于什么场景?
10.什么是异常检测,为什么在数据挖掘中它是一个重要的任务?
11.解释交叉验证在数据挖掘中的作用。
12.数据挖掘与机器学习的关系是什么?它们有哪些相似之处和区别?
13.什么是时间序列分析,在数据挖掘中如何应用时间序列分析?
14.请解释朴素贝叶斯分类器的基本原理。
15.解释深度学习在数据挖掘中的作用,并提供一些常见的深度学习模型。
这些问题旨在涵盖数据挖掘的基础知识和技术。
一、名词解释1. 数据仓库:是一种新的数据处理体系结构 .是面向主题的、集成的、不可更新的(稳定性)、随时间不断变化 (不同时间)的数据集合.为企业决策支持系统提供所需的集成信息。
2. 孤立点:指数据库中包含的一些与数据的一般行为或模型不一致的异常数据。
3. OLAP:OLAP 是在OLTP 的基础上发展起来的.以数据仓库为基础的数据分析处理 .是共享多维信息的快速分析.是被专门设计用于支持复杂的分析操作 .侧重对分析人员和高层管理人员的决策支持。
4. 粒度:指数据仓库的数据单位中保存数据细化或综合程度的级别。
粒度影响存放在数据仓库中的数据量的大小 .同时影响数据仓库所能回答查询问题的细节程度。
5. 数据规范化:指将数据按比例缩放(如更换大单位).使之落入一个特定的区域(如 0-1) 以提高数据挖掘效率的方法。
规范化的常用方法有:最大-最小规范化、零-均值规范化、小数定标规范化。
6. 关联知识:是反映一个事件和其他事件之间依赖或相互关联的知识。
如果两项或多项属性之间存在关联.那么其中一项的属性值就可以依据其他属性值进行预测。
7. 数据挖掘:从大量的、不完全的、有噪声的、模糊的、随机的数据中.提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
8. OLTP:OLTP 为联机事务处理的缩写.OLAP 是联机分析处理的缩写。
前者是以数据库为基础的.面对的是操作人员和低层管理人员 .对基本数据进行查询和增、删、改等处理。
9. ROLAP:是基于关系数据库存储方式的 .在这种结构中.多维数据被映像成二维关系表.通常采用星型或雪花型架构.由一个事实表和多个维度表构成。
10. MOLAP:是基于类似于“超立方”块的OLAP 存储结构.由许多经压缩的、类似于多维数组的对象构成.并带有高度压缩的索引及指针结构 .通过直接偏移计算进行存取。
11. 数据归约:缩小数据的取值范围.使其更适合于数据挖掘算法的需要 .并且能够得到和原始数据相同的分析结果。
大数据挖掘基础知识解析随着互联网和物联网的迅速发展,各种形式的数据不断涌现,大数据时代已经到来。
如何从海量数据中找到有用的信息,并为企业和个人决策提供依据,已经成为当今社会所关注和追求的问题。
而大数据挖掘作为从数据中发掘规律和知识的一种重要手段,正在被广泛应用。
本文将对大数据挖掘的基础知识进行解析。
一、什么是大数据挖掘?大数据挖掘是指在大数据集中发现新的、有价值的、难以被发现的知识和信息的过程,它是通过挖掘数据的内在联系和规律来获得有用的信息。
大数据挖掘需要结合多个学科的理论和技术,如企业决策分析、机器学习、数据库管理、高性能计算等。
二、大数据挖掘的应用领域(1)金融领域。
通过大数据挖掘,可以对金融市场的趋势和风险进行分析和预测,以便制定有效的投资策略。
(2)医疗领域。
医疗数据是一个重要的大数据源,大数据挖掘可以帮助医生和医院进行患者诊治方面的决策,判断病情的严重性,诊断疾病,对医疗资源进行优化调配。
(3)市场营销。
大数据挖掘可以分析和预测消费者的购物行为和购买趋势,以便制定更加精准的市场营销策略和增加销售额。
(4)社交媒体。
大数据挖掘可以对社交媒体数据进行分析,帮助企业了解和掌握用户的需求和喜好,以便进行更有针对性的产品研发和服务。
三、大数据挖掘的主要技术与方法(1)数据集成。
大数据挖掘需要从各个数据源中搜集数据,并将其进行整合和清洗,以便于后续的处理与分析。
(2)数据预处理。
数据预处理是大数据挖掘中的一个重要步骤,它包括数据采样、数据过滤、数据转换、数据标准化等。
通过对数据进行预处理,可以确保数据的质量和可信度。
(3)数据探索性分析。
数据探索性分析可以帮助挖掘潜在的模式和知识。
它主要包括可视化和统计分析两个方面。
(4)分类预测。
分类预测是大数据挖掘中的一项重要任务,它可以将数据集中的对象分为几个不同的类别,以便于后续的决策分析。
(5)聚类分析。
聚类分析是大数据挖掘中的一种无监督学习方法,它可以将数据集中的对象分为若干个不同的簇,以便于挖掘簇内的规律和知识。
数据挖掘基础知识要点梳理数据挖掘是一项通过发现和分析大量数据以提取有用信息的过程。
这项技术广泛应用于商业、金融、医疗和其他领域,以帮助组织做出更明智的决策。
为了更好地理解数据挖掘的基础知识和要点,本文将梳理数据挖掘的重要概念和技术。
1. 数据挖掘的定义和目标数据挖掘是从大量数据中自动发现模式、关联、异常和趋势的过程。
其目标是提取出对于业务决策有意义的信息,并根据这些信息进行预测和优化。
2. 数据挖掘的步骤数据挖掘通常包括以下步骤:a) 数据清洗:清理数据并处理缺失值、重复值和异常值。
b) 数据集成:将多个数据源整合到一个统一的数据集中。
c) 数据转换:将数据转换成合适的格式和表示形式,以便进行分析。
d) 数据挖掘:使用各种技术和算法来发现模式、关联和趋势。
e) 模式评估:评估挖掘结果的有效性和可行性。
f) 结果解释:解释挖掘结果并将其应用于实际业务问题。
3. 数据挖掘的应用数据挖掘可以应用于各个领域,例如:a) 市场营销:通过分析客户数据来识别潜在消费者群体和需求趋势。
b) 银行和金融:用于信用评估、客户关系管理和欺诈检测。
c) 医疗保健:用于疾病预测、生物信息学和药物研发等。
d) 社交网络:用于社交推荐、用户行为分析和关系网络挖掘等。
4. 常用的数据挖掘技术和算法a) 分类算法:用于将数据集分类为已知类别。
b) 聚类算法:用于将数据集分为相似组。
c) 关联规则挖掘:用于发现数据项之间的关联关系。
d) 预测建模:用于根据历史数据进行未来趋势预测。
e) 异常检测:用于识别与正常模式不符的异常数据。
5. 数据挖掘的挑战和限制进行数据挖掘时,还会面临一些挑战和限制,例如:a) 数据质量问题:包括数据缺失、数据错误和噪声干扰等。
b) 高维数据:随着数据维度增加,挖掘和分析变得更复杂。
c) 隐私和安全问题:在处理敏感数据时需要保护隐私和数据安全。
d) 解释性问题:模型的黑盒性可能使解释结果变得困难。
总结:数据挖掘是从大量数据中发现有用信息的过程,通过清洗、集成、转换、挖掘和评估等步骤来实现。
论空间数据挖掘和知识发现一、本文概述空间数据挖掘和知识发现(Spatial Data Mining and Knowledge Discovery,简称SDMKD)是数据挖掘领域的一个重要分支,它主要关注于从空间数据中提取有用的信息和知识。
随着地理信息系统(GIS)和位置感知设备(如智能手机、GPS等)的普及,空间数据日益丰富,如何有效地分析和利用这些数据成为了研究的热点。
本文将对空间数据挖掘和知识发现的基本概念、主要方法、应用领域以及未来发展趋势进行详细的探讨和概述。
本文将介绍空间数据挖掘和知识发现的基本概念和原理,包括空间数据的定义、特点以及空间数据挖掘的主要任务和目标。
然后,本文将重点介绍几种常用的空间数据挖掘方法,如空间聚类分析、空间关联规则挖掘、空间异常检测等,并对这些方法的原理、优缺点进行详细的阐述。
接着,本文将探讨空间数据挖掘和知识发现在不同领域的应用,如城市规划、环境保护、交通管理、公共安全等。
通过具体的案例分析,展示空间数据挖掘在解决实际问题中的重要作用和价值。
本文将展望空间数据挖掘和知识发现的未来发展趋势,包括新技术、新方法的出现对空间数据挖掘的影响,以及空间数据挖掘在大数据、云计算等新技术背景下的挑战和机遇。
本文还将对空间数据挖掘领域未来的研究方向进行预测和探讨。
通过本文的阐述,读者可以对空间数据挖掘和知识发现有一个全面而深入的了解,为相关领域的研究和实践提供有益的参考和启示。
二、空间数据挖掘基础空间数据挖掘(Spatial Data Mining, SDM)是数据挖掘的一个重要分支,它专门处理具有空间特性的数据。
这些数据不仅包括传统数据库中的数值和文本信息,更关键的是它们带有地理空间坐标或空间关系。
这种空间信息使得数据点之间不仅存在属性上的联系,还具有空间上的关联。
空间数据挖掘的主要任务包括空间聚类、空间关联规则挖掘、空间分类与预测,以及空间异常检测等。
空间聚类旨在发现空间分布上的密集区域,这些区域中的数据点在空间上相互靠近,并且在属性上也可能具有相似性。
数据挖掘的基础知识和应用案例数据是当今社会最宝贵的资源之一,而数据挖掘则是将这些数据转换为有价值的信息。
在互联网时代,我们每天都产生大量的数据,例如搜索记录、交易数据、社交媒体活动等,这些数据包含了丰富的信息,如果能够将其挖掘出来,就能为企业、政府和个人带来巨大的价值。
1.数据挖掘基础知识1.1 数据预处理在进行数据挖掘之前,需要对原始数据进行预处理。
这个过程包括数据清理、数据集成、数据变换和数据规约等,其目的是将原始数据转换为适合挖掘的数据。
数据清理是指对数据进行纠错、缺失值填补、异常值处理等操作,以确保数据的质量。
数据集成是将来自不同数据源的数据进行合并,并去除重复数据。
数据变换是指对数据进行归一化、降维、离散化等操作,以便于后续的算法处理。
数据规约是将数据集缩小到可以处理的大小,可以通过随机抽样、聚类等方式实现。
1.2 数据挖掘算法数据挖掘算法是指用于从数据中挖掘出模式和关系的数学方法和技术。
主要包括分类、聚类、关联规则和预测等四种常见算法。
分类算法是将数据进行分类,例如将邮件分类为垃圾邮件和非垃圾邮件。
聚类算法是将相似的数据进行分组,例如将顾客根据购买习惯分为不同的群体。
关联规则算法是用于寻找数据中的关联关系,例如购买商品A的人也有可能会购买商品B。
预测算法是根据已有的数据对未来进行预测,例如预测股票价格。
1.3 最佳实践数据挖掘的最佳实践包括选择合适的算法、确定特征、调整参数、评估模型等。
选择合适的算法要考虑数据的特征、目标和数据大小等因素。
确定特征是指选择重要的特征来进行挖掘,可以通过特征选择算法来实现。
调整参数是指对算法参数进行调整,以获得最佳性能。
评估模型是指对算法的结果进行评估,例如使用交叉验证和AUC等指标来评估分类算法的性能。
2.应用案例2.1 推荐系统推荐系统是利用用户的历史行为和其他信息来推荐相似的产品或服务,例如淘宝和京东的商品推荐。
推荐系统的实现需要大量的数据并使用复杂的算法,例如协同过滤、基于内容的过滤和深度学习等。
第1篇一、基础知识1. 请简述数据挖掘的基本概念和目的。
2. 请列举数据挖掘的主要应用领域。
3. 请说明数据挖掘的流程和步骤。
4. 请解释什么是数据预处理,其重要性是什么?5. 请列举数据预处理的主要方法。
6. 请解释什么是特征工程,其重要性是什么?7. 请列举特征工程的主要方法。
8. 请解释什么是机器学习,请列举几种常见的机器学习算法。
9. 请解释什么是监督学习、无监督学习和半监督学习。
10. 请解释什么是分类、回归和聚类。
11. 请解释什么是模型评估,请列举几种常见的模型评估指标。
12. 请解释什么是决策树,请列举决策树的分类方法。
13. 请解释什么是随机森林,请列举随机森林的优点。
14. 请解释什么是支持向量机(SVM),请列举SVM的分类方法。
15. 请解释什么是神经网络,请列举神经网络的分类方法。
16. 请解释什么是深度学习,请列举深度学习的应用领域。
17. 请解释什么是K-means算法,请列举K-means算法的优缺点。
18. 请解释什么是层次聚类,请列举层次聚类的分类方法。
19. 请解释什么是关联规则挖掘,请列举关联规则挖掘的算法。
20. 请解释什么是时间序列分析,请列举时间序列分析的方法。
二、编程能力1. 请用Python实现以下功能:(1)读取CSV文件,提取其中指定列的数据;(2)对提取的数据进行排序;(3)将排序后的数据写入新的CSV文件。
2. 请用Python实现以下功能:(1)使用Pandas库对数据集进行数据预处理;(2)使用NumPy库对数据进行特征工程;(3)使用Scikit-learn库对数据进行分类。
3. 请用Python实现以下功能:(1)使用TensorFlow库实现一个简单的神经网络模型;(2)使用PyTorch库实现一个简单的神经网络模型;(3)对模型进行训练和评估。
4. 请用Python实现以下功能:(1)使用Scikit-learn库实现一个SVM分类器;(2)对分类器进行训练和评估;(3)调整SVM分类器的参数,以提高分类效果。
数据挖掘基础知识
一、数据挖掘技术的基本概念
随着计算机技术的发展,各行各业都开始采用计算机及相应的信息技术进行管理和运营,这使得企业生成、收集、存贮和处理数据的能力大大提高,数据量与日俱增。
企业数据实际上是企业的经验积累,当其积累到一定程度时,必然会反映出规律性的东西;对企业来,堆积如山的数据无异于一个巨大的宝库。
在这样的背景下,人们迫切需要新一代的计算技术和工具来开采数据库中蕴藏的宝藏,使其成为有用的知识,指导企业的技术决策和经营决策,使企业在竞争中立于不败之地。
另一方面,近十余年来,计算机和信息技术也有了长足的进展,产生了许多新概念和新技术,如更高性能的计算机和操作系统、因特网(intemet)、数据仓库(datawarehouse)、神经网络等等。
在市场需求和技术基础这两个因素都具备的环境下,数据挖掘技术或称KDD(KnowledgeDiscovery in Databases;数据库知识发现)的概念和技术就应运而生了。
数据挖掘(Data Mining)旨在从大量的、不完全的、有噪声的、模糊的、随机的数据中, 提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识。
还有很多和这一术语相近似的术语,如从数据库中发现知识(KDD)、数据分析、数据融合(Data Fusion)以及决策支持等。
二、数据挖掘的基本任务
数据挖掘的任务主要是关联分析、聚类分析、分类、预测、时序模式和偏差分析等。
1. 关联分析(association analysis)
关联规则挖掘由Rakesh Apwal等人首先提出。
两个或两个以上变量的取值之间存在的规律性称为关联。
数据关联是数据库中存在的一类重要的、可被发现的知识。
关联分为简单关联、时序关联和因果关联。
关联分析的目的是找出数据库中隐藏的关联网。
一般用支持度和可信度两个阀值来度量关联规则的相关性,还不断引入兴趣度、相关性等参数,使得所挖掘的规则更符合需求。
2. 聚类分析(clustering)
聚类是把数据按照相似性归纳成若干类别,同一类中的数据彼此相似,不同类中的数据相异。
聚类分析可以建立宏观的概念,发现数据的分布模式,以及可能的数据属性之间的相互关系。
3. 分类(classification)
分类就是找出一个类别的概念描述,它代表了这类数据的整体信息,即该类的内涵描述,并用这种描述来构造模型,一般用规则或决策树模式表示。
分类是利用训练数据集通过一定的算法而求得分类规则。
分类可被用于规则描述和预测。
4. 预测(predication)
预测是利用历史数据找出变化规律,建立模型,并由此模型对未来数据的种类及特征进行预测。
预测关心的是精度和不确定性,通常用预测方差来度量。
5. 时序模式(time-series pattern)
时序模式是指通过时间序列搜索出的重复发生概率较高的模式。
与回归一样,它也是用己知的数据预测未来的值,但这些数据的区别是变量所处时间的不同。
6. 偏差分析(deviation)
在偏差中包括很多有用的知识,数据库中的数据存在很多异常情况,发现数据库中数据存在的异常情况是非常重要的。
偏差检验的基本方法就是寻找观察结果与参照之间的差别。
三数据挖掘常的基本技术
1. 统计学
统计学虽然是一门“古老的”学科,但它依然是最基本的数据挖掘技术,特别是多元统计分析,如判别分析、主成分分析、因子分析、相关分析、多元回归分析等。
2. 聚类分析和模式识别
聚类分析主要是根据事物的特征对其进行聚类或分类,即所谓物以类聚,以期从中发现规律和典型模式。
这类技术是数据挖掘的最重要的技术之一。
除传统的基于多元统计分析的聚类方法外,近些年来模糊聚类和神经网络聚类方法也有了长足的发展。
3. 决策树分类技术
决策树分类是根据不同的重要特征,以树型结构表示分类或决策集合,从而产生规则和发现规律。
4. 人工神经网络和遗传基因算法
人工神经网络是一个迅速发展的前沿研究领域,对计算机科学人工智能、认知科学以及信息技术等产生了重要而深远的影响,而它在数据挖掘中也扮演着非常重要的角色。
人工神经网络可通过示例学习,形成描述复杂非线性系统的非线性函数,这实际上是得到了客观规律的定量描述,有了这个基础,预测的难题就会迎刃而解。
目前在数据挖掘中,最常使用的两种神经网络是BP网络和RBF网络不过,由于人工神经网络还是一个新兴学科,一些重要的理论问题尚未解决。
5. 规则归纳
规则归纳相对来讲是数据挖掘特有的技术。
它指的是在大型数据库或数据仓库中搜索和挖掘以往不知道的规则和规律,这大致包括以下几种形式:IF … THEN …
6. 可视化技术
可视化技术是数据挖掘不可忽视的辅助技术。
数据挖掘通常会涉及较复杂的数学方法和信息技术,为了方便用户理解和使用这类技术,必须借助图形、图象、动画等手段形象地指导操作、引导挖掘和表达结果等,否则很难推广普及数据挖掘技术。
四数据挖掘技术实施的步骤
数据挖掘的过程可以分为6个步骤:
∙1) 理解业务:从商业的角度理解项目目标和需求,将其转换成一种数据挖掘的问题定义,设计出达到目标的一个初步计划。
∙2) 理解数据:收集初步的数据,进行各种熟悉数据的活动。
包括数据描述,数据探索和数据质量验证等。
∙3) 准备数据:将最初的原始数据构造成最终适合建模工具处理的数据集。
包括表、记录和属性的选择,数据转换和数据清理等。
∙4) 建模:选择和应用各种建模技术,并对其参数进行优化。
∙5) 模型评估:对模型进行较为彻底的评价,并检查构建模型的每个步骤,确认其是否真正实现了预定的商业目的。
∙6) 模型部署:创建完模型并不意味着项目的结束,即使模型的目的是为了增进对数据的了解,所获得的知识也要用一种用户可以使用的方式来组织和表示。
通常要将活动模型应用到决策制订的过程中去。
该阶段可以简单到只生成一份报告,也可以复杂到在企业内实施一个可重复的数据挖掘过程。
控制得到普遍承认。
五数据挖掘的应用现状
数据挖掘是一个新兴的边缘学科,它汇集了来自机器学习、模式识别、数据库、统计学、人工智能以及管理信息系统等各学科的成果。
多学科的相互交融和相互促进,使得这一新学科得以蓬勃发展,而且已初具规模。
在美国国家科学基金会(NSF)的数据库研究项目中,KDD被列为90年代最有价值的研究项目。
人工智能研究领域的科学家也普遍认为,下一个人工智能应用的重要课题之一,将是以机器学习算法为主要工具的大规模的数据库知识发现。
尽管数据挖掘还是一个很新的研究课题,但它所固有的为企业创造巨大经济效益的潜力,已使其很快有了许多成功的应用,具有代表性的应用领域有市场预测、投资、制造业、银行、通讯等。
美国钢铁公司和神户钢铁公司利用基于数据挖掘技术的ISPA系统,研究分析产品性能规律和进行质量控制,取得了显著效果。
通用电器公司(GE)与法国飞机发动机制造公司(sNEcMA),利用数据挖掘技术研制了CASSIOP.EE质量控制系统,被三家欧洲航空公司用于诊断和预测渡音737的故障,带来了可观的经济效益。
该系统于1996年获欧洲一等创造性应用奖。
享有盛誉的市场研究公司,如美国的A.C.一Nielson和Information Resources,欧洲的GFK和ln.fratest Burk等纷纷开始使用数据挖掘工具来应付迅速增长的销售和市场信息数据。
商家的激烈竞争导致了市场快速饱和,产品的迅速更新,使得经营者对市场信息的需求格外强烈利用数据挖掘技术所形成的市场预测能力和服务,使这些市场研究公司取得了巨大收益。
英国广播公司(BBC)也应用数据挖掘技术来预测电视收视率,以便合理安排电视节目时刻表。
信用卡公司Alllelicall KxT,ress自采用数据挖掘技术后,信用卡使用率增加了10%一15%。
AT&T公司赁借数据挖掘技术技术侦探国际电话欺诈行为,可以尽快发现国际电话使用中的不正常现象。
【编辑推荐】
1.数据挖掘:大数据发展的核心驱动力
2.数据挖掘:基于机器学习方法的POI品类推荐算法
3.这才是真正的物流大数据挖掘思路!
4.R语言学习路线和常用数据挖掘包
5.数据挖掘大牛:我热爱大数据分析的6个原因。