整式及代数式知识点梳理(供参考)
- 格式:doc
- 大小:46.50 KB
- 文档页数:5
2024年七年级上册数学知识点梳理总结一、代数式的定义:由运算符号连接的数或表示数的字母组成的式子称为代数式,单独的数或字母也视为代数式。
注意:(1)单独的数字与字母同样被视为代数式;(2)代数式与公式、等式的区别在于代数式不包含等号,而公式和等式含有等号;(3)代数式可以从运算关系和运算结果两方面来理解。
三、整式:1. 单项式:数与字母的乘积形式的代数式称为单项式,其中的数字因数称为单项式的系数,所有字母的指数之和称为单项式的次数。
特别地,单独的数或字母也被视为单项式。
2. 多项式:若干个单项式的和称为多项式,每个单项式称为多项式的项,不含字母的项称为常数项,多项式中次数最高的项的次数即为多项式的次数。
四、升(降)幂排列:将一个多项式按照某一字母的指数由小到大(或由大到小)的顺序排列,称为按该字母升(降)幂排列。
五、代数式书写规范:1. 乘号在代数式中通常用“·”表示或省略不写,数与字母相乘时,数写在字母前面,数与数相乘仍用“×”号表示。
2. 数字与字母相乘、单项式与多项式相乘时,遵循先写数字、再写单项式、最后写多项式的顺序,如2a(a+b)。
3. 带分数与字母相乘时,应先将带分数转换为假分数再与字母相乘。
4. 代数式中的除法运算应按分数形式书写。
5. 若代数式带有单位名称,积或商形式的代数式直接将单位写在式子后面,和或差形式的代数式需用括号括起,单位写在括号后面,如2a米,(2a-b)kg。
六、系数与次数:1. 单项式的系数:单项式中的数字因数称为单项式的系数,包括其前的符号,系数为1通常省略不写,但负号不可省略。
2. 单项式的次数:所有字母的指数之和称为单项式的次数,与字母的指数有关,与系数无关。
3. 多项式的次数:最高次项的次数为多项式的次数。
4. 多项式的项数:每个单项式称为多项式的项,不含字母的项称为常数项,项数即为单项式的个数,表示“和”中的单项式数量。
七、列代数式:列代数式是通过包含数、字母和运算符号的式子来表达问题中的数量关系。
第2讲代数式及整式的运算
一、考点知识梳理
【考点1 代数式定义及列代数式】
1.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式.2.代数式的值:用数值代替代数式里的字母,按照代数式里的运算关系,计算后所得的结果叫做代数式的值.
【考点2 幂的运算】
1.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.
a m•a n=a m+n(m,n是正整数)
2.幂的乘方法则:底数不变,指数相乘.
(a m)n=a mn(m,n是正整数)
3.积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.
(ab)n=a n b n(n是正整数)
4.同底数幂的除法法则:底数不变,指数相减.
a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n)
【考点3 合并同类项】
所含字母相同并且相同字母的指数也分别相同的项叫做同类项.所有的常数项都是同类项.
把多项式中同类项合成一项,叫做合并同类项.
合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.
【考点4 整式的乘法】
单项式乘以多项式m(a+b)=am+bm
多项式乘以多项式(a+b)(m+n)=am+an+bm+bn
1。
高中代数所有知识点总结一、整式1. 整式的概念整式是由常数、变量和它们的乘积以及它们的各种有限次幂(非负整数次幂)加减得来的代数式,通常记作f(x) = a0 + a1x + a2x^2 + ... + anxn。
其中,a0、a1、a2...an是常数,x 是变量,n是非负整数。
2. 整式的加减整式的加减法遵循结合律、交换律和分配律。
3. 整式的乘法整式的乘法也遵循结合律、交换律和分配律。
4. 整式的除法在代数式的除法中,要注意对除式的检验,保证不能除以零。
5. 整式的因式分解将代数式进行因式分解,使得原代数式等于因式的乘积。
常见的方法有公因式提取法、提公因式法、分组分解法等。
6. 整式的最大公约数和最小公倍数使用整式的形式进行最大公约数和最小公倍数的求解。
二、分式1. 分式的概念分式是指有分子和分母两部分组成的代数式,其中分子、分母都是整式。
2. 分式的加减分式的加减法通常需要先求出分母的最小公倍数,然后通分计算。
3. 分式的乘法和除法对于分式的乘法和除法,可以直接对分子和分母分别进行乘除运算。
4. 分式的化简通过因式分解等方法,将分式化简为最简的形式。
三、方程和不等式1. 一元一次方程一元一次方程是指只含有一个未知数的一次方程,一般形式为ax + b = 0。
可以通过加减法、乘除法等简单变形求解。
2. 一元二次方程一元二次方程是指只含有一个未知数的二次方程,一般形式为ax^2 + bx + c = 0。
可以使用配方法、因式分解、求根公式等方法求解。
3. 一元一次不等式一元一次不等式是指只含有一个未知数的一次不等式,一般形式为ax + b > 0或ax + b < 0。
可以通过加减法、乘除法等简单变形求解,并要注意不等号方向的改变。
4. 一元二次不等式一元二次不等式是指只含有一个未知数的二次不等式,一般形式为ax^2 + bx + c > 0或ax^2 + bx + c < 0。
02 代数式与整式【思维导图】【知识要点】知识点一代数式概念:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.单独的一个数或一个字母也是代数式.【注意】1.代数式中除了含有字母、数字、运算符号外还可以有括号。
2.代数式中不含有=、<、>、≠等3.对于用字母表示的数,如果没有特别说明,就应理解为它可以表示任何一个数。
代数式的分类:列代数式方法列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了. 列代数式时应该注意的问题(1)数与字母、字母与字母相乘时常省略“×”号或用“·”. (2)数字通常写在字母前面.(3)带分数与字母相乘时要化成假分数. (4)除法常写成分数的形式. 代数式的值一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值. 1.今年苹果的价格比去年便宜了20%,己知去年苹果的价格是每千克a 元,则今年苹果每千克的价格是( ) A .20%aB .120%a-C .20%aD .()120%a -【解析】由题意可得,今年每千克的价格是(1-20%)a 元, 故选D .2.如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为( )A .2a ﹣3bB .4a ﹣8bC .2a ﹣4bD .4a ﹣10b【解析】根据题意得:2(a ﹣b+a ﹣3b )=2(2a ﹣4b )=4a ﹣8b , 故选B3.两位数,十位数字是x,个位数字比十位数字的2倍少3,这个两位数是()A.x(2x﹣3)B.x(2x+3)C.12x﹣3D.12x+3【解析】∵十位数字是x,个位数字比十位数字的2倍少3,∴个位数字为2x−3,∴这个2位数为10x+2x−3=12x−3.故选C4.小华有x元,小林的钱数是小华的一半还多2元,小林的钱数是()A.122x+B.1(2)2x+C.122x-D.1(2)2x-【解析】小华存款的一半为12x元,则小林的存款数为(12x+2)元,故选A.5.我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数【解析】A. 若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额,故正确;B. 若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长,故正确;C. 将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力,故正确;D. 若3和a分别表示一个两位数中的十位数字和个位数字,则30+a表示这个两位数,故不正确;故选D.6.某商店举办促销活动,促销的方法是将原价x元的衣服以4105x⎛⎫-⎪⎝⎭元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元【解析】将原价x元的衣服以(4105x-)元出售,是把原价打8折后再减去10元.故选B.7.用代数式表示“m 的3 倍与n 的差的平方”,正确的是( )A.3m﹣n2B.(m﹣3n)2C.(3m﹣n)2D.3(m﹣n)2【解析】m的3倍与n的差的平方表示为:(3m﹣n)2.故选C.8.在下列各式中,不是代数式的是()A.7B.3>2C.2xD.23x2+y2【解析】根据代数式的定义分析可知,A、C、D中的式子都是代数式,B中的式子是不等式,不是代数式.故选B.考查题型一求代数式的值的方法例1已知|a|=3,b2=16,且|a+b|≠a+b,则代数式a﹣b的值为()A.1或7B.1或﹣7C.﹣1或﹣7D.±1或±7【解析】解:∵|a|=3,b2=16,∴a=±3,b=±4,又∵|a+b|≠a+b,∴a+b的结果不可以是正数,即34ab=-⎧⎨=-⎩或34ab=⎧⎨=-⎩∴a﹣b=1或7 故选A.跟踪训练一1.若x=﹣13,y=4,则代数式3x+y﹣3的值为()A.﹣6B.0C.2D.6试题解析:∵x=﹣13,y=4,∴代数式3x+y﹣3=3×(﹣13)+4﹣3=0.故选B.2.若点A(m,n)和点B(5,﹣7)关于x轴对称,则m+n的值是()A.2 B.﹣2 C.12 D.﹣12【解析】∵点A(m,n)和点B(5,-7)关于x轴对称,∴m=5,n=7,则m+n的值是:12.故选:C.3.若m=-2,则代数式m2-2m-1的值是()A.9 B.7 C.-1 D.-9【解析】将m=-2代入代数式可得:原式=-2×(-2)-1=4+4-1=7.考查题型二列代数式在探索规律问题中的应用方法例2.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20B.27C.35D.40【解析】第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n +个, 则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个. 故选B . 跟踪训练二1. 一组按规律排列的多项式:a+b ,a 2-b 3,a 3+b 5,a 4-b 7,…,其中第10个式子是( ) A .1019a b + B .1019a b - C .1017a b - D .1021a b -【解析】解:多项式的第一项依次是a ,a 2,a 3,a 4,…,a n , 第二项依次是b ,﹣b 3,b 5,﹣b 7,…,(﹣1)n+1b 2n ﹣1,所以第10个式子即当n=10时, 代入到得到a n +(﹣1)n+1b 2n ﹣1=a 10﹣b 19. 故选B .2.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n (n 是正整数)的结果为 ( )A .2(21)n -B .2(21)n +C .2(2)n +D .2n【解析】图(1):1+8=9=(2×1+1)2; 图(2):1+8+16=25=(2×2+1)2; 图(3):1+8+16+24=49=(3×2+1)2; …;那么图(n ):1+8+16+24+…+8n=(2n+1)2. 故选B .3.如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是( )A .8B .9C .16D .17【解析】由图可知:第一个图案有三角形1个; 第二图案有三角形4个; 第三个图案有三角形4+4=8个; 第四个图案有三角形4+4+4=12个; 第五个图案有三角形4+4+4+4=16个。
整式知识点分类归纳总结整式的种类有多种,主要包括单项式、多项式、分式,以及它们的运算。
下面对整式相关的知识点进行分类归纳总结:一、整式的基本概念1. 代数式的定义代数式是由数字、字母和运算符号组成的符合语法规则的表达式。
代数式可以表示数与数之间的关系,可以用来表示具有普遍性的数学规律。
2. 整式的定义整式是由字母和数以及加减乘除等运算符号组成的代数式。
整式中不包含分式以及根式等算术式。
整式通常由常数项、一次项、二次项、三次项等各种次数的项组成。
3. 单项式和多项式单项式是只包含一个变量的代数式,例如3x、-2y等。
多项式是由单项式经过加法与减法运算得到的代数式,例如3x+2y、5x^2+3x-6等。
4. 整式的次数整式中的最高变量次数称为整式的次数。
例如5x^2+3x-6的次数为2,3x^4-2x^3+5x^2-3x+4的次数为4。
5. 整式的分类整式按照其结构特点和性质可以分为单项式、多项式和分式。
单项式是只包含一个变量的代数式,多项式是由单项式经过加法与减法运算得到的代数式,分式是一个整式除以另一个整式所得到的代数式。
6. 整式的运算整式的运算包括加法、减法、乘法和除法。
整式的加法与减法是基于单项式和多项式的加减法运算规则,整式的乘法是基于分配律和乘法法则的运算,整式的除法则是利用多项式的因式分解和除法规则进行运算。
二、单项式与多项式的运算1. 单项式的加法与减法单项式的加法和减法是遵循着同类项相加减的原则,即变量的指数相等的项可以相加减,常数项也可以相加减。
2. 多项式的加法与减法多项式的加法和减法是将同类项进行合并,即对应位置的项进行加减操作,最终得到合并后的多项式。
3. 单项式与多项式的乘法单项式与多项式的乘法是利用分配律,即将单项式的每一项分别与多项式进行乘法运算,最后将结果合并得到最终的乘积。
4. 多项式的乘法多项式的乘法是将每个多项式中的项依次与另一个多项式中的项进行乘法运算,最后将结果合并得到最终的乘积。
第二部分 式与式的运算一、代数式、整式的运算、因式分解、分式 1.代数式:用运算符号把数或表示数的字母连接而成的式子叫做代数式.单独一个字母或一个数也是代数式,用数值代替代数式里的字母,计算后所得的结果,叫做代数式的值.2.单项式:只含有数或字母的乘法(含乘方)运算的代数式叫做单项式,单独一个字母或一个数也是单项式,所有字母的指数和叫做单项式的次数.3.多项式:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式中次数最高项的次数叫做多项式的次数.升幂排列: 降幂排列:4.整式:单项式与多项式统称为整式.5.整式的加法:合并同类项. 添括号:()a b c a b c -+=-- 去括号:()a b c a b c +-=+-6.整式的乘法: (1)单项式×单项式:()()()212312325a b c abab c ab c +--+⋅==.(2)单项式×多项式:()2a b a ab a -=-. (3)多项式×多项式:()()a b c d +⋅+()()a c d b c d =⋅++⋅+ac ad bc bd =+++(4)乘法公式()()22a b a b a b +-=- ① ()2222a b a ab b ±=±+ ②a 2+b 2=(a +b )2-2ab (a -b )2=(a +b )2-4ab . (a -b )(a 2+ab +b 2)=a 3-b 3 7.整式的除法()232226422624242a b a b a b a b a b a b --÷=÷== 8.因式分解:把一个多项式表示成几个整式的乘积的形式,叫做把这个多项式因式分解.多项式=( )·…·( ) 常用方法有: (1)提公因式法:如()ab ac ad a b c d ++=++;(2)公式法(利用乘法公式):如()()()22224222x y x y x y x y -=-=+-;(3)十字相乘法: 因式分解:243x x ++x 1 x 3所以:()()24313x x x x ++=++ 因式分解:223x x --x 1 x 3-所以:()()22313x x x x --=+- 9、分式:(1)概念:如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式. (2)分式运算的符号规律:a a a ab b b b --=-=-=--; a a a b b b--==-. (3)分式通分“根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
可编辑修改精选全文完整版整式一.知识框架二.知识概念1.单项式:数字或字母的乘积叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的系数;单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
5.常数项:不含字母的项叫做常数项。
6.同类项:所含字母相同,并且相同字母的指数也相同的单项式叫做同类型。
7.合并同类项(1)定义:把多项式中的同类项合并成一项,叫做合并同类项。
(2)法则:将同类项的系数相加减,字母和字母的指数不变(一变、两不变;一变是指同类项的系数变;两不变是指相同字母和相同字母的指数不变。
)(3)步骤:•找:准确的找出同类项‚搬:把同类项搬到一起(逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变)ƒ合:合并它们的系数口诀:同类项,需判断,两相同,是条件。
合并时,需计算,系数加,两不变。
注意:•系数相加时,一定要带上各项前面的符号。
‚合并同类项一定要完全、彻底,不能有漏项。
ƒ只有是同类项才能合并;合并同类项的结果可能是单项式也可能是多项式。
顺口溜:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
8.整式的加减(1)整式:单项式和多项式统称为整式。
(2)去括号:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;‚如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;(3)一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
注:(补充)升幂排列:把一个多项式按某个字母的指数按从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
降幂排列:把一个多项式按某个字母的指数按从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
整式的乘法与因式分解第一节:整式的乘法1.同底数幂的乘法一般地,对于任意底数a与任意正整数m,有(m、n 都是正整数)。
人教版整式知识点总结归纳一、整式的基本概念1. 代数式的定义:由数字(称为常数)、字母(称为变量)、加减号、乘号、次方号等数学符号经过有限次加、减、乘、除运算(其中除法运算分母不为零)而成的式子叫做代数式。
2. 整式的定义:如果代数式中只包含有限个变量的项(这些项中不含变量的项即为常数),并且这些变量的指数在每一项中都是非负整数,则这个代数式就是整式。
二、整式的基本性质1. 交换律:整式相加、相乘时,可以改变各项的顺序,结果仍不变。
2. 结合律:整式相加、相乘时,可以改变各项的群体次序,结果仍不变。
3. 分配律:整式相乘时,按此性质变形后,分别进行乘法后再进行加法。
4. 合并同类项:把整式中相同字母的项合并成一项。
5. 分离因式:整式中提取公因子。
6. 化简合并:合并整式中的同类项,并且合并后的式子要化简。
7. 即化简:对整式进行运算后,经过合并同类项、整理项等步骤。
8. 单项式展开:用分配律对一个单项式和另一个整式进行相乘。
9. 去括号:把乘法因式中的括号展开。
10. 合并同类项:将同类项合并成一项。
11. 化简合并:合并同类项后化简得到最简式。
12. 整式的幂:整式内容除零次幂字母外有乘方外,均是整式。
三、整式的基本变形1. 公因式提取:在一整式中找出一个代数式的最大公因式,并把最大公因式提取出来。
2. 提公因式:提取整式中的公因式。
3. 去括号:消去整式中所出现的括号。
4. 化简合并:对整式中的同类项进行合并,然后化简结果。
5. 展开:将含括号因式展开。
四、整式的加法整式的加法是指把两个整式相加时,将它们的同类项相加,结果为一个整式。
五、整式的乘法整式的乘法是指把两个整式相乘时,利用分配律把其中一个整式的每一项与另一个整式相乘,最后将所得乘积合并。
六、整式的除法1. 整式除以单项式:可以将整式的每一项分别除以单项式。
2. 单项式除以整式:可以将单项式分别除以整式的每一项。
3. 整式除整式:用长除法进行整式相除。
七年级数学第三四章知识点(一)一、知识点:考点一代数式1.代数式:用连接组成的式子叫做代数式,单独的一个或也叫代数式.2.代数式的书写规范:二、完成项目:(一)代数式1.下列式子中代数式的个数有()﹣2a﹣5,﹣3,2a+1=4,3x3+2x2y4,﹣b.A.2个B.3个C.4个D.5个2.下列各式符合代数式书写规范的是()A.B.a×3 C.2m﹣1个D.1m3.代数式a2﹣的正确解释是()A.a与b的倒数是差的平方B.a与b的差是平方的倒数C.a的平方与b的差的倒数D.a的平方与b的倒数的差4.用代数式表示“x的两倍与y的和的平方”,是5.两位数,十位数字是x,个位数字比十位数字的2倍少3,这个两位数是()A.x(2x﹣3)B.x(2x+3)C.12x+3 D.12x﹣36.全班同学排成长方形长队,每排的同学数为a,排数比每排同学数的3倍还多2,那么全班同学数是()A.a•3a+2 B.3a(a+2)C.a+3a+2 D.a(3a+2)7.a个学生按每8个人一组分成若干组,其中有一组少3人,共分成()A.组B.组C.组D.组8.某服装店新开张,第一天销售服装a件,第二天比第一天多销售12件,第三天的销售量是第二天的2倍少10件,则第三天销售了件9.某粮食公司2018年生产大米总量为a万吨,比2017年大米生产总量增加了10%,那么2017年大米生产总量为()A.a(1+10%)万吨B.万吨C.a(1﹣10%)万吨D.万吨10.某食堂有煤m吨,计划每天用煤n吨,实际每天节约用煤b吨,节约后可多用的天数为( )A.m mn b n-+B.m mn n b--C.m mn n b-+D.m mn b n--11.一种商品的售价为20元,每个月可卖出110件;如果每件商品的售价每降价1元,则每月多卖5件.设每件商品的售价为a元时,每月的销售量是件.12.某商品的进价是a元,商场标出的售价比进价提高30%,后又按标价的九折出售,现在这种商品售价为_________元,每件商品盈利___________元.13.一个正方形和四个全等的小正方形按图①②两种方式摆放,若把图②中未被小正方形覆盖部分(图②中的阴影部分)折成一个无盖的长方体盒子,则此长方体盒子的体积为()A.B.C.D.14.用黑白两种颜色的地板砖按如图所示的规律,拼成若干个图案.第n个图形中有白色地板砖块15.如图,图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是()A.32 B.29 C.28 D.2616.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A .21B .24C .27D .3017.在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A .4,2,1 B .2,1,4 C .1,4,2 D .2,4,1第17题18. 下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( ) A .135 B .170 C .209D .252考点二 整式的有关概念1.单项式:由 组成的式子叫做单项式;单项式中的 叫做单项式的系数;单项式中 叫做单项式的次数.2.多项式:几个单项式的 叫做多项式;多项式中,每一个单项式叫做多项式的 ,其中不含字母的项叫做 ;多项式中 就是这个多项式的次数.3.整式: 与 统称为整式.(二)整式1.-5x ,-a ,13+m ,x -2xy ,23n m -,x 1,0,212x -,3ab ,21+a b单项式集合:{ …} 多项式集合:{ …}2.单项式522bca π-的系数是 ,次数是 .3. 若n mx y -是关于x y ,的一个单项式,且系数为3,次数为5,则m =_____,n =_____. 4.多项式123243-+-x x x 有___ 项,其中次数最高的项是____ _ . 5.下列说法正确的是( )A .232xy 的次数是6B .单项式a 的系数为1,次数是0.C . 733yzx π单项式的系数是73, D .数字0是单项式6.关于x 的多项式1)2(5)1(3236+---++x n x x m x 不含x 的二次项和三次项,则m = , n = . 7.(1)观察下列关于x 的单项式:⋅⋅⋅6543211,9,7,5,3,x x x x x x ,按此规律写出第2018个单项式是_________.(2)观察下列关于x 的单项式:0, 3x 2, 8x 3, 15x 4, 24x 5,…,按此规律写出第13个单项式是______;(3)观察下列关于x 的单项式: x ,-2x 2 , 4x 3 ,-8x 4,....根据发现的规律,写出第n 个式子是__________;七年级数学 第三四章知识点(二)考点三 整式的加减一、知识点:1.同类项:所含 相同,并且 指数也相同的单项式.同类项与项的系数无关,与项中字母的排列顺序无关,如xy 2与-y 2x 也是同类项;几个常数项都是同类项.2.合并同类项:把多项式中的同类项合并成一项。
第三章 整式及其加减1、代数式用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、>、<、≠”等符号。
等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
※代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt ;②数字与字母相乘时,数字应写在字母前面,如4a ;③带分数与字母相乘时,应先把带分数化成假分数,如a ⨯312应写作a 37; ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;⑤在代数式中出现除法运算时,一般写成分数的形式,如4÷(a-4)应写作44-a ;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如)(22b a -平方米。
2、整式:单项式和多项式统称为整式。
①单项式:都是数字和字母乘积的形式的代数式叫做单项式。
单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。
注意:1.单独的一个数或一个字母也是单项式;2.单独一个非零数的次数是0;3.当单项式的系数为1或-1时,这个“1”应省略不写,如-ab 的系数是-1,a 3b 的系数是1。
②多项式:几个单项式的和叫做多项式。
多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。
3、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:①同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。
②同类项与系数无关,与字母的排列顺序无关;③几个常数项也是同类项。
4、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。
5、去括号法则①根据去括号法则去括号:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。
②根据分配律去括号:括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。
6、添括号法则添“+”号和括号,添到括号里的各项符号都不改变;添“-”号和括号,添到括号里的各项符号都要改变。
7、整式的运算:整式的加减法:(1)去括号;(2)合并同类项。
整式的乘除运算单项式式多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:(1)代数式化简。
(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
五、同底数幂的乘法1、n个相同因式(或因数)a相乘,记作a n,读作a的n次方(幂),其中a为底数,n为指数,a n的结果叫做幂。
2、底数相同的幂叫做同底数幂。
3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。
即:a m﹒a n=a m+n。
4、此法则也可以逆用,即:a m+n = a m﹒a n。
5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。
六、幂的乘方1、幂的乘方是指几个相同的幂相乘。
(a m)n表示n个a m相乘。
2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。
(a m)n =a mn。
3、此法则也可以逆用,即:a mn =(a m)n=(a n)m。
七、积的乘方1、积的乘方是指底数是乘积形式的乘方。
2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。
即(ab)n=a n b n。
3、此法则也可以逆用,即:a n b n =(ab)n。
八、三种“幂的运算法则”异同点1、共同点:(1)法则中的底数不变,只对指数做运算。
(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。
(3)对于含有3个或3个以上的运算,法则仍然成立。
2、不同点:(1)同底数幂相乘是指数相加。
(2)幂的乘方是指数相乘。
(3)积的乘方是每个因式分别乘方,再将结果相乘。
九、同底数幂的除法1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:a m ÷a n =a m-n(a ≠0)。
2、此法则也可以逆用,即:a m-n = a m ÷a n(a ≠0)。
十、零指数幂1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a 0=1(a ≠0)。
十一、负指数幂1、任何不等于零的数的―p 次幂,等于这个数的p 次幂的倒数,即:1(0)p p a a a -=≠注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。
十二、整式的乘法(一)单项式与单项式相乘1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
2、系数相乘时,注意符号。
3、相同字母的幂相乘时,底数不变,指数相加。
4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。
5、单项式乘以单项式的结果仍是单项式。
6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
(二)单项式与多项式相乘1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。
即:m(a+b+c)=ma+mb+mc 。
2、运算时注意积的符号,多项式的每一项都包括它前面的符号。
3、积是一个多项式,其项数与多项式的项数相同。
4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。
(三)多项式与多项式相乘1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
即:(m+n)(a+b)=ma+mb+na+nb 。
2、多项式与多项式相乘,必须做到不重不漏。
相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。
在未合并同类项之前,积的项数等于两个多项式项数的积。
3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。
4、运算结果中有同类项的要合并同类项。
5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x 2+(a+b)x+ab 。
十三、平方差公式1、(a+b )(a-b)=a 2-b 2,即:两数和与这两数差的积,等于它们的平方之差。
2、平方差公式中的a 、b 可以是单项式,也可以是多项式。
3、平方差公式可以逆用,即:a 2-b 2=(a+b )(a-b)。
4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成(a+b )•(a-b)的形式,然后看a 2与b 2是否容易计算。
十四、完全平方公式1、222222()2,()2,a b a ab b a b a ab b +=++-=-+即:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
2、公式中的a ,b 可以是单项式,也可以是多项式。
3、掌握理解完全平方公式的变形公式:(1)22222212()2()2[()()]a b a b ab a b ab a b a b +=+-=-+=++-(2)22()()4a b a b ab +=-+(3)2214[()()]ab a b a b =+--4、完全平方式:我们把形如:22222,2,a ab b a ab b ++-+的二次三项式称作完全平方式。
5、当计算较大数的平方时,利用完全平方公式可以简化数的运算。
6、完全平方公式可以逆用,即:2222222(),2().a ab b a b a ab b a b ++=+-+=- 十五、整式的除法(一)单项式除以单项式的法则1、单项式除以单项式的法则:一般地,单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
2、根据法则可知,单项式相除与单项式相乘计算方法类似,也是分成系数、相同字母与不相同字母三部分分别进行考虑。
(二)多项式除以单项式的法则1、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
用字母表示为:().a b c m a m b m c m ++÷=÷+÷+÷2、多项式除以单项式,注意多项式各项都包括前面的符号。