核糖体
- 格式:ppt
- 大小:22.43 MB
- 文档页数:56
第9章核糖体第一节核糖体的类型和结构核糖体的模式图核糖体是合成蛋白质的细胞器,几乎存在于一切细胞内。
核糖体是一个颗粒状的结构,主要成分是蛋白质和RNA。
核糖体RNA成为rRNA,蛋白质称为r蛋白,蛋白质含量约占40%,RNA约占60%,r蛋白分子主要分布在核糖体的表面,而rRNA则位于内部,二者靠非共价键结合在一起。
电镜下,是无包膜的电子致密颗粒,略呈圆形或椭圆形,平均直径在150~250A。
核糖体由大、小两个亚单位组成。
大亚基略呈梨形,中心有一条中央管。
直径为230A,沉降系数为60S。
其上有与氨酰-tRNA 结合的位置,还含有转肽酶活性部位。
小亚基呈碟盘状,大小为230A×120A,沉降系数为40S,其上有蛋白质合成启动因子结合位点、起始氨酰-tRNA结合部位和mRNA结合位点。
电镜下,核糖体常成群呈丛状或螺旋状存在,与mRNA结合,构成多聚核糖体(polyribosome)。
附着于内质网上的称附着核糖体(bound ribosome),主要合成输送到细胞外的分泌性蛋白、膜嵌入糖蛋白、可溶性驻留蛋白和溶酶体蛋白等。
散在于胞质中的称游离核糖体(free ribosome),主要合成组成细胞本身所需的结构性蛋白质。
糖核体的大小两个不同的亚基,在不进行蛋白质合成时,它们是分开的,游离存在于细胞质中。
只是在进行蛋白质合成时才结合在一起。
原核生物和真核生物的核糖体成分的比较原核细胞的核糖体为70S,真核细胞线粒体和叶绿体内的核糖体也近似于70S,但除了这两个细胞器,真核细胞内的核糖体均为80S。
原核生物核糖体由约2/3的RNA及1/3的蛋白质组成。
真核生物核糖体中RNA占3/5,蛋白质占2/5。
真核细胞糖核体的沉降系数为80S。
大亚基为60S,小亚基为40S。
小亚基含有由一种18S的 rRNA 和33种蛋白质;大亚基含有5S、5.8S及 28S 三种rRNA 和约49种蛋白质。
tRNA结合部位1. tRNA的三叶草结构受体臂(acceptor arm)主要由链两端序列碱基配对形成的杆状结构和3′端末配对的3-4个碱基所组成,其3′端的最后3个碱基序列永远是CCA,最后一个碱基的3′或2′自由羟基(—OH)可以被氨酰化。
核糖体名词解释核糖体(ribosome)是细胞内的一种细胞器,由蛋白质和RNA组成,主要功能是参与蛋白质的合成。
其大小约为20-30纳米,是细胞内最大且形态最为复杂的非膜结构。
核糖体由两个亚单位组成,一个大亚单位(large subunit)和一个小亚单位(small subunit),它们在合成蛋白质的过程中密切合作。
大亚单位由多个蛋白质和长链RNA组成,小亚单位则由较少的蛋白质和短链RNA组成。
核糖体的主要功能是通过翻译过程将mRNA上的信息转化为蛋白质。
当细胞需要合成蛋白质时,mRNA与核糖体结合,核糖体通过扫描mRNA上的密码子(codon)与tRNA上的氨基酸反应,将氨基酸逐个连接起来,形成多肽链。
这个过程被称为翻译(translation),是细胞内的一个重要过程。
核糖体中的RNA起到了关键的作用。
其中包括两种类型的RNA,即核糖体RNA(rRNA)和转运RNA(tRNA)。
rRNA是核糖体中最主要的成分,它能够识别mRNA上的密码子,并将tRNA上的氨基酸与之配对。
tRNA则将氨基酸从细胞质中转运到核糖体上,供核糖体进行蛋白质的合成。
核糖体的结构非常复杂。
大亚单位和小亚单位之间存在多个交互作用,这些作用保持着核糖体的结构的稳定性。
核糖体还有多个结合位点,可以与mRNA、tRNA和其他辅助因子结合。
这些结合位点的存在可以使核糖体与其他蛋白质和RNA相互作用,进一步调控蛋白质合成的过程。
核糖体在细胞内广泛存在,位于细胞质内的核糖体与在内质网上的核糖体具有一定的区别。
在真核细胞中,核糖体通常存在于细胞质中的缝隙区域,被称为核糖体基质(ribosome matrix)。
总的来说,核糖体是细胞中非常重要的细胞器之一,它通过参与蛋白质合成的过程,维持细胞的正常功能。
核糖体的结构复杂,功能多样,它的研究对于解析细胞生命活动的机制具有重要的意义。
第十一章核糖体核糖体是一种核糖核蛋白颗粒(ribonucleoprotein particle),是细胞内合成蛋白质、没由膜包被的细胞器,其功能是按照mRNA的信息将氨基酸高效精确地合成蛋白质多肽链。
因为富含核苷酸,1958年Roberts建议把这种颗粒命名为核糖蛋白体,简称核糖体(ribosome)第一节核糖体的类型与结构一、核糖体的基本类型与化学组成:生物界有两种基本类型的核糖体:一种是原核细胞核糖体;另一种是真核细胞核糖体。
两种核糖体都有两个大小不同的亚基(subunit)组成,每个亚基都含有rRNA和蛋白质。
原核细胞核糖体沉降系数为70S,相对分子质量为2.5*106,易解离为50S与30S的大小亚基。
真核细胞核糖体沉降系数为80S,相对分子质量为4.8*106,易解离为60S与40S的大小亚基。
rRNA中的某些核苷酸残基被甲基化修饰,甲基化常发生在rRNA序列较为保守的区域。
核糖体大小亚基常常游离于细胞基质中,只有当小亚基与mRNA结合后打牙祭才与小亚基结合形成完整的核糖体。
肽链合成终止后,大小亚基解离,又游离于细胞质基质中。
二、核糖体的结构结构与功能的分析方法表明:(1)离子交换树脂可分离纯化各种r蛋白。
(2)核糖体中r蛋白与rRNA的结构关系:纯化的r蛋白与纯化的rRNA进行核糖体的重组装的过程中,某些蛋白质必须首先结合到rRNA上,其他蛋白才能装配上去,即表现出现后层次。
(3)双功能的交联剂和双向电泳分离:可用于研究r蛋白在结构上的相互关系。
(4)电镜负染色与免疫标记技术结合:研究r蛋白在核糖体的亚单位上的定位。
(5)对rRNA,特别是对16S rRNA结构的研究已十分成熟:①16SrRNA的一级结构是非常保守的②16SrRNA的二级结构具有更高的保守性③16SrRNA可以分为四个结构域:中心结构域,5'端结构域,3'端结构域和主结构域。
蛋白质合成过程中很多重要步骤与50S核糖体大亚单位相关:(1)依赖延伸因子Tu(EF-Tu)的氨酰tRNA的结合;(2)延伸因子G(EF-G)介导的转位作用;(3)依赖于起始因子2的fMet-tRNA的结合;(4)依赖于释放因子的蛋白合成终止作用;(5)应急因子与核糖体结合产生阻断蛋白合成等。