d (i, j ) rs qr st
0 1 0 1 1 1 0 0 .......... ......... .......... ......... .......... .........
2
Байду номын сангаас
数据结构和类型
数据类型
• 混合变量相异度计算 其中为单个类型变量定义的距离; p p为变量的个数。
d (i, j )
(f) d ij 1
p
3
聚类分析方法的分类
聚类方法分类
聚类分析技术通常可分为五大类 :
• 基于划分的方法
• 基于层次的方法
• 基于密度的方法 • 基于网格的方法 • 基于模型的方法
3
聚类分析方法的分类
DS (Ca , Cb ) min{ d ( x, y) | x Ca , y Cb }
2
数据结构和类型
簇间距离度量
最长距离法:定义两个类中最远的两个元素间的距离为类间距离。
D ,C max{ d ( x, 为类间 y) | x Ca , y Cb义类 } L (Ca 的 b) 中心法:定 义两类 两个 中心 间的距离 距离。首先定 中心,而后给出类间距离。 假如Ci是一个聚类,x是Ci内的一个数据点,即x∈ Ci,那么类 中心 定义为:
K-means算法
• k-平均算法,也被称为k-means或k-均值,是一种得到最广泛使用 的聚类算法。 k-平均算法以k为参数,把n个对象分成k个簇,以使 簇内具有教高的相似度,而簇间的相似度较低相似度的计算根据一 个簇中对象的平均值来进行。 • 算法首先随机地选择k个对象,每个对象初始地代表了一个簇的平 均值或中心。对剩余的每个对象根据其与各个簇中心的距离,将它 赋给最近的簇。然后重新计算每个簇的平均值。这个过程不断重复, 直到准则函数收敛。准则如下: