2 3 19
相当于 3 次独立重复试验,故 P(A)=1-P()=1-( ) = .
3 27
(2)记“甲恰有 2 次击中目标”为事件 B,“乙恰有 1 次击中目标”为事件 C,则
22 4
3
3 3
1
P(B)=( ) = ,P(C)=C2 × ×(1- )= ,由于甲、乙射击相互独立,
3 9
4
4 8
4 3 1
2
× =
1
,故
4
ξ~B
1
10, 4
.因此
微思考
在n次独立重复试验中,各次试验的结果相互有影响吗?
提示 在n次独立重复试验中,各次试验的结果相互之间无影响.因为每次试
验是在相同条件下独立进行的,所以第i+1次试验的结果不受前i次结果的
影响(其中i=1,2,…,n-1).
课堂篇 探究学习
探究一
n重伯努利试验概率的求法
延伸探究2在本例(2)的条件下,求甲未击中,乙击中2次的概率.
解 记“甲未击中目标”为事件 M,“乙击中 2 次”为事件 N,
22 1
32 9
则 P(M)=(1- ) = ,P(N)=( ) = ,所以甲未击中、乙击中 2 次的概率为
3 9
4 16
1
9
1
P(MN)=9 × 16 = 16.
反思感悟n重伯努利试验概率求法的三个步骤
变式训练2某人投篮命中率为0.8,重复5次投篮,命中次数为X,命中一次得3
分,求5次投篮得分的均值.
解 设投篮得分为变量η,则η=3X.
依题意,X~B(5,0.8),则E(X)=5×0.8=4,故E(η)=3E(X)=12.
探究三
二项分布的应用