棱柱、棱锥、棱台的侧面积与体积
- 格式:doc
- 大小:71.00 KB
- 文档页数:2
柱、锥、台体、圆的面积与体积公式(一)圆柱、圆锥、圆台的侧面积将侧面沿母线展开在平面上,则其侧面展开图的面积即为侧面面积。
1、圆柱的侧面展开图——矩形圆柱的侧面积2,,,S cl rl r l cπ==圆柱侧其中为底面半径为母线长为底面周长2、圆锥的侧面展开图——扇形圆锥的侧面积1,,,2S cl rl r l cπ==圆锥侧其中为底面半径为母线长为底面周长3、圆台的侧面展开图——扇环圆台的侧面积(二)直棱柱、正棱锥、正棱台的侧面积把侧面沿一条侧棱展开在一个平面上,则侧面展开图的面积就是侧面的面积。
1、柱的侧面展开图——矩形直棱柱的侧面积2、锥的侧面展开图——多个共点三角形正棱锥的侧面积3、正棱台的侧面展开图——多个等腰梯形正棱台的侧面积说明:这个公式实际上是柱体、锥体和台体的侧面积公式的统一形式①即锥体的侧面积公式;②c'=c 时即柱体的侧面积公式;(三)棱柱和圆柱的体积,V Sh h =柱体其中S 为柱体的底面积,为柱体的高斜棱柱的体积=直截面的面积×侧棱长(四)棱锥和圆锥的体积1,3V Sh h =锥体其中S 为锥体的底面积,为锥体的高(五)棱台和圆台的体积说明:这个公式实际上是柱、锥、台体的体积公式的统一形式:①0S =上时即为锥体的体积公式;②S 上=S 下时即为柱体的体积公式。
(六)球的表面积和体积公式(一)简单的组合几何体的表面积和体积——割补法的应用割——把不规则的组合几何体分割为若干个规则的几何体;补——把不规则的几何体通过添补一个或若干个几何体构造出一个规则的新几何体,如正四面体可以补成一个正方体,如图:BCC 1四、考点与典型例题考点一 几何体的侧面展开图例1. 有一根长为5cm ,底面半径为1cm 的圆柱形铁管,用一段铁丝在铁管上缠绕4圈,并使铁丝的两个端点落在圆柱的同一母线的两端A 、D,则铁丝的最短长度为多少厘米?DCBA 解:展开后使其成一线段AC cm =考点二 求几何体的面积例2. 设计一个正四棱锥形的冷水塔顶,高是0.85m ,底面的边长是1.5m ,制造这种塔顶需要多少平方米铁板?(保留两位有效数字)ESO解:)m (40.313.15.1214S 2=⨯⨯⨯=⇒答:略。
1、 柱体① 棱柱]卜V 柱Sh② 圆柱J ______________ 2、锥体① 棱锥] -------- 1—空间几何体的表面积与体积公式大全全(表)面积(含侧面积)1、 柱体 ① 棱柱]4 S 侧 ch② 圆柱J --------- --- 2、 锥体 ① 棱锥:S 棱锥侧*c 底h② 圆锥:S圆锥侧托底l3、 台体 ① 棱口: s棱台侧 ② 圆台:s棱台侧 4、 球体 ① 球:S球4 r 2 ② 球冠:略 ③ 球缺:略体积S全2S 底S侧2(c上底c 下底)hi 2(C上底C下底)1S 全S 上Sy S下” V柱3S h ②圆锥J -------- 3—3、 台体③球缺:略侧面积计算时使用母线|计算 三、拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。
最早推导出球体体积的祖冲之父子便是运用这个原理实现的。
2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是2r 的圆柱形容器内装一个最大的 球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的-。
3① 棱台 ② 圆台. 1 ! -----------------------V台3h (S 上S 上 S 下 S 1 2 ---------------------------------------- 2V圆台3 h(r 上r 上r 下r下)4、球体①球:V 球 ②球冠:略说明:棱锥、棱台计算侧面积时使用侧面的斜高h计算;而圆锥、圆台的SS TS T即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体 积之和 3、台体体积公式公式: V 台2h (S 上JSS 下S下)证明:如图过台体的上下两底面中心连线的纵切面为梯形 ABCD延长两侧棱相交于一点P 。
设台体上底面积为S 上,下底面积为S T 高为h 。
易知:PDC s PAB ,设 PE h i , 则 PF h i h由相似三角形的性质得:CD 匹AB PF分析:圆柱体积:V圆柱S h ( r 2)2r 2 r 3 圆柱侧面积:S圆柱侧ch (2 r ) 2r 4 f 因此:球体体积:V球-2 r 3 4 r 333球体表面积:S 球4 r 2PA4、h i即:—s上相似比等于面积比的算术平方根)Js 下h1 h整理得:h1又因为台体的体积二大锥体体积一小锥体体积二V台3S T(h1 h)代入:h1S±hi3S上h i13h i(S下S上)1押下hT S H S上得V台即: V 台3「S上h(S下S上)1 S上h3S S上13S下h1(S下S上)3S下hj h(S上S上S下S下)二V台3h(S上S上S T S T)球体体积公式推导分析:将半球平行分成相同高度的若干层(n层),n越大,每一层越近似于圆柱,n 时,每一层都可以看作是个圆柱。
8.3.1棱柱、棱锥、棱台的表面积和体积导学案【学习目标】1.会求棱柱、棱锥、棱台的表面积2.会求棱柱、棱锥、棱台的体积【自主学习】知识点1 棱柱、棱锥、棱台的表面积 1.棱柱的表面积棱柱的表面积:S 表=S 侧+2S 底.①其中底面周长为C ,高为h 的直棱柱的侧面积:S 侧=Ch ;①长、宽、高分别为a ,b ,c 的长方体的表面积:S 表=2(ab +ac +bc); ①棱长为a 的正方体的表面积:S 表=6a 2. 2.棱锥的表面积棱锥的表面积:S 表=S 侧+S 底;底面周长为C ,斜高(侧面三角形底边上的高)为h ′的正棱锥的侧面积:S 侧=12Ch ′.3.棱台的表面积棱台的表面积:S 表=S 侧+S 上底+S 下底.多面体的表面积就是围成多面体各个面的面积之和. 知识点2 棱柱、棱锥、棱台的体积 1.棱柱的体积(1)棱柱的高是指两底面之间的距离,即从一底面上任意一点向另一个底面作垂线,这个点与垂足(垂线与底面的交点)之间的距离.(2)棱柱的底面积S ,高为h ,其体积V =Sh .2.棱锥的体积(1)棱锥的高是指从顶点向底面作垂线,顶点与垂足(垂线与底面的交点)之间的距离. (2)棱锥的底面积为S ,高为h ,其体积V =13Sh .3.棱台的体积(1)棱台的高是指两个底面之间的距离.(2)棱台的上、下底面面积分别是S ′、S ,高为h ,其体积V 3【合作探究】探究一多面体的表面积【例1】已知正三棱台(上、下底是正三角形,上底面的中心在下底面的投影是下底面的中心)的上、下底面边长分别为2 cm和4 cm,侧棱长是 6 cm,则该三棱台的表面积为________.【答案】(53+95) cm2[分析]利用侧面是等腰梯形求出棱台的侧面积,再求出其表面积.[解析]正三棱台的表面积即上下两个正三角形的面积与三个侧面的面积和,其中三个侧面均为等腰梯形,易求出斜高为 5 cm,故三棱台的表面积为3×12×(2+4)×5+12×2+3+12×4×23=53+9 5.归纳总结:在掌握直棱柱、正棱锥、正棱台侧面积公式的基础上,对于一些较简单的组合体,能够将其分解成柱、锥、台体,再进一步分解为平面图形正多边形、三角形、梯形等,以求得其表面积,要注意对各几何体相重叠部分的面积的处理【练习1】如图所示,有一滚筒是正六棱柱形(底面是正六边形,每个侧面都是矩形),两端是封闭的,筒高1.6 m,底面外接圆的半径是0.46 m,问:制造这个滚筒需要5.6 m2铁板(精确到0.1 m2).解析:因为此正六棱柱底面外接圆的半径为0.46 m,所以底面正六边形的边长是0.46 m.所以S侧=Ch=6×0.46×1.6=4.416(m2).所以S 表=S 侧+2S 底=4.416+2×34×0.462×6≈5.6(m 2). 故制造这个滚筒约需要5.6 m 2铁板.探究二 多面体的体积【例2】如图所示,在多面体ABCDE F 中,已知底面ABCD 是边长为3的正方形,E F①AB ,E F =32,E F 与面ABCD 的距离为2,则该多面体的体积为( )A.92B .5C .6D.152【答案】 D[解析] 如图,连接EB ,EC ,AC ,则V E ABCD =13×32×2=6.①AB =2E F ,E F①AB ,①S①EAB=2S①BE F.①V FEBC=V CE F B=12V CABE=12V EABC=12×12V EABCD=32.①V=V EABCD+V FEBC=6+32=152.归纳总结:求几何体体积的常用方法1公式法:直接代入公式求解.2等积法:例如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可.3补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,棱台补成棱锥等.4分割法:将几何体分割成易求解的几部分,分别求体积.【练习2】三棱台ABCA1B1C1中,AB:A1B1=1:2,则三棱锥A1ABC,BA1B1C,CA1B1C1的体积之比为()A.111B.112C.124D.144【答案】C解析:如图,设棱台的高为h , S ①ABC =S ,则S ①A 1B 1C 1=4S . ①VA 1ABC =13S ①ABC ·h =13Sh ,VC A 1B 1C 1=13S ①A 1B 1C 1·h =43Sh .又V 三棱台ABC A 1B 1C 1=13h (S +4S +2S )=73Sh ,①VB A 1B 1C =V 三棱台ABC A 1B 1C 1-VA 1ABC -VC A 1B 1C 1 =73Sh -Sh 3-4Sh 3=23Sh . ①体积比为124, ①应选C.课后作业A 组 基础题一、选择题1.如图,ABC A ′B ′C ′是体积为1的棱柱,则四棱锥C AA ′B ′B 的体积是( )A .13B .12C .23D .34【答案】C [①V C A ′B ′C ′=13V ABC A ′B ′C ′=13,①V C AA ′B ′B =1-13=23.]2.正方体的表面积为96,则正方体的体积为( )A .486B .64C .16D .96【答案】B3.棱锥的一个平行于底面的截面把棱锥的高分成1∶2(从顶点到截面与从截面到底面)两部分,那么这个截面把棱锥的侧面分成两部分的面积之比等于( )A .1∶9B .1∶8C .1∶4D .1∶3【答案】B [两个锥体的侧面积之比为1①9,小锥体与台体的侧面积之比为1①8,故选B .]4.若正方体八个顶点中有四个恰好是正四面体的顶点,则正方体的表面积与正四面体的表面积之比是( )A . 3B . 2C .23D .32【答案】A [如图所示,正方体的A ′、C ′、D 、B 的四个顶点可构成一个正四面体,设正方体边长为a ,则正四面体边长为2a . ①正方体表面积S 1=6a 2, 正四面体表面积为S 2=4×34×(2a )2=23a 2, ①S 1S 2=6a 223a 2= 3.] 5.四棱台的两底面分别是边长为x 和y 的正方形,各侧棱长都相等,高为z ,且侧面积等于两底面积之和,则下列关系式中正确的是( )A .1x =1y +1zB .1y =1x +1zC .1z =1x +1yD .1z =1x +y【答案】C [由条件知,各侧面是全等的等腰梯形,设其高为h ′,则根据条件得,⎩⎪⎨⎪⎧4·x +y 2·h ′=x 2+y 2,z 2+⎝⎛⎭⎫y -x 22=h ′2,消去h ′得,4z 2(x +y )2+(y -x )2(y +x )2=(x 2+y 2)2. ①4z 2(x +y )2=4x 2y 2, ①z (x +y )=xy , ①1z =1x +1y.] 二、填空题6.已知一个长方体的三个面的面积分别是2,3,6,则这个长方体的体积为________.【答案】6 [设长方体从一点出发的三条棱长分别为a ,b ,c ,则⎩⎨⎧ab =2,ac =3,bc =6,三式相乘得(abc )2=6,故长方体的体积V =abc = 6.]7.已知棱长为1,各面均为等边三角形的四面体,则它的表面积是________,体积是________.【答案】3212 [S 表=4×34×12=3, V 体=13×34×12×12-⎝⎛⎭⎫33 2=212.]8.如图,在棱长为a 的正方体ABCD A 1B 1C 1D 1中,则点A 到平面A 1BD 的距离d =________.【答案】33a [在三棱锥A 1ABD 中,AA 1是三棱锥A 1ABD 的高,AB =AD =AA 1=a ,A 1B =BD =A 1D =2a ,①V 三棱锥A 1ABD =V 三棱锥A A 1BD , ①13×12a 2×a =13×12×2a ×32×2a ×d , ①d =33a . ①点A 到平面A 1BD 的距离为33a .]三、解答题9.已知四面体ABCD 中,AB =CD =13,BC =AD =25,BD =AC =5,求四面体ABCD 的体积.[解] 以四面体的各棱为对角线还原为长方体,如图. 设长方体的长、宽、高分别为x ,y ,z ,则⎩⎪⎨⎪⎧x 2+y 2=13,y 2+z 2=20,x 2+z 2=25,①⎩⎪⎨⎪⎧x =3,y =2,z =4.①V D ABE =13DE ·S ①ABE =16V 长方体,同理,V C ABF =V D ACG =V D BCH =16V 长方体,①V 四面体ABCD =V 长方体-4×16V 长方体=13V 长方体.而V 长方体=2×3×4=24,①V 四面体ABCD =8.10.如图,已知正三棱锥S ABC 的侧面积是底面积的2倍,正三棱锥的高SO =3,求此正三棱锥的表面积.[解] 如图,设正三棱锥的底面边长为a ,斜高为h ′,过点O 作OE ①AB ,与AB 交于点E ,连接SE ,则SE ①AB ,SE =h ′.①S 侧=2S 底, ①12·3a ·h ′=34a 2×2. ①a =3h ′.①SO ①OE ,①SO 2+OE 2=SE 2.①32+⎝⎛⎭⎫36×3h ′2=h ′2. ①h ′=23,①a =3h ′=6.①S 底=34a 2=34×62=93,S 侧=2S 底=18 3. ①S 表=S 侧+S 底=183+93=27 3.11.建造一个容积为16 m 3,深为2 m ,宽为2 m 的长方体无盖水池,如果池底的造价为120元/m 2,池壁的造价为80元/m 2,求水池的总造价.解:设长方体的长、宽、高分别为a m ,b m ,h m ,水池的总造价为y 元.①V =ab h =16,h =2,b =2,①a =4.则有S 底=4×2=8 (m 2),S 壁=2×(2+4)×2=24 (m 2),y =S 底×120+S 壁×80=120×8+80×24=2 880(元).B 组 能力提升一、选择题1.正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为( )A .3πB .43C .32πD .1 【答案】B [如图所示,由图可知,该几何体由两个四棱锥构成,并且这两个四棱锥体积相等.四棱锥的底面为正方形,且边长为2,故底面积为(2)2=2;四棱锥的高为1,故四棱锥的体积为13×2×1=23.则几何体的体积为2×23=43.] 2.正三棱锥的底面周长为6,侧面都是直角三角形,则此棱锥的体积为( )A .423B . 2C .223D .23【答案】D [由题意,正三棱锥的底面周长为6,所以正三棱锥的底面边长为2,侧面均为直角三角形,可知侧棱长均为2,三条侧棱两两垂直,所以此三棱锥的体积为13×12×2×2×2=23.] 二、填空题3.已知某几何体是由两个全等的长方体和一个三棱柱组合而成,如图所示,其中长方体的长、宽、高分别为4,3,3,三棱柱底面是直角边分别为4,3的直角三角形,侧棱长为3,则此几何体的体积是________,表面积是________.【答案】90 138 [该几何体的体积V =4×6×3+12×4×3×3=90,表面积S =2(4×6+4×3+6×3)-3×3+12×4×3×2+32+42×3+3×4=138.] 三、解答题4.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为4的正方形,EF ∥AB ,EF =2,EF 上任意一点到平面ABCD 的距离均为3,求该多面体的体积.[解] 如图,连接EB ,EC .四棱锥E ABCD 的体积V 四棱锥E ABCD =13×42×3=16. ①AB =2EF ,EF ①AB ,①S ①EAB =2S ①BEF .①V 三棱锥F EBC =V 三棱锥C EFB =12V 三棱锥C ABE =12V 三棱锥E ABC =12×12V 四棱锥E ABCD =4. ①多面体的体积V =V 四棱锥E ABCD +V 三棱锥F EBC =16+4=20.5.一个正三棱锥P ABC 的底面边长为a ,高为h .一个正三棱柱A 1B 1C 1A 0B 0C 0的顶点A 1,B 1,C 1分别在三条棱上,A 0,B 0,C 0分别在底面△ABC 上,何时此三棱柱的侧面积取到最大值?[解] 设三棱锥的底面中心为O ,连接PO (图略),则PO 为三棱锥的高,设A 1,B 1,C 1所在的底面与PO 交于O 1点,则A 1B 1AB =PO 1PO ,令A 1B 1=x ,而PO =h ,则PO 1=h ax , 于是OO 1=h -PO 1=h -h ax =h ⎝⎛⎭⎫1-x a . 所以所求三棱柱的侧面积为S =3x ·h ⎝⎛⎭⎫1-x a =3h a (a -x )x =3h a ⎣⎢⎡⎦⎥⎤a 24-⎝⎛⎭⎫x -a 22.当x =a 2时,S 有最大值为34ah ,此时O 1为PO 的中点.。
柱、锥、台体、圆的面积与体积公式(一)圆柱、圆锥、圆台的侧面积将侧面沿母线展开在平面上,则其侧面展开图的面积即为侧面面积。
1、圆柱的侧面展开图——矩形圆柱的侧面积2,,,S cl rl r l c π==圆柱侧其中为底面半径为母线长为底面周长2、圆锥的侧面展开图——扇形圆锥的侧面积1,,,2S cl rl r l c π==圆锥侧其中为底面半径为母线长为底面周长3、圆台的侧面展开图——扇环圆台的侧面积(二)直棱柱、正棱锥、正棱台的侧面积把侧面沿一条侧棱展开在一个平面上,则侧面展开图的面积就是侧面的面积。
1、柱的侧面展开图——矩形直棱柱的侧面积2、锥的侧面展开图——多个共点三角形正棱锥的侧面积3、正棱台的侧面展开图——多个等腰梯形正棱台的侧面积说明:这个公式实际上是柱体、锥体和台体的侧面积公式的统一形式 ①即锥体的侧面积公式;②c'=c 时即柱体的侧面积公式;(三)棱柱和圆柱的体积,V Sh h =柱体其中S 为柱体的底面积,为柱体的高斜棱柱的体积=直截面的面积×侧棱长(四)棱锥和圆锥的体积1,3V Sh h =锥体其中S 为锥体的底面积,为锥体的高(五)棱台和圆台的体积说明:这个公式实际上是柱、锥、台体的体积公式的统一形式:①0S=上时即为锥体的体积公式;②S上=S下时即为柱体的体积公式。
(六)球的表面积和体积公式(一)简单的组合几何体的表面积和体积——割补法的应用割——把不规则的组合几何体分割为若干个规则的几何体;补——把不规则的几何体通过添补一个或若干个几何体构造出一个规则的新几何体,如正四面体可以补成一个正方体,如图:四、考点与典型例题考点一几何体的侧面展开图例1. 有一根长为5cm,底面半径为1cm的圆柱形铁管,用一段铁丝在铁管上缠绕4圈,并使铁丝的两个端点落在圆柱的同一母线的两端A、D,则铁丝的最短长度为多少厘米?D CBA解:展开后使其成一线段ACcm考点二求几何体的面积例2. 设计一个正四棱锥形的冷水塔顶,高是0.85m,底面的边长是1.5m,制造这种塔顶需要多少平方米铁板?(保留两位有效数字)ESO解:)m (40.313.15.1214S 2=⨯⨯⨯=⇒答:略。