首次适应算法和最佳适应算法-C++语言版
- 格式:doc
- 大小:30.00 KB
- 文档页数:6
立体库库位分配算法全文共四篇示例,供读者参考第一篇示例:立体库库位分配算法是指在立体库中对货物进行存储位置分配的一种算法。
立体库是指在有限的空间内通过垂直存储结构来存放货物的仓库。
立体库的设计有着非常高的利用率,可以最大限度地节省仓储空间,提高仓储效率,并且减少人工操作。
立体库库位分配算法在货物的入库和出库过程中起着至关重要的作用。
它的设计需要考虑到货物的存储需求、货物之间的关联性以及立体库的结构特点。
一个好的库位分配算法能够有效地提高仓库的利用率,减少人工操作,并且加快货物的出库速度。
在立体库库位分配算法中,最常用的算法包括:最佳适应算法、最坏适应算法、首次适应算法等。
这些算法各有特点,适用于不同的存储需求和立体库结构。
下面我们来详细介绍几种常用的立体库库位分配算法:1. 最佳适应算法最佳适应算法是一种比较简单且常用的算法,它会选择最匹配货物大小的库位进行存储。
这种算法会尽量使得库位的利用率最高,减少空间浪费。
当货物入库时,系统会根据货物的大小选择最适合的库位进行存储。
这种算法的优点是能够最大化地利用立体库的空间,提高存储效率。
以上是几种常用的立体库库位分配算法,每种算法都有其适用的场景和优缺点。
在实际应用中,需要根据立体库的具体需求和货物特性选择合适的算法进行库位分配。
立体库库位分配算法的设计对仓储效率和出库速度产生着直接的影响,因此需要慎重选择和优化。
希望以上介绍能够为您在立体库库位分配算法的设计和应用提供一定的参考。
【此部分共629字】货物的大小和类型是立体库库位分配算法的重要考虑因素。
不同大小和类型的货物需要不同类型的库位进行存储,这就需要根据货物的特性来选择合适的库位分配算法。
一般情况下,大件货物需要大型库位进行存放,而小件货物可以采用小型库位进行存储。
因此在设计立体库库位分配算法时,需要充分考虑货物的大小和类型。
仓库结构和容量也是影响立体库库位分配算法的重要因素。
立体库的结构一般包括货架、输送系统、存储区域等。
第1篇一、实验目的1. 理解操作系统内存分配的基本原理和常用算法。
2. 掌握动态分区分配方式中的数据结构和分配算法。
3. 通过编写程序,实现内存分配和回收功能。
二、实验环境1. 操作系统:Linux2. 编程语言:C语言3. 开发工具:GCC编译器三、实验原理1. 内存分配的基本原理操作系统内存分配是指操作系统根据程序运行需要,将物理内存分配给程序使用的过程。
内存分配算法主要包括以下几种:(1)首次适应算法(First Fit):从内存空间首部开始查找,找到第一个满足条件的空闲区域进行分配。
(2)最佳适应算法(Best Fit):在所有满足条件的空闲区域中,选择最小的空闲区域进行分配。
(3)最坏适应算法(Worst Fit):在所有满足条件的空闲区域中,选择最大的空闲区域进行分配。
2. 动态分区分配方式动态分区分配方式是指操作系统在程序运行过程中,根据需要动态地分配和回收内存空间。
动态分区分配方式包括以下几种:(1)固定分区分配:将内存划分为若干个固定大小的分区,程序运行时按需分配分区。
(2)可变分区分配:根据程序大小动态分配分区,分区大小可变。
(3)分页分配:将内存划分为若干个固定大小的页,程序运行时按需分配页。
四、实验内容1. 实现首次适应算法(1)创建空闲分区链表,记录空闲分区信息,包括分区起始地址、分区大小等。
(2)编写分配函数,实现首次适应算法,根据程序大小查找空闲分区,分配内存。
(3)编写回收函数,回收程序所占用的内存空间,更新空闲分区链表。
2. 实现最佳适应算法(1)创建空闲分区链表,记录空闲分区信息。
(2)编写分配函数,实现最佳适应算法,根据程序大小查找最佳空闲分区,分配内存。
(3)编写回收函数,回收程序所占用的内存空间,更新空闲分区链表。
3. 实验结果分析(1)通过实验,验证首次适应算法和最佳适应算法的正确性。
(2)对比两种算法在内存分配效率、外部碎片等方面的差异。
五、实验步骤1. 创建一个动态内存分配模拟程序,包括空闲分区链表、分配函数和回收函数。
实验题目:存储器内存分配设计思路:1.既然是要对内存进行操作,首先对和内存相关的内容进行设置我使用的是用自定义的数据结构struct来存放内存中一个内存块的内容包括:始地址、大小、状态(f:空闲u:使用e:结束)之后采用数组来存放自定义的数据类型,这样前期的准备工作就完成了2.有了要加工的数据,接下来定义并实现了存放自定义数据类型的数组的初始化函数和显示函数,需要显示的是每个内存块的块号、始地址、大小、状态3.接着依此定义三种动态分区分配算法首次适应算法、最佳适应算法和最差适应算法4.对定义的三种算法逐一进行实现①首次适应算法:通过遍历存放自定义数据类型的数组,找到遍历过程中第一个满足分配大小的内存块块号i,找到之后停止对数组的遍历,将i之后的块号逐个向后移动一个,然后将满足分配大小的内存块i分为两块,分别是第i块和第i+1块,将两块的始地址、大小、状态分别更新,这样便实现了首次适应算法②最佳适应算法:和首次适应算法一样,首先遍历存放自定义数据类型的数组,找到满足分配大小的内存块后,对内存块的大小进行缓存,因为最佳适应是要找到最接近要分配内存块大小的块,所以需要遍历整个数组,进而找到满足分配大小要求的而且碎片最小的块i,之后的操作和首次遍历算法相同③最差适应算法:和最佳适应算法一样,区别在于,最佳适应是找到最接近要分配内存块大小的块,而最差适应是要找到在数组中,内存最大的块i,找到之后的操作和最佳适应算法相同,因此不在这里赘述。
5.定义并实现释放内存的函数通过块号找到要释放的内存块,把要释放的内存块状态设置成为空闲,查看要释放的块的左右两侧块的状态是否为空闲,如果有空闲,则将空闲的块和要释放的块进行合并(通过改变块的始地址、大小、状态的方式)6.定义主函数,用switch来区分用户需要的操作,分别是:①首次适应②最佳适应③最差适应④释放内存⑤显示内存⑥退出系统实验源程序加注释:#include<bits/stdc++.h>#define MI_SIZE 100 //内存大小100typedef struct MemoryInfomation//一个内存块{int start; //始地址int Size; //大小char status; //状态 f:空闲 u:使用 e:结束} MI;MI MList[MI_SIZE];void InitMList() //初始化{int i;MI temp = { 0,0,'e' };for (i = 0; i < MI_SIZE; i++){MList[i] = temp;}MList[0].start = 0; //起始为0MList[0].Size = MI_SIZE;//大小起始最大MList[0].status = 'f'; //状态起始空闲}void Display() //显示{int i, used = 0;printf("\n---------------------------------------------------\n");printf("%5s%15s%15s%15s", "块号", "始地址", "大小", "状态");printf("\n---------------------------------------------------\n");for (i = 0; i < MI_SIZE && MList[i].status != 'e'; i++){if (MList[i].status == 'u'){used += MList[i].Size;}printf("%5d%15d%15d%15s\n", i, MList[i].start, MList[i].Size, MList[i].status == 'u' ? "使用" : "空闲");}printf("\n----------------------------------------------\n");}void FirstFit(){int i, j, flag = 0;int request;printf("最先适应算法:请问你要分配多大的内存\n");scanf("%d", &request);for (i = 0; i < MI_SIZE && MList[i].status != 'e'; i++){if (MList[i].Size >= request && MList[i].status == 'f') {if (MList[i].Size - request <= 0){MList[i].status = 'u';}else{for (j = MI_SIZE - 2; j > i; j--){MList[j + 1] = MList[j];}MList[i + 1].start = MList[i].start + request; MList[i + 1].Size = MList[i].Size - request;MList[i + 1].status = 'f';MList[i].Size = request;MList[i].status = 'u';flag = 1;}break;}}if (flag != 1 || i == MI_SIZE || MList[i].status == 'e'){printf("没有足够大小的空间分配\n");}Display();}void BadFit(){int i, j = 0, k = 0, flag = 0, request;printf("最坏适应算法:请问你要分配多大的内存\n");scanf("%d", &request);for (i = 0;i < MI_SIZE - 1 && MList[i].status != 'e';i++){if (MList[i].Size >= request && MList[i].status == 'f') {flag = 1;if (MList[i].Size > k){k = MList[i].Size;j = i;}}}i = j;if (flag == 0){printf("没有足够大小的空间分配\n");j = i;}else if (MList[i].Size - request <= 0){MList[i].status = 'u';}else{for (j = MI_SIZE - 2;j > i;j--){MList[j + 1] = MList[j];}MList[i + 1].start = MList[i].start + request;MList[i + 1].Size = MList[i].Size - request;MList[i + 1].status = 'f';MList[i].Size = request;MList[i].status = 'u';}Display();}void M_Release() //释放内存{int i, number;printf("\n请问你要释放哪一块内存:\n");scanf("%d", &number);if (MList[number].status == 'u'){MList[number].status = 'f';if (MList[number + 1].status == 'f')//右边空则合并{MList[number].Size += MList[number].Size;for (i = number + 1; i < MI_SIZE - 1 && MList[i].status != 'e'; i++) { //i后面的每一个结点整体后移if (i > 0){MList[i] = MList[i + 1];}}}if (number > 0 && MList[number - 1].status == 'f')//左边空则合并{MList[number - 1].Size += MList[number].Size;for (i = number; i < MI_SIZE - 1 && MList[i].status != 'e'; i++){MList[i] = MList[i + 1];}}}else{printf("该块内存无法正常释放\n");}Display();}void BestFit(){int i, j = 0, t, flag = 0, request;printf("最佳适应算法:请问你要分配多大的内存\n");scanf("%d", &request);t = MI_SIZE;for (i = 0; i < MI_SIZE && MList[i].status != 'e'; i++){if (MList[i].Size >= request && MList[i].status == 'f'){flag = 1;if (MList[i].Size < t){t = MList[i].Size;j = i;}}}i = j;if (flag == 0){printf("没有足够大小的空间分配\n");j = i;}else if (MList[i].Size - request <= 0){MList[i].status = 'u';}else {for (j = MI_SIZE - 2; j > i; j--){MList[j + 1] = MList[j];}MList[i + 1].start = MList[i].start + request;MList[i + 1].Size = MList[i].Size - request;MList[i + 1].status = 'f';MList[i].Size = request;MList[i].status = 'u';}Display();}int main(){int x;InitMList();while (1){printf(" \n"); printf(" 1.首次适应\n");printf(" 2.最佳适应\n");printf(" 3.最差适应\n"); printf(" 4.释放内存\n"); printf(" 5.显示内存\n"); printf(" 6.退出系统\n"); printf("请输入1-6:");scanf("%d", &x);switch (x){case 1:FirstFit();break;case 2:BestFit();break;case 3:BadFit();break;case 4:M_Release();break;case 5:Display();break;case 6:exit(0);}}return 0;}实验测试结果记录:1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:1最先适应算法:请问你要分配多大的内存10---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 使用1 10 90 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:1最先适应算法:请问你要分配多大的内存25---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 使用1 10 25 使用2 35 65 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:1最先适应算法:请问你要分配多大的内存15---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 使用1 10 25 使用2 35 15 使用3 50 50 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:1最先适应算法:请问你要分配多大的内存20---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 使用1 10 25 使用2 35 15 使用3 50 20 使用4 70 30 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:4请问你要释放哪一块内存:---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 空闲1 10 25 使用2 35 15 使用3 50 20 使用4 70 30 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:4请问你要释放哪一块内存:2---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 空闲1 10 25 使用2 35 15 空闲3 50 20 使用4 70 30 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:2最佳适应算法:请问你要分配多大的内存5---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 5 使用1 5 5 空闲2 10 25 使用3 35 15 空闲4 50 20 使用5 70 30 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:3最坏适应算法:请问你要分配多大的内存25---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 5 使用1 5 5 空闲2 10 25 使用3 35 15 空闲4 50 20 使用5 70 25 使用6 95 5 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:总结与自评:总结:分区存储管理是操作系统进行内存管理的一种方式。
动态分区管理方式及动态分区算法一、动态分区概述在操作系统中,内存管理是一个非常重要的部分。
在实际的应用中,程序的内存需求是会发生变化的,因此需要一种灵活的内存管理方式来满足不同程序的内存需求。
动态分区管理方式应运而生,它可以根据程序的需求,灵活地分配和回收内存空间,是一种高效的内存管理方式。
二、动态分区管理方式动态分区管理方式是指将内存划分为多个大小不等的分区,每个分区都可以被分配给进程使用,当进程终止时,分区将被回收。
动态分区管理方式通常通过动态分区算法来实现,下面将介绍几种常见的动态分区算法。
三、首次适应算法首次适应算法是最简单和最直观的动态分区分配算法。
它的基本思想是在空闲分区链表中按照位置区域顺序查找第一个能够满足进程大小需求的空闲分区,并将其分配给进程。
首次适应算法的优点是实现简单,分区利用率较高,但缺点是会产生大量的不连续碎片。
四、最佳适应算法最佳适应算法是在空闲分区链表中查找满足进程大小需求的最小空闲分区,并将其分配给进程。
最佳适应算法的优点是可以减少外部碎片,缺点是查找适合的空闲分区会花费较长的时间。
五、最坏适应算法最坏适应算法是在空闲分区链表中查找满足进程大小需求的最大空闲分区,并将其分配给进程。
最坏适应算法的优点是能够产生较小的碎片,但缺点是会导致剩余分区较多,影响分区利用率。
六、动态分区管理方式的优缺点动态分区管理方式相比于静态分区管理方式有很多优点,比如可以灵活地满足不同程序的内存需求,可以动态地合并和分割分区,提高了内存的利用率等。
但是动态分区管理方式也有一些缺点,比如会产生碎片,分配和回收内存的开销较大等。
七、结语动态分区管理方式及其算法在实际应用中有着广泛的应用,通过合理选择动态分区算法,可以提高内存的利用率,改善系统性能。
也需要注意动态分区管理方式可能产生的碎片问题,可以通过内存紧缩等手段来解决。
希望本文对读者有所帮助。
动态分区管理方式及动态分区算法八、碎片问题与解决方法在动态分区管理方式中,经常会出现碎片问题,包括内部碎片和外部碎片。
i第五次作业书上的作业9.2内部碎片与外部碎片之间的区别?答:一个作业占据了一个内存区域或者页,但是其中的一部分没有使用,把没有使用的部分称为内部碎片。
内部碎片不会被操作系统或者其他进程使用,除非这个作业执行完并且释放它所占用的内存区域。
外部碎片是在分区之间存在的不能够被使用的小的内存。
9.5内存按顺序有100k,500k,200k,300k,600k,用首次适应、最佳适应和最差适应如何放置212k,417k,112k,426k的进程?答:(1)首次适应算法212K 放入 500K 的分区417K 放入 600K 的分区112K 放入 288K 的分区(产生新的分区 288K = 500K - 212K)426K 必须等待(2)最佳适应算法212K放入300K的分区417K放入500K的分区112K放入200K的分区426K放入600K的分区(3)最差适应算法212K放入600K 的分区417K放入500K 的分区112K放入388K 的分区426K 必须等待在这个例子中,最佳适应算法是最好的。
9.8假设一个有8个1k页面的逻辑地址空间,映射到一个32个页框的物理内存,问:逻辑地址多少位?物理地址多少位?a. 逻辑地址: 13 bitsb. 物理地址: 15 bits9.14为什么纯分段比纯分页更容易实现共享可充入模块。
答:因为段是基于内存逻辑划分而非物理划分,因此任意长度的段都可以通过段表的一个表项来实现共享。
而对于分页系统来说,只能对每个页实现共享,而页面的大小是固定不变的。
9.16 有段表段基地址长度0 219 6001 2300 142 90 1003 1327 5804 1952 96下面的物理地址是多少?a)0,430; b)1,10; c)2,500; d)3,400;e)4,122答:a. 219 + 430 = 649b. 2300 + 10 = 2310c.地址错误d. 1327 + 400 = 1727e.地址错误补充作业1.在页面大小为4k的系统中,根据图中所示页表,下面的逻辑地址经过重定位之后的物理地址是什么?a)20;b)4100;c)8300答:(a) 49172 (b)57348 (c) 615482.一台计算机为每个进程提供65536字节的地址空间,页面的大小为4k。
操作系统c语言设计程序模拟内存的动态分区内存管理方法.内存分区使用分区(说明)表1. 引言1.1 概述在计算机科学领域,内存管理是操作系统中至关重要的一个组成部分。
操作系统需要负责对内存资源进行合理的分配和释放,确保程序能够顺利执行,并且不会发生内存泄漏等问题。
本篇文章将介绍一种基于C语言设计程序模拟内存的动态分区内存管理方法。
该方法通过使用分区表来对内存空间进行动态管理。
我们将详细探讨这种方法的实现步骤、技巧以及性能评估和案例分析结果。
1.2 文章结构本文主要分为五个部分:引言、动态分区内存管理方法、C语言设计程序模拟内存的实现步骤与技巧、程序模拟内存动态分区内存管理方法性能评估和案例分析,以及结论与展望。
在引言部分,我们将首先介绍本文的概述,即主题和目标。
然后简要说明文章的结构,以便读者更好地理解全文内容。
1.3 目的本文旨在介绍一种使用C语言设计程序模拟内存的动态分区内存管理方法,并探讨该方法在实际应用中可能遇到的问题和优化建议。
我们希望通过本文的阐述,读者可以对动态分区内存管理方法有更深入的理解,并能够在实际项目中应用相关技术和知识。
通过对程序模拟动态分区内存管理方法进行性能评估和案例分析,我们也旨在为读者提供一个参考,帮助他们更好地理解该方法的优缺点,并从中获得一些有价值的启示。
总之,本文将为读者提供一种全面而深入的了解动态分区内存管理方法的途径,并希望能够激发读者们对内存管理领域研究的兴趣。
2. 动态分区内存管理方法2.1 内存管理概述在操作系统中,内存管理是一个关键的部分。
动态分区内存管理方法是一种常用的内存分配技术,它将可用的内存空间划分为多个不同大小的动态分区,以便满足不同程序对内存空间的需求。
2.2 动态分区内存管理算法原理动态分区内存管理算法主要包括三种:首次适应算法、最佳适应算法和最坏适应算法。
首次适应算法是指从空闲列表中选择第一个能满足所需内存大小的空闲块进行分配。
这种算法简单直观,但可能会产生较大的碎片化问题。
使用最佳适应算法设计主存的分配和回收程序c语言最佳适应算法是一种主存分配与回收策略,旨在有效利用计算机主存资源,最大化系统性能和用户体验。
这篇文章将详细介绍最佳适应算法的原理和实现,并使用C语言编写相应的主存分配和回收程序。
首先,我们需要了解最佳适应算法是如何工作的。
最佳适应算法基于以下两个基本原则:1. 内存分配:当我们需要分配一块内存时,最佳适应算法会在主存中寻找能够容纳所需大小的最小空闲块,并将其分配给请求者。
这意味着最佳适应算法会尽可能地减少浪费的空间。
2. 内存回收:当一块内存被释放后,最佳适应算法会尝试与相邻的空闲块进行合并,以形成更大的连续空闲块。
这样做可以最大化主存资源的利用率。
有了这些基本原则作为指导,接下来我们将通过实现一个主存分配和回收模拟程序来展示最佳适应算法的工作原理。
我们将使用C语言来编写这个程序。
首先,我们需要定义一个数据结构来表示主存中的内存块。
这个数据结构应该包含当前内存块的起始地址、大小和是否已分配的标志。
下面是相应的代码:ctypedef struct {int start_address;int size;int allocated;} MemoryBlock;接下来,我们需要定义一个数据结构来管理主存中的所有内存块。
我们可以使用一个数组来存储这些内存块。
此外,我们还需要跟踪主存中的空闲块数目。
下面是相应的代码:c#define MAX_BLOCKS 100MemoryBlock memory[MAX_BLOCKS];int num_free_blocks = 1;在程序初始化阶段,我们需要初始化主存数据结构,即将整个主存划分为一个初始的空闲块。
下面是相应的代码:cvoid initialize_memory(int size) {memory[0].start_address = 0;memory[0].size = size;memory[0].allocated = 0;}接下来,我们需要实现主存分配函数。
首次适应算法和最佳适应算法是动态存储分配解决方案研究的内容,所以本文对这两种算法的讨论是通过研究动态存储管理来进行的。
一、存储管理的基本问题:存储管理讨论的基本问题是:1)、系统如何应用户的“请求”执行内存分配动作?2)、系统如何对用户不再使用后“释放”的内存执行回收动作,以保证为新的“用户请求”提供内存分配?内存的分配可以以静态方式进行,内存空间被分割为固定大小的若干内存块,用户的请求到达只要找到一块空闲的内存块予以分配即可,很显然静态存储分配的好处主要是实现比较方便,效率高,程序执行中系统需要做的事情比较简单。
然而实际情况下提出“请求”的用户可能是进入系统的一个作业,也可能是程序执行过程中的一个动态变量。
“请求”需要获得的内存容量大小不一,这种做法造成了对程序大小的严格的限制,使某些问题不能够合理的解决,此外,也会造成内存空间的浪费。
动态存储管理就是确定如何满足一个个内存“请求”,如何更合理的使用有限的内存空间的一种内存分配解决方案,它以能够依据用户的请求依次进行内存空间的分配和回收,能够尽可能少的使用有限的空闲内存空间,最大限度的保证后续“请求”的可满足性为最终目的。
二、关于动态分配方案的分析:通常我们将已分配给用户是用的一段连续的内存空间称为“占用块”,将未分配给任何用户的一段连续的内存空间称为“可利用空间块”或者“空闲块”,我们在这里的描述将使用“占用块”和“空闲块”这两个概念。
整个内存区在没有任何用户进入和运行的情况下只有一个空闲块,即整个可供用户“请求”使用的用户内存区域。
随着不断的有用户请求进入系统,并依次获得系统为其分配的内存,使得整个内存区域逐渐被分割成两大部分:低地址区域包含若干占用块;高低址区域是空闲内存区域。
经过一段时间后,有的用户运行结束,它们所占用的内存区释放后转变为一个个空闲块,这就使整个内存区域呈现出占用块和空闲块交错相隔的状态。
而此时,如果再有新的用户“请求”到达,那么,系统如何为这个“请求”进行内存分配呢?在肯定动态存储管理的前提下,我们可以采取两种方案解决这个问题,一种解决方案是系统继续把高地址的空闲块分配给用户,而不理会低地址区域是否有结束执行的用户释放的内存块,直到剩余的高地址区域的空闲块不能满足新的用户“请求”,分配操作无法再进行下去时,才去回收结束执行的用户释放的内存块,并重新组织内存,进而完成内存分配。
最佳适应算法最佳适应算法是从全部空闲区中找出能满足作业要求的、且大小最小的空闲分区的一种计算方法,这种方法能使碎片尽量小。
找到:满足要求的自由分区分配排序:从小到大含义最佳适应算法(Best Fit):它从全部空闲区中找出能满足作业要求的、且大小最小的空闲分区,这种方法能使碎片尽量小。
为适应此算法,空闲分区表(空闲区链)中的空闲分区要按从小到大进行排序,自表头开始查找到第一个满足要求的自由分区分配。
该算法保留大的空闲区,但造成许多小的空闲区。
应用问题Best fit算法等价于装箱问题,举例如下:装箱问题:有体积为V的箱子N个,体积为Vi的物品M个,求使得物品全部能够装入箱子,箱子数量的最小值。
假设 V=6 M=10,V1,V2,...,V10分别为:3 4 4 3 5 1 2 5 3 1。
计算过程如下:第一步按物品体积降序排序:5 5 4 4 3 3 3 2 1 1第二步:取未装箱的最大值5装入第一个箱子。
第三步:判断第一个箱子是否已满,不满且剩余空间为1,搜寻剩下体积小于等于1的物品填入箱子1,箱子1填满。
第四步:重复第二,第三步,直到所有物品装入箱子为止,得到箱子数量为6. 6即时本例N的最小值。
最坏适应算法特点:扫描整个空闲分区或链表优点:可使剩下的空闲分区不至于太小最坏适应算法(worst fit)最坏适应分配算法要扫描整个空闲分区或链表,总是挑选一个最大的空闲分区分割给作业使用。
该算法要求将所有的空闲分区按其容量从大到小的顺序形成一空闲分区链,查找时只要看第一个分区能否满足作业要求。
优点:可使剩下的空闲分区不至于太小,产生碎片的几率最小,对中、小作业有利,同时该算法查找效率很高。
缺点:会使存储器中缺乏大的空闲分区。
首次适应算法首次适应算法从空闲分区表的第一个表目起查找该表,把最先能够满足要求的空闲区分配给作业,这种方法目的在于减少查找时间。
为适应这种算法,空闲分区表(空闲区链)中的空闲分区要按地址由低到高进行排序。
动态分区分配算法c语言代码动态分区分配算法是操作系统管理内存时不可或缺的一部分。
它能够动态地将物理内存划分成多个分区,并向进程提供所需的内存空间。
因此,使用动态分区分配算法,可以提高操作系统的内存利用率,优化内存管理。
动态分区分配算法的实现非常复杂,但是通过c语言,可以精确地描述出这一算法。
一般而言,动态分区分配算法需要考虑以下几个方面:1. 内部碎片问题:由于分配内存时分配的大小和分区大小并不总是完全匹配,会产生未使用的部分。
动态分区分配算法需要减少这种情况的发生。
2. 外部碎片问题:在进程运行结束后,会留下未使用的内存。
这些未使用的内存小于内存分区大小,被称为外部碎片。
动态分区分配算法需要将这些未使用的小块内存合并起来,以供分配。
在c语言中,动态分区分配算法的实现方式可以借助链表的数据结构,来实现对内存空间的分配与释放。
一个内存分区对应的链表节点,包含了分区的起始地址,分区的大小以及该分区的状态(是否被分配或是否为空)等信息。
下面是一个简单的动态分区分配算法的示例代码。
在这个代码中,初始化时,将整个可用内存视为一个空闲分区,并创建分配内存时使用的节点。
分配内存时,会遍历空闲分区链表,找到第一个大小足够的分区并将其分配。
释放内存时,遍历已分配分区链表,找到需要释放的分区,并将其状态更改为未分配,并将其添加到空闲分区链表中。
```include <stdio.h>include <stdlib.h>include <stdbool.h>// 内存分区结构体typedef struct partition {int size; // 分区大小bool allocated; // 是否被分配struct partition* next; // 下一个分区节点} partition_t;// 全局链表头节点指针partition_t* head;// 初始化函数void initialize(int size) {head = (partition_t*)malloc(sizeof(partition_t));head->size = size;head->allocated = false;head->next = NULL;}// 分配函数void* allocate(int size) {partition_t* current = head;while (current != NULL) {if (current->size >= size && !current->allocated) {if (current->size == size) {current->allocated = true;} else {partition_t* new_part =(partition_t*)malloc(sizeof(partition_t));new_part->size = size;new_part->allocated = true;new_part->next = current->next;current->size -= size;current->next = new_part; }return (void*)(current + 1); }current = current->next;}printf("Memory allocation failed\n"); return NULL;}// 释放函数void free_memory(void* ptr) {partition_t* current = head;partition_t* prev = head;while (current != NULL) {if ((void*)(current + 1) == ptr) { current->allocated = false;// 尝试合并空闲分区节点if (prev != head && !prev->allocated) {prev->size += current->size;prev->next = current->next;free(current);current = prev;}if (current->next != NULL && !current->next->allocated) {current->size += current->next->size;partition_t* temp = current->next;current->next = current->next->next;free(temp);}return;}prev = current;current = current->next;}printf("Memory free failed\n");}int main() {// 初始化内存initialize(1000);// 分配内存int* p = (int*)allocate(sizeof(int));if (p != NULL) {*p = 10;}// 释放内存free_memory(p);return 0;}```在实际应用中,动态分区分配算法可能会使用更加复杂的内存分配方式,例如“首次适应算法”、“最佳适应算法”、“最坏适应算法”等。
c模拟内存分配算法(⾸次适应算法,最佳适应算法,最坏适应算法)#include<bits/stdc++.h>using namespace std;/*定义内存的⼤⼩为100*/#define MEMSIZE 100/*如果⼩于此值,将不再分割内存*/#define MINSIZE 2/*内存分区空间表结构*/typedef struct _MemoryInfomation{/*起始地址*/int start;/*⼤⼩*/int Size;/*状态 F:空闲(Free) U:占⽤(Used) E 结束(End)*/char status;} MEMINFO;/*内存空间信息表*/MEMINFO MemList[MEMSIZE];/*显⽰内存状态*/void Display(){int i,used=0;//记录可以使⽤的总空间量printf("\n---------------------------------------------------\n");printf("%5s%15s%15s%15s","Number","start","size","status");printf("\n---------------------------------------------------\n");for(i=0; i<MEMSIZE&&MemList[i].status!='e'; i++){if(MemList[i].status=='u'){used+=MemList[i].Size;}printf("%5d%15d%15d%15s\n",i,MemList[i].start,MemList[i].Size,MemList[i].status=='u'?"USED":"FREE");}printf("\n----------------------------------------------\n");printf("Totalsize:%-10d Used:%-10d Free:%-10d\n",MEMSIZE,used,MEMSIZE-used);}/*初始化所有变量*/void InitMemList(){int i;MEMINFO temp= {0,0,'e'};//初始化空间信息表for(i=0; i<MEMSIZE; i++){MemList[i]=temp;}//起始地址为0MemList[0].start=0;//空间初始为最⼤MemList[0].Size=MEMSIZE;//状态为空闲MemList[0].status='f';}/*最先适应算法*//*算法原理分析:将空闲的内存区按其在储存空间中的起始地址递增的顺序排列,为作业分配储存空间时,从空闲区链的始端开始查找,选择第⼀个满⾜要求的空闲区,⽽不管它究竟有多⼤优点:1.在释放内存分区的时候,如果有相邻的空⽩区就进⾏合并,使其成为⼀个较⼤的空⽩区2.此算法的实质是尽可能的利⽤储存器的低地址部分,在⾼地址部分则保留多的或较⼤的空⽩区,以后如果需要较⼤的空⽩区,就容易满⾜缺点:1.在低地址部分很快集中了许多⾮常⼩的空⽩区,因⽽在空⽩区分配时,搜索次数增加,影响⼯作效率。
实验五动态分区分配方式内存管理模拟一、实验目的1)掌握连续分配方式内存管理理论2)掌握动态分区分配方式内存管理理论二、实验原理动态分区分配:根据进程的实际需要,动态地创建分区为之分配内存空间,在实现动态分区分配时,将涉及分区分配中所使用的数据结构,分区分配算法和分区的分配与回收操作等问题。
1)分区分配中的数据结构空闲分区表:一个数据表,用于记录每个空闲块的情况,如起始地址、大小、使用情况等;空闲分区链表:把所有的空闲分区链接成一个链表,便于内存空间查看与分配回收。
2)分配算法首次适应法:空闲分区按首地址递增次序组织,每次查找时从链首出发,寻找满足要求的内存块。
循环首次适应算法:空闲分区按首地址递增次序组织,每次从上次查找的下一个空闲块开始查找,直到找到满足要求的内存块。
最佳适应法:空闲分区按空闲分区大小址递增次序组织,每次查找时从链首出发,寻找满足要求的最小内存块进行分配。
最坏适应法:空闲分区按空闲分区大小递减次序组织,每次查找时直接判断最大空闲分区是否满足要求。
3)内存分配过程利用分配算法找到满足要求的内存块,设请求的内存大小为size:若找到的空闲分区的大小等于size,完全分配;若找到的空闲分区大小大于size,且一分为二后,剩余大小小于1K,则不再分割,作为整体进行分配;否则一分为二,剩余部分仍然作为空闲分区存在;若无满足要求空闲分区,则分配失败4)内存回收根据释放区首址和大小,查找空闲分区表/链表,判断是否有相邻的空闲分区存在:释放区与前空闲区相邻:将释放区与前空闲区合并为一个空闲区。
其首址仍为前空闲区首址,大小为释放区大小与空闲区大小之和。
释放区与前后两个空闲区相邻:将这三个区合为一个空闲区,其首址为前空闲区首址,大小为这三个区大小之和,并取消原后空闲区表目。
释放区与后空闲区相邻:则把释放区合并到后空闲,首地址为释放区首地址,大小为二者大小之和。
释放区不与任何空闲区相邻:将释放区作为一个空闲区,将其大小和首址插入到空闲区表的适当位置。
内存1通常情况下,在下列存储管理方式中,()支持多道程序设计、管理最简单,但存储碎片多;()使内存碎片尽可能少,而且使内存利用率最高。
Ⅰ.段式;Ⅱ.页式;Ⅲ.段页式;Ⅳ.固定分区;Ⅴ.可变分区正确答案:Ⅳ;Ⅰ2为使虚存系统有效地发挥其预期的作用,所运行的程序应具有的特性是()。
正确答案:该程序应具有较好的局部性(Locality)3提高内存利用率主要是通过内存分配功能实现的,内存分配的基本任务是为每道程序()。
使每道程序能在不受干扰的环境下运行,主要是通过()功能实现的。
Ⅰ.分配内存;Ⅱ.内存保护;Ⅲ.地址映射;Ⅳ.对换;Ⅴ.内存扩充;Ⅵ.逻辑地址到物理地址的变换;Ⅶ.内存到外存间交换;Ⅷ.允许用户程序的地址空间大于内存空间。
正确答案:Ⅰ;Ⅱ4适合多道程序运行的存储管理中,存储保护是正确答案:为了防止各道作业相互干扰5下面哪种内存管理方法有利于程序的动态链接()?正确答案:分段存储管理6在请求分页系统的页表增加了若干项,其中状态位供()参考。
正确答案:程序访问7从下面关于请求分段存储管理的叙述中,选出一条正确的叙述()。
正确答案:分段的尺寸受内存空间的限制,但作业总的尺寸不受内存空间的限制8虚拟存储器的特征是基于()。
正确答案:局部性原理9实现虚拟存储器最关键的技术是()。
正确答案:请求调页(段)10“抖动”现象的发生是由()引起的。
正确答案:置换算法选择不当11 在请求分页系统的页表增加了若干项,其中修改位供()参考。
正确答案:换出页面12 虚拟存储器是正确答案:程序访问比内存更大的地址空间13测得某个请求调页的计算机系统部分状态数据为:CPU利用率20%,用于对换空间的硬盘的利用率97.7%,其他设备的利用率5%。
由此断定系统出现异常。
此种情况下()能提高CPU的利用率。
正确答案:减少运行的进程数14在请求调页系统中,若逻辑地址中的页号超过页表控制寄存器中的页表长度,则会引起()。
正确答案:越界中断15 测得某个请求调页的计算机系统部分状态数据为:CPU利用率20%,用于对换空间的硬盘的利用率97.7%,其他设备的利用率5%。
第1篇一、实验目的本次实验旨在让学生深入理解内存分配的基本原理和不同分配算法,通过实际操作,提高学生对内存管理技术的掌握程度。
通过本次实验,我们希望达到以下目标:1. 熟悉内存分配的基本概念和过程;2. 掌握常见的内存分配算法,如首次适应算法、最佳适应算法和最坏适应算法;3. 理解内存分配中的碎片问题,并尝试解决;4. 培养学生的动手实践能力和问题解决能力。
二、实验内容1. 实验环境:使用C语言编写程序,运行在Linux操作系统上。
2. 实验步骤:(1)首次适应算法:从内存空间的起始位置开始查找,找到第一个满足申请大小的空闲分区,将其分配给请求者。
(2)最佳适应算法:从所有空闲分区中查找一个最小的满足申请大小的分区,将其分配给请求者。
(3)最坏适应算法:从所有空闲分区中查找一个最大的满足申请大小的分区,将其分配给请求者。
(4)解决内存碎片问题:采用紧凑算法,将所有空闲分区合并成一个连续的大空间,从而减少内存碎片。
三、实验过程1. 编写程序实现内存分配算法,包括内存初始化、申请内存、释放内存等功能。
2. 对不同分配算法进行测试,观察分配效果,分析不同算法的优缺点。
3. 分析内存碎片问题,尝试解决方法,如紧凑算法。
四、实验结果与分析1. 首次适应算法:该算法简单易实现,但可能导致内存利用率较低,且可能产生较大的内存碎片。
2. 最佳适应算法:该算法分配效果较好,内存利用率较高,但分配速度较慢。
3. 最坏适应算法:该算法分配效果较差,内存利用率较低,但分配速度较快。
4. 紧凑算法:通过合并空闲分区,减少了内存碎片,提高了内存利用率。
五、实验体会1. 通过本次实验,我们深入了解了内存分配的基本原理和不同分配算法,掌握了常见内存分配算法的优缺点。
2. 实验过程中,我们遇到了各种问题,如内存碎片问题、算法实现问题等,通过查阅资料、讨论和尝试,最终解决了这些问题,提高了我们的问题解决能力。
3. 实验使我们认识到,内存管理是操作系统中的一个重要组成部分,对计算机性能和稳定性有着重要影响。
【操作系统】分区分配算法(⾸次适应算法、最佳适应算法)(C语⾔实现)【操作系统】分区分配算法(⾸次适应算法、最佳适应算法)(C语⾔实现)(编码⽔平较菜,写博客也只是为了个⼈知识的总结和督促⾃⼰学习,如果有错误,希望可以指出)今天测试,发现⼀点问题:1.最佳插⼊算法:对于插⼊的时候忘记修改temp.next.front的指向2.回收头节点的时候现在多了⼀种判断。
判断头节点的下⼀个是否为空。
对如果不为空⽽且后⾯的空闲的话,做出了处理。
原来则没有这⼀情况。
1.动态分区分配算法:为了实现动态分区分配,通常将系统中的空闲分区链接成⼀个链。
所谓顺序查找是指依次搜索空闲分区链上的空闲分区,去寻找⼀个⼤⼩能满⾜要求的分区。
--------计算机操作系统(第四版)2.动态分区算法主要包括四种:(1).⾸次适应算法(first fit,FF):要求,空闲分区链以地址递增的顺序链接。
每次从链⾸开始,直到找到第⼀个能满⾜要求的空闲分区为⽌。
简单来说,就是,每次都从第⼀个开始顺序查找,找到⼀块区域可以满⾜要求的。
优点:优先利⽤内存中低址部分的空闲分区,从⽽保留了⾼址部分的⼤空闲区,这为以后到达的⼤作业分配⼤的内存空间创造了条件。
缺点:低址部分不断被划分,会留下许多难以利⽤的,很⼩的空闲分区,称为碎⽚。
⽽每次查找⼜都是从低址部分开始的,这⽆疑⼜会增加查找可⽤空闲分区时的开销。
(2).循环⾸次适应算法(next fit,NF):与FF算法区别就是,不是每次都从⾸次开始,⽽是从上次找到的空闲分区的下⼀个空闲分区开始。
(第⼀次查找的话也是从⾸页开始)。
特点:能使内存中的空闲区分布得较均匀。
(3).最佳适应算法(best,BF):将所有空闲分区按照空闲分区容量⼤⼩从⼩到⼤的顺序连接起来,形成⼀个空闲分区链。
即,每次都是找空间容量不但可以满⾜要求的空闲区,⽽且该空闲分区的容量还要最接近要求的容量⼤⼩。
优点:每次分配给⽂件的都是最合适该⽂件⼤⼩的分区。
#iiiclude<iostieam>#iiiclude<stdlib.h> using namespace std;#define Free 0 〃空闲状态#define Busy 1 〃已用状态#define OK 1 〃完成#define ERROR。
〃出错#define MAXJength 512 //最大内存空间为512KB typedef int Status; hit flag;typedef stnict fieeaiea//定义一个空闲区说明表结构{long size; 〃分区大小long adckess; 〃分区地址mt state; 〃状态JElemType;//线性表的双向链表存储结构typedef stnict DuLNode{ElemType data;stiuct DuLNode *prior; 〃前趋指针stnict DuLNode *next; 〃后继指针}DuLNode,*DuLinkList;DuLnikList block_fkst; 〃头结点DuLnikList blockjast; 〃尾结点Status alloc(int);//内存分配Status See(int); 〃内存回收Status Fust_fit(iiit);//W 次适应算法Status Best_fit(mt); 〃最佳适应算法void show。
;〃查看分配Status InitblockO;〃开创空间表Status Irntblock。
〃开创带头结点的内存空间链表 {block_fust=(DuLinkList)malloc(sizeof(DuLNode));block_last=(DuLinkList)malloc(sizeof(DuLNode));block_fiist->prioi-NULL;block_fiist->next=block_last; block_last->pnor=block_fiist;block_last->next=NULL;block_last->data.address=0;block_last->data.size=MAX」ength;block_last->data.state=Free;return OK;}〃分配主存Status alloc(mt ch) (hit request = 0;coutvv”请输入需要分配的主存大小(单位:KB): ";ciii»request;ifi(request<0 ||request==O) (coutvv”分配大小不合适,请重试!”《endl;retuin ERROR:}if(ch==2 ”/选择最佳适应算法(if(Best_fit(iequest)=OK) coutw”分配成功!"<<endl; elsecout«H内存不足,分配失败! "<<endl;return OK;}else 〃默认首次适应算法(if(Fiist_fit(request)==OK) coutw”分酉已成功!H«endl; elsecout«H内存不足,分配失败! "<<endl;return OK;} }〃首次适应算法Status request)(〃为申请作业开辟新空间且初始化DuLnikList temp=(DuLnikList)malloc(sizeof(DuLNode));temp->data.size=request;temp->data.state=Busy;DuLNode *p=block_fiist->next;while(p)if(p->data.state==Free && p->data.size==request){〃有大小恰好合适的空闲块p->data.state=Busy;return OK;break;}if(p->data.state==Free && p->data.size>request){〃有空闲块能满足需求且有剩余temp->prior=p->pnor;temp->next=p;temp->data.addiess=p->data.address;p ->prior->next=temp;p->prior=temp;p->data.address=temp->data.address+temp->data.size;p->data.size-=request;return OK;break;}p=p->next;}return ERROR;) 〃最佳适应算法Status Best_fit(mt request) (mt ch; 〃记录最小剩余空间DuLnikList temp=(DuLnikList)malloc(sizeof(DuLNode));temp->data.size=request;temp->data.state=Busy;DuLNode *p=block_first->next;DuLNode *q=NULL; //记录最佳插入位置while(p) 〃初始化最小空间和最佳位置(if(p->data.state==Free && (p->data.size>=request))if(q==NULL)(q=p;ch=p->data.size-request;)else ifi(q->data.size > p->data.size)q=p;ch=p->data.size-request;) p=p->next;}if(q=NULL) i-eturn ERROR;//没有找到空闲块else if(q->data.size==request)(q->data .state=Bu sy;return OK;} elsetemp->prior=q->pnor;temp->next=q;temp->data.address=q->data.addiess;q->pnor->next=temp;q->pnor=temp;q->data.addiess+=request;q->data.size=ch;return OK;}return OK;}〃主存回收Status fiee(int flag) (DuLNode *p=block_first;fbr(int i= 0; i <= flag; i++)if(p?=NULL)p=p->next;elsereturn ERROR:p->data .state=Free;if(p->pnor?=block_fust && p->prior->data.state=Free)//与前面的空闲块相连 ( p->pnor->data.size+=p->data.size;p->pnor->next=p->next;p->next->piioi-p->piior;p=p->piior;if(p->next!=block_last && p->next->data.state=Free)//与后面的空闲块相连 ( p->data.size+=p->next->data.size;p->next->next->prioi -p;p->next=p->next->next;}if(p->next=block_last && p->next->data.state=Free)//与最后的空闲块相连 ( p->data.size+=p->next->data.size;p->next=NULL:}return OK;}〃显示主存分配情况void show()(int flag = 0;cout«"\n主存分配情况:\n";DuLNode *p=block_first->next;coutw"分区号\t起始地址\t分区大小\t状态\n\iT;wliile(p)(cout«" M«flag++«M\t H;cout«M M«p->data.addiess«,l\t\t H;cout«M "«p->data.size«H KB\t\t n;if(p->data.state==Fiee) coutw”空闲WW”;else coutw” 已分配\n\n”;p=p->next;}cout〈v”++++++++++++++++++++++++++++++++++++++++++++++W\iT; }〃主函数hit(mt ch;//算法选择标记coutvv”请输入所使用的内存分配算法:证”;coutv V”( 1)首次适应算法\n(2)最佳适应算法\n” ;ciii»ch;while(ch<l ||ch>2)coutvv”输入错误,请重新输入所使用的内存分配算法:\1之cin»ch;}Imtblock(); 〃开创空间表mt choice; 〃操作选择标记wlule(l)(showQ;coutvv”请输入您的操作:”;cout«H\iil:申请内存\112:释放内存W0:退出\n";cm»choice;if(choice==l) alloc(ch); // 申请内存else if(choice=2) // 释放回收mt flag;coutvv”请输入您要释放的分区号:”;cin»flag;fiee(flag);}else if(choice=0) break; //退出else//输入操作有误coutvv”输入有误,请重试!“<<endl;contmue;。