数字电子技术基础第一章习题答案
- 格式:doc
- 大小:1.17 MB
- 文档页数:12
第一章数字逻辑习题1.1 数字电路与数字信号1.1.2 图形代表的二进制数0101101001.1.4 一周期性数字波形如图题所示,试计算:(1)周期;(2)频率;(3)占空比例MSB LSB0 1 2 11 12 (ms)解:因为图题所示为周期性数字波,所以两个相邻的上升沿之间持续的时间为周期,T=10ms 频率为周期的倒数,f=1/T=1/0.01s=100HZ占空比为高电平脉冲宽度与周期的百分比,q=1ms/10ms*100%=10%1.2 数制1.2.2 将下列十进制数转换为二进制数,八进制数和十六进制数(要求转换误差不大于2−4(2)127 (4)2.718解:(2)(127)D= 27 -1=()B-1=()B=(177)O=(7F)H(4)(2.718)D=(10.1011)B=(2.54)O=(2.B)H1.4 二进制代码1.4.1 将下列十进制数转换为8421BCD 码:(1)43 (3)254.25 解:(43)D=()BCD1.4.3 试用十六进制写书下列字符繁荣ASCⅡ码的表示:P28(1)+ (2)@ (3)you (4)43解:首先查出每个字符所对应的二进制表示的ASCⅡ码,然后将二进制码转换为十六进制数表示。
(1)“+”的ASCⅡ码为,则()B=(2B)H(2)@的ASCⅡ码为1000000,(01000000)B=(40)H(3)you 的ASCⅡ码为本1111001,1101111,1110101,对应的十六进制数分别为79,6F,75(4)43 的ASCⅡ码为0110100,0110011,对应的十六紧张数分别为34,331.6 逻辑函数及其表示方法1.6.1 在图题1. 6.1 中,已知输入信号A,B`的波形,画出各门电路输出L 的波形。
解: (a)为与非, (b)为同或非,即异或第二章逻辑代数习题解答2.1.1 用真值表证明下列恒等式(3)A⊕ =B AB AB+ (A⊕B)=AB+AB解:真值表如下由最右边2栏可知,A⊕B与AB+AB的真值表完全相同。
数字电子技术基础课后答案第一篇:数字电子技术基础1. 什么是布尔代数?布尔代数是一种数学运算,用于解释数字电子技术中的逻辑运算。
它由乔治·布尔发明,以处理逻辑思维,并用于数字电路的设计和分析。
2. 什么是逻辑门?举例说明。
逻辑门是一种数字电路,执行布尔逻辑运算操作。
在逻辑门中,输入和输出都是数字信号。
常见的逻辑门有与门(AND)、或门(OR)和非门(NOT)等。
例如,一个与门的输出只有在所有输入都是 1 的时候才为 1。
3. 什么是触发器?举例说明。
触发器是一种数字电路,用于存储二进制位。
它可以在两个状态之间切换,称为 set(1)和 reset(0)。
触发器通常用于存储数据或构建计数器和时序器。
例如,D 触发器可以用于存储单个比特数据。
4. 什么是计数器?举例说明。
计数器是一种数字电路,用于计数。
它可以用预设值计数或者递增计数。
计数器在时序电路和数字信号处理中应用广泛。
例如,一个简单的四位二进制计数器可能从 0000 开始,递增到 1111。
5. 什么是编码器?举例说明。
编码器是一种数字电路,用于将一个符号编码转换为另一个符号编码。
编码器通常用于数字信号压缩和传输中,并且可以用于键盘编码,控制器设计和其他数字信号处理应用。
例如,使用二进制输入,BCD 编码器可以将四个输入位转换为十进制数字。
6. 什么是译码器?举例说明。
译码器是一种数字电路,用于将一种编码转换为另一种编码。
它可以将数字信号从一种格式(如二进制)转换为另一种格式(如 BCD)。
译码器也可以用于输出数字信号的选择性控制,如一个多路选择器或一个Demux。
例如, 4-16 译码器将 4 个输入线路变为 16 个输出线路。
7. 什么是多路复用器?举例说明。
多路复用器(MUX)是一种数字电路,将多个输入值选择性地转移到一个单独的输出通道。
它通常用于数字信号处理和通信应用中,例如在多路转接和数字电视中。
例如,一个 4 通道 MUX 可以选择 4 个输入通道中的一个在其单个输出通道上输出。
第1章习题解答1.1把下列二进制数转换成十进制数①10010110;②11010100;③0101001;④10110.111;⑤101101.101;⑥0.01101。
[解] 直接用多项式法转换成十进制数① (10010110)B = (1⨯2 7+1⨯24 + 1⨯22 +1⨯21)D = (150)D=150② (11010100)B = 212③ (0101001)B = 41④ (10110.111)B = 22.875⑤ (101101.101)B = 45.625⑥ (0.01101)B = 0.406251.2把下列十进制数转换为二进制数①19;② 64;③ 105;④ 1989;⑤ 89.125;⑥ 0.625。
[解] 直接用基数乘除法① 19= (10011)B② 64= (1000000)B③ 105 = (1101001)B④ 1989 = (11111000101)B⑤ 89.125 = (1011001.001)B⑥ 0.625= (0.101)B1.3把下列十进制数转换为十六进制数① 125;② 625;③ 145.6875;④0.5625。
[解]直接用基数乘除法① 125 = (7D)H② 625 = (271)H③ 145.6875= (91.B)H④ 0.56255=(0.9003)H1.4把下列十六进制数转换为二进制数① 4F;② AB;③ 8D0;④ 9CE。
[解]每位十六进制数直接用4位二进制数展开① (4F)H= (1001111)B② (AB)H= (10101011)B 2 19 余数2 9 …… 1 ……d02 4 …… 1 ……d12 2 ……0 ……d22 1 ……0 ……d32 0 …… 1 ……d4图题1.2 ①基数除法过程图12③ (8D0)H = (100011010000)B ④ (9CE)H = (100111001110)B 1.5 写出下列十进制数的8421BCD 码 ① 9;② 24;③ 89;④ 365。
【最新整理,下载后即可编辑】数字电子技术基础答案第1章自测题 1.1填空题1. 100011.11 00110101.01110101 11110.01 1E.42. 43. n 24. 逻辑代数 卡诺图5.)(D C B A F )(D C B A F +='6.))((C B D C B A F7. 代数法 卡诺图8. 1 1.2判断题1. √2.√3. × 1.3选择题 1.B 2.C 3.C1.4 A F =1⊙B AB F 2 B A F +=3 1.51.6 C L =1.7 AB C B A BC Y 习题1.1 当000012 A A A ,7A 到3A 有1个不为0时,就可以被十进制8整除 1.2 (a)AC BC AB F ++=1 (b )B A AB F +=2(c)C B A S ⊕⊕= AC BC AB C 0 1.3略 1.4 (1))(B A D C F )(1))((1B A D C F ++=' (2))(B A B A F )(2))((2B A B A F ++='(3) E D C B A F 3 DE C AB F ='3 (4))()(4D A B A C E A F )())()((4D A C AB E A F +++='1.5 C B A F ⊕⊕=1.6 (1) B A C B C A L (2) D B C B D C A L (3) AD L (4) E ABCD L (5) 0 L 1.7 C B A BC A C AB ABC C B A L ),,(1.8(1) ABD D A C F 1 (2) BC AB AC F 2(3) C A B A B A F 3 (有多个答案) (4) C B D C AB C A CD F +++=4 (5) C B A ABD C B A D B A F 5 (6) 16 F 1.9 (1) AD D C B B A F 1 (2) B A AC F 2(3) D A D B C B F 3 (4) B C F 4 1.10 (1) C A B F 1 (2) B C F 2(3) D A B C F 3 (4) C B A D B D C F 4 1.11 C A B A D F1.12 (1) D B A D C A D C B F 1(多种答案) (2)C B BCD D C D B F 2(3) C B C A D C F 3 (4) A B F 4 (5) BD D B F 5(6) C B D A D C A F 6(多种答案) (7) C A D B F 7(多种答案)(8) BC D B F 8(多种答案) (9) B D C F 9 1.13 略第2章自测题 2.1 判断题1. √2. √3. ×4. √5. √6. √7. ×8. √9. × 10√ 2.2 选择题1.A B 2.C D 3.A 4.B 5.B 6.A B D 7.C 8.A C D 9.A C D 10.B 习题2.1解:ABC Y =1 2.2解:(a)mA234.0503.012=-=-=C CES CC BS R U V I βBS mA 1.0537.06I I B <=-=∴三极管处于放大状态,)V (711.05012=⨯⨯-=-=CB CC O R I V u β。
第一章数字电路基础第一部分基础知识一、选择题1.以下代码中为无权码的为。
A. 8421BCD码B. 5421BCD码C.余三码D.格雷码2.以下代码中为恒权码的为。
A .8421BCD码B. 5421BCD码C.余三码D.格雷码3. 一位十六进制数可以用位二进制数来表示。
A. 1B.2C. 4D.164.十进制数25用8421BCD码表示为。
A .10 101B .0010 0101 C. 100101 D .101015.在一个8位的存储单元中,能够存储的最大无符号整数是。
A. (256) 10B. (127) 10C. (FF) 16D. (255) 106.与十进制数(53.5) 10等值的数或代码为。
A.(0101 0011. 0101)8421BCDB.(35. 8)16C.(110101. 1)2D.(65. 4)87.矩形脉冲信号的参数有。
A.周期B.占空比C.脉宽D.扫描期8.与八进制数(47. 3) 8等值的数为:A. (100111 . 011 )2B. (27. 6)16C. (27. 3 )16D. (1 00111 . 11 )29. 常用的BCD码有。
A.奇偶校验码B.格雷码C. 8421码D.余三码10 .与模拟电路相比,数字电路主要的优点有。
A.容易设计B.通用性强C.保密性好D.抗干扰能力强二、判断题(正确打,,错误的打X)1.方波的占空比为0. 5。
()2. 8421 码1001 比0001 大。
( )3.数字电路中用“ 1”和“ 0”分别表示两种状态,二者无大小之分。
()4.格雷码具有任何相邻码只有一位码元不同的特性。
()5.八进制数(18) 8比十进制数(18) 10小。
()6.当传送十进制数5时,在8421奇校验码的校验位上值应为1。
( )7.在时间和幅度上都断续变化的信号是数字信号,语音信号不是数字信号。
()8.占空比的公式为:q = t w / T,则周期T越大占空比q越小。
第一章 逻辑代数及逻辑函数的化简1。
1、用布尔代数的基本公社和规则证明下列等式. 1、D B A DC D A BD B A +=+++证:左边=D B A DC D BD B A DC D A AD BD B A +=+++=++++=右边 2、C AB D A C AB D B A D AB +=++证:左边=C AB D A C AB B B D A +=++)(=右边 3、D B B DA C B D D BC +=++++))((证:左边=D B C B C DA B DA D BC B DA C B D BC +=++++=++++))((=右边 4、D B C B BC D A D C A ACD +=++++ 证:左边=B D B D A AD +=++=右边 5、))()((A C C B B A CA BC AB +++=++证:右边=AB BC AC A C B AC A C BC B AC AB ++=++=++++))(())((=左边 6、A C C B B A C B A ABC ++=+证:右边=C B A ABC A C BC C A B A A C C B B A A C C B B A +=+++=+++=))(())()(( 7、A C C B B A A C C B B A ++=++证:左边=A C C B B A C B B A A C A C C B B A ++=+++++=右边 8、)())()()((X W YZ Z Y Z Y X W Z Y +=++++证:左边=)())()((X W YZ Z Y X W Y Z YZ +=+++=右边 9、0))()()((=++++B A B A B A B A证:左边=0))((==++++A A B A B A A AB B A A =右边10、A D D C C B B A D C CD C B BC B A AB +++=+++))()(( 证:左边=D C B A ABCD D C CD C B A ABC +=++))((右边=))()()((A D D C C B B A A D D C C B B A ++++==D C B A ABCD AD C A D C BC C A B A +=++++))((=左边11、=⊕⊕C B A A ⊙B ⊙C证:左边=C B A ABC C B A C B A C B A AB C B A B A +++=+++)()( ==+++)()(C B C B A C B BC A A ⊙B ⊙C =右边 12、如果Y B X A BY AX B A +=+=⊕,证明0证:AB B A Y X X B Y A B A Y B X A BY AX +++++=++=+))((=X A Y B AB Y X X B Y A B A ++++++ =X A Y B X A Y B AB B A +=+++=右边1.2、求下列函数的反函数.1、B A AB F += 解:))((B A B A F ++=2、C B A C B A C AB ABC F +++=解:))()()((C B A C B A C B A C B A F ++++++++=3、)(D A C C B B A F +++= 解:))()((D A C C B B A F +++=4、))()((B A D C C D A B F +++= 解:B A D C C D A B F ++++=)(5、RST T S R T S R F ++= 解:))()((T S R T S R T S R F ++++++= 1.3、写出下列函数的对偶式.1、E DE C C A B A F ++++=))()(( 解:E E D C C A AB F )](['+++=2、B A D B C AB F = 解:B A D B C B A F ++++++='3、C B C A C B B A F +++++++= 解:BC C A BC B A F ='4、Z Y X Z XY F += 解:Z Y X Z Y X F ++++=' 1.4、证明函数F 为自对偶函数。