空间直角坐标系及点的坐标表示
- 格式:ppt
- 大小:228.02 KB
- 文档页数:11
空间直角坐标系点坐标表示以空间直角坐标系点坐标表示为标题,本文将介绍空间直角坐标系的相关知识。
空间直角坐标系是一种常用的坐标系统,用于描述三维空间中的点的位置。
在空间直角坐标系中,每个点都可以用三个坐标值来表示,分别为x、y和z。
这三个坐标值分别代表了点在x轴、y轴和z轴上的位置。
其中,x轴是水平方向,y轴是垂直于x轴且在水平平面内的方向,z轴是垂直于水平平面的垂直方向。
这样,通过这三个坐标值的组合,我们可以准确地确定一个点在空间直角坐标系中的位置。
在空间直角坐标系中,每个坐标轴都有正方向和负方向。
正方向是从原点向右、向上和向外延伸的方向,负方向则是相反的方向。
通过正负号的不同,可以确定一个点在各个坐标轴上的位置。
举个例子,假设有一个点A,它在x轴上的坐标为2,y轴上的坐标为-3,z轴上的坐标为1。
那么在空间直角坐标系中,点A的位置可以表示为(2, -3, 1)。
这意味着点A位于x轴的正方向上2个单位处,位于y轴的负方向上3个单位处,位于z轴的正方向上1个单位处。
在空间直角坐标系中,我们可以通过计算两个点之间的距离来衡量它们之间的空间距离。
根据勾股定理,两个点之间的距离可以通过它们在各个坐标轴上的坐标差值计算得出。
例如,点A(2, -3, 1)和点B(-1, 4, 2)之间的距离可以计算为:AB = √[(x2 - x1)² + (y2 - y1)² + (z2 - z1)²]= √[(-1 - 2)² + (4 - (-3))² + (2 - 1)²]= √[9 + 49 + 1]= √59所以点A和点B之间的距离为√59个单位。
除了表示点的位置和计算距离外,空间直角坐标系还可以用于表示向量。
向量是具有大小和方向的量,可以用箭头表示。
在空间直角坐标系中,一个向量可以用起点和终点的坐标表示。
例如,向量AB 可以表示为(2, -3, 1)到(-1, 4, 2)的箭头。
空间直角坐标系的定义和坐标一、空间直角坐标系的定义和坐标1.空间直角坐标系在单位正方体$oabc-d′a′b′c′$中,以$o$点为原点,分别以射线$oa$,$oc$,$od′$的方向为正方向,以线段$oa$,$oc$,$od′$的长为单位长,建立三条数轴:$x$轴、$y$轴、$z$轴。
这时我们说建立了一个空间直角坐标系$oxyz$,其中点$o$叫做坐标原点,$x$轴、$y$轴、$z$轴叫做坐标轴。
通过每两个坐标轴的平面叫做坐标平面,分别称为$xoy$平面、$yoz$平面、$xoz$平面。
2.空间矢量的坐标一个向量在空间直角坐标系中的坐标等于表示向量的有向线段的终点坐标减去起点坐标。
如$a(x_1,y_1,z_1)$,$b(x_2,y_2,z_2)$,则$\overrightarrow{ab}=$$\overrightarrow{ob}-$$\overrightarrow{oa}=$$(x_2-x_1$,$y_2-y_1$,$z_2-z_1)$。
3.空间向量的坐标运算设$\boldsymbola(x_1,y_1,z_1)$,$\boldsymbolb(x_2,y_2,z_2)$,则(1) $\boldsymbola+\boldsymbolb=(x_1+x_2,y_1+y_2,z_1+z_2)$(2)$\boldsymbola-\boldsymbolb=(x_1-x_2,y_1-y_2,z_1-z_2)$。
(3) $\boldsymbola·\boldsymbolb=x_1x_2+y_1y_2+z_1z_2$(4)$|\boldsymbola|=\sqrt{x^2_1+y^2_1+z^2_1}$。
(5)$λ\boldsymbola=(λx_1,λy_1,λz_1)$4、空间向量平行(共线)与垂直的充要条件让非零向量$\boldsymbol(x_1,y_1,z_1)$,$\boldsymbol B(x_2,y_2,z_2)$,然后$\boldsymbola∥\boldsymbolb\leftrightarrow\frac{x_1}{x_2}=\frac{y_1}{y_2}=\frac{z_1}{z_2}=λ(λ∈\mathbf{r})$。
空间直角坐标系中点坐标公式在空间直角坐标系中,我们可以用三个数值来表示一个点的位置。
这三个数值分别代表了点在x轴、y轴和z轴的坐标。
我们可以将这三个坐标值写成一个有序三元组 (x, y, z)。
假设我们有一个点P,它在x轴上的坐标为x,y轴上的坐标为y,z 轴上的坐标为z。
那么点P的坐标可以表示为 (x, y, z)。
在三维空间中,点的坐标公式可以通过测量从原点到点P的三条边的长度得到。
根据勾股定理,我们可以得出以下关系:1. 点P在x轴上的坐标可以通过测量点P到y轴和z轴的距离得到。
这个距离可以表示为√(y^2 + z^2)。
所以点P在x轴上的坐标为x = √(y^2 + z^2)。
2. 点P在y轴上的坐标可以通过测量点P到x轴和z轴的距离得到。
这个距离可以表示为√(x^2 + z^2)。
所以点P在y轴上的坐标为y = √(x^2 + z^2)。
3. 点P在z轴上的坐标可以通过测量点P到x轴和y轴的距离得到。
这个距离可以表示为√(x^2 + y^2)。
所以点P在z轴上的坐标为z = √(x^2 + y^2)。
通过这个坐标公式,我们可以计算出点P在三维空间中的坐标。
例如,如果点P在x轴上的坐标为3,在y轴上的坐标为4,在z轴上的坐标为5,那么点P的坐标可以表示为 (3, 4, 5)。
通过这个坐标公式,我们可以方便地计算出点在空间中的位置。
同时,我们也可以通过这个公式来确定点在空间中的距离和方向。
总结起来,空间直角坐标系中点的坐标可以用有序三元组 (x, y, z) 表示,其中x代表点在x轴上的坐标,y代表点在y轴上的坐标,z 代表点在z轴上的坐标。
我们可以通过测量点到每个轴的距离得到点的坐标。
这个坐标公式在三维空间中有着广泛的应用,可以用来计算点的位置、距离和方向等信息。
本篇学习了空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系。
这个个坐标系有时很容易弄混淆!(一)空间直角坐标系空间直角坐标系的坐标原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向起始子午面与赤道的交点,Y轴位于赤道面上切按右手系于X轴呈90度夹角,某点中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。
空间直角坐标系可用如下图所示:(二)大地坐标系大地坐标系是采用大地纬度、经度和大地高程来描述空间位置的。
纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高程是空间的点沿着参考椭球的法线方向到参考椭球面的距离。
地面点的高程和国家高程基准(1)绝对高程。
地面点沿垂线方向至大地水准面的距离称为绝对高程或称海拔。
过去我国采用青岛验潮站(tide gauge station)1950~1956年观测成果求得的黄海平均海水面作为高程的零点,称为“1956年黄海高程系”(Huanghai height system1956水准原点高程为72.289m)。
后经复查,发现该高程系的验潮资料时间过短,准确性较差,改用青岛验潮站1950~1979年的观测资料重新推算,并命名为“1985年国家高程基准”(Chinese height datum 1985)。
国家水准原点(leveling origin高程为72.260m)设于青岛市观象山附近,作为我国高程测量的依据。
它的高程值是以“1985年国家高程基准”所确定的平均海水面为零点测算而得。
在使用原“1956年黄海高程系”的高程成果时,应注意将其换算为新的高程基准系统。
(2)相对高程。
地面点沿铅垂线方向至任意假定的水准面的距离称为该点的相对高程,亦称假定高程。
在图l—5中,地面点A和B的相对高程分别为H'A和H'B。
(3)高差。
地面上任意两点的高程(绝对高程或相对高程)之差称为高差。