遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )
- 格式:pdf
- 大小:203.59 KB
- 文档页数:9
2024年沪科版高三生物下册月考试卷750考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共5题,共10分)1、下列不属于生命系统结构层次的一项是()A. 池塘中的全部鱼B. 一个心脏C. 免疫细胞产生的抗体D. 一个变形虫2、血红蛋白是由574个氨基酸构成的蛋白质,含4条多肽链,那么在形成肽链过程中形成的肽键数目为()A. 573B. 574C. 578D. 5703、匈牙利学者帕尔在1914~1918年间进行植物生长的实验研究时,曾在黑暗条件下,将切下的燕麦胚芽鞘顶部移到切口的一侧,胚芽鞘会向另一侧弯曲生长(如图),这个实验主要证实()A. 顶端产生某种“影响物”B. 合成“影响物”不需要光C. “影响物”具有促进胚芽鞘生长效应D. 使背光一侧“影响物”分布多4、如图是生态系统的能量流动图解;对此图解的理解错误的是()A. 图中方框的大小可表示该营养级生物所具有的能量多少B. 该图中C所具有的能量为B的10%C. 该图中的A表示流经该生态系统的总能量D. 图中A具有的能量是D的能量之和5、下图表示人体神经元模式图,据图分析以下正确的是A. ④中的物质释放到⑤处的运输方式是主动运输,能量主要由结构①提供B. 若刺激A点,电流表发生两次偏转,如将电流表的右极接至③处,刺激A点,则电流表也发生两次偏转C. 刺激A点,A处的膜电位变为外正内负D. 刺激A点,兴奋从A点传至③处的信号变化为化学信号→电信号评卷人得分二、双选题(共6题,共12分)6、下列对有关图形所表达的生物学含义的叙述正确的是A.图甲可以表示将肠淀粉酶溶液的pH由1.8调高至12的过程中该酶催化活性的变化B.图乙表示某二倍体生物的有丝分裂,该细胞中没有同源染色体,有两个染色体组C.图丙表示效应T细胞发挥细胞免疫作用D.将幼小植株在适宜条件下横放,一段时间以后出现了丁图所示的生长现象,这与不同器官对生长素的敏感程度不同有关7、甲、乙两种单基因遗传病分别由基因A、a和D、d控制,图一为两种病的家系图,图二为Ⅱ10体细胞中两对同源染色体上相关基因定位示意图。
遗传算法( GA , Genetic Algorithm ) ,也称进化算法。
遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。
因此在介绍遗传算法前有必要简单的介绍生物进化知识。
一.进化论知识作为遗传算法生物背景的介绍,下面容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。
个体:组成种群的单个生物。
基因 ( Gene ) :一个遗传因子。
染色体 ( Chromosome ):包含一组的基因。
生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。
适应度低的个体参与繁殖的机会比较少,后代就会越来越少。
遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。
简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。
那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。
二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。
这样进化N代后就很有可能会进化出适应度函数值很高的个体。
举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。
这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。
编码:需要将问题的解编码成字符串的形式才能使用遗传算法。
遗传算法遗传算法(Genetic Algorithm)目录[隐藏]∙ 1 遗传算法的概念∙ 2 遗传算法与自然选择∙ 3 遗传算法的基本原理∙ 4 遗传算法的步骤和意义∙ 5 遗传算法的特点∙ 6 遗传算法在神经网络中的应用∙7 遗传算法案例分析o7.1 案例一:遗传算法在装箱环节中的应用[1]∙8 参考文献[编辑]遗传算法的概念遗传算法是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。
它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。
遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。
它是现代有关智能计算中的关键技术之一。
[编辑]遗传算法与自然选择达尔文的自然选择学说是一种被人们广泛接受的生物进化学说。
这种学说认为,生物要生存下去,就必须进行生存斗争。
生存斗争包括种内斗争、种间斗争以及生物跟无机环境之间的斗争三个方面。
在生存斗争中,具有有利变异的个体容易存活下来,并且有更多的机会将有利变异传给后代;具有不利变异的个体就容易被淘汰,产生后代的机会也少的多。
因此,凡是在生存斗争中获胜的个体都是对环境适应性比较强的。
达尔文把这种在生存斗争中适者生存,不适者淘汰的过程叫做自然选择。
它表明,遗传和变异是决定生物进化的内在因素。
自然界中的多种生物之所以能够适应环境而得以生存进化,是和遗传和变异生命现象分不开的。
正是生物的这种遗传特性,使生物界的物种能够保持相对的稳定;而生物的变异特性,使生物个体产生新的性状,以致于形成新的物种,推动了生物的进化和发展。
遗传算法是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型。
它的思想源于生物遗传学和适者生存的自然规律,是具有“生存+检测”的迭代过程的搜索算法。
遗传算法的基本原理和⽅法遗传算法的基本原理和⽅法⼀、编码编码:把⼀个问题的可⾏解从其解空间转换到遗传算法的搜索空间的转换⽅法。
解码(译码):遗传算法解空间向问题空间的转换。
⼆进制编码的缺点是汉明悬崖(Hamming Cliff),就是在某些相邻整数的⼆进制代码之间有很⼤的汉明距离,使得遗传算法的交叉和突变都难以跨越。
格雷码(Gray Code):在相邻整数之间汉明距离都为1。
(较好)有意义的积⽊块编码规则:所定编码应当易于⽣成与所求问题相关的短距和低阶的积⽊块;最⼩字符集编码规则,所定编码应采⽤最⼩字符集以使问题得到⾃然的表⽰或描述。
⼆进制编码⽐⼗进制编码搜索能⼒强,但不能保持群体稳定性。
动态参数编码(Dynamic Paremeter Coding):为了得到很⾼的精度,让遗传算法从很粗糙的精度开始收敛,当遗传算法找到⼀个区域后,就将搜索现在在这个区域,重新编码,重新启动,重复这⼀过程,直到达到要求的精度为⽌。
编码⽅法:1、⼆进制编码⽅法缺点:存在着连续函数离散化时的映射误差。
不能直接反映出所求问题的本⾝结构特征,不便于开发针对问题的专门知识的遗传运算算⼦,很难满⾜积⽊块编码原则2、格雷码编码:连续的两个整数所对应的编码之间仅仅只有⼀个码位是不同的,其余码位都相同。
3、浮点数编码⽅法:个体的每个基因值⽤某⼀范围内的某个浮点数来表⽰,个体的编码长度等于其决策变量的位数。
4、各参数级联编码:对含有多个变量的个体进⾏编码的⽅法。
通常将各个参数分别以某种编码⽅法进⾏编码,然后再将他们的编码按照⼀定顺序连接在⼀起就组成了表⽰全部参数的个体编码。
5、多参数交叉编码:将各个参数中起主要作⽤的码位集中在⼀起,这样它们就不易于被遗传算⼦破坏掉。
评估编码的三个规范:完备性、健全性、⾮冗余性。
⼆、选择遗传算法中的选择操作就是⽤来确定如何从⽗代群体中按某种⽅法选取那些个体遗传到下⼀代群体中的⼀种遗传运算,⽤来确定重组或交叉个体,以及被选个体将产⽣多少个⼦代个体。
遗传算法的基本运算过程如下:a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。
b)个体评价:计算群体P(t)中各个个体的适应度。
c)选择运算:将选择算子作用于群体。
选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。
选择操作是建立在群体中个体的适应度评估基础上的。
d)交叉运算:将交叉算子作用于群体。
遗传算法中起核心作用的就是交叉算子。
e)变异运算:将变异算子作用于群体。
即是对群体中的个体串的某些基因座上的基因值作变动。
群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t+1)。
f)终止条件判断:若t=T,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。
遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。
每个个体实际上是染色体(chromosome)带有特征的实体。
染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。
因此,在一开始需要实现从表现型到基因型的映射即编码工作。
由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。
这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
第38卷第3期计算机仿真2021年3月文章编号:1006 -9348(2021 )03 -0170 -05基于遗传算法的M F A C参数寻优冯增喜U2,李丙辉\张聪1(1.西安建筑科技大学建科学院,陕西西安710055;2.安徽建筑大学智能建筑与建筑节能安黴省重点实验室,安徽合肥230022)摘要:无模型自适应控制是基于数据驱动,不依赖于被控对象的数学模型,且结构简单,易于实现。
目前关于无模型自适应 控制器参数寻优的方法较少,给无模型自适应控制的应用带来了极大的不便。
针对这种情况,设计了一种基于遗传算法的 MFAC控制器参数寻优方法,并在madab环境下分别以具有非线性、一阶惯性加大滞后、高阶加大滞后特征等3个不同典型 被控系统为对象进行了仿真。
仿真结果表明,通过遗传算法进行参数寻优后,控制器性能在超调量、防止调节过程振荡方面 效果明显改善,证明了上述方法可行性和优越性。
关键词:无模型自适应控制;参数;遗传算法;寻优中图分类号:TP29 文献标识码:BOptimizing the Parameters of M F A C Based on the Genetic AlgorithmFENG Zeng - xi1,2,LI Bing - hui1,ZHANG Cong1(1. School of Building Services Science and Engineering,Xian University of Architecture and Technology,Xi’an Shanxi 710055,China;2. Anhui Key Laboratory Of Intelligent Building and Building Energy Conservation,Anhui Jianzhu University,Hefei Anhui230022, China)ABSTRACT:The model - free adaptive control,based on the advanced data - driven,does not require the math model of controlled object.It has a simple structure and is easy to implement.At present,there are few methods for optimizing the parameters of MFAC controller,which brings great inconvenience to the application of model- free a-daptive control.To solve this problem,Genetic Algorithm was used to optimize the parameters of MFAC controller, and three different controlled systems,with nonlinearity,first- order inertia plus large time delay,three- order plus time delay respectively,were regarded as the controlled objects,which was used for simulation based on Matlab.The simulation results show that the control effect of MFAC controller optimized by Genetic Algorithm is better,which proves the feasibility and superiority of the method.KEYWORDS:MFAC;Parameters;GA;Optimizei引言无模型自适应控制(Model Free Adaptive Control, MFAC)是一种基于数据驱动的先进控制方法,它不依赖于对 象数学模型,仅基于被控系统的输入输出数据设计控制器, 且能实现自适应控制m。
基本遗传算法Holland创建的遗传算法是一种概率搜索算法,它利用某种编码技术作用于称为染色体的数串,其基本思想是模拟由这些串组成的个体进化过程.该算法通过有组织的、然而是随机的信息交换,重新组合那些适应性好的串.在每一代中,利用上一代串结构中适应性好的位和段来生成一个新的串的群体;作为额外增添,偶尔也要在串结构中尝试用新的位和段来替代原来的部分。
遗传算法是一类随机优化算法,它可以有效地利用已有的信息处理来搜索那些有希望改善解质量的串.类似于自然进化,遗传算法通过作用于染色体上的基因,寻找好的染色体来求解问题.与自然界相似,遗传算法对待求解问题本身一无所知,它所需要的仅是对算法所产生的每个染色体进行评价,并基于适应度值来改变染色体,使适应性好的染色体比适应性差的染色体有更多的繁殖机会.第一章遗传算法的运行过程遗传算法模拟了自然选择和遗传中发生的复制、交叉和变异等现象,从任一初始种群(Population)出发,通过随机选择、交叉和变异操作,产生一群更适应环境的个体,使群体进化到搜索空间中越来越好的区域,这样一代一代地不断繁衍进化,最后收敛到一群最适应环境的个体(Individual),求得问题的最优解。
一.完整的遗传算法运算流程完整的遗传算法运算流程可以用图1来描述。
由图1可以看出,使用上述三种遗传算子(选择算子、交叉算子和变异算子)的遗传算法的主要运算过程如下:(1)编码:解空间中的解数据x,作为遗传算法的表现形式。
从表现型到基因型的映射称为编码.遗传算法在进行搜索之前先将解空间的解数据表示成遗传空间的基因型串结构数据,这些串结构数据的不同组合就构成了不同的点。
(2)初始群体的生成:随机产生N个初始串结构数据,每个串结构数据称为一个个体,N个个体构成了一个群体。
遗传算法以这N个串结构作为初始点开始迭代。
设置进化代数计数器t←0;设置最大进化代数T;随机生成M个个体作为初始群体P(0)。
(3)适应度值评价检测:适应度函数表明个体或解的优劣性。
遗传算法简单实例为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各个主要执行步骤。
例:求下述二元函数的最大值:(1) 个体编码遗传算法的运算对象是表示个体的符号串,所以必须把变量x1, x2 编码为一种符号串。
本题中,用无符号二进制整数来表示。
因 x1, x2 为 0 ~ 7之间的整数,所以分别用3位无符号二进制整数来表示,将它们连接在一起所组成的6位无符号二进制数就形成了个体的基因型,表示一个可行解。
例如,基因型 X=101110 所对应的表现型是:x=[ 5,6 ]。
个体的表现型x和基因型X之间可通过编码和解码程序相互转换。
(2) 初始群体的产生遗传算法是对群体进行的进化操作,需要给其淮备一些表示起始搜索点的初始群体数据。
本例中,群体规模的大小取为4,即群体由4个个体组成,每个个体可通过随机方法产生。
如:011101,101011,011100,111001(3) 适应度汁算遗传算法中以个体适应度的大小来评定各个个体的优劣程度,从而决定其遗传机会的大小。
本例中,目标函数总取非负值,并且是以求函数最大值为优化目标,故可直接利用目标函数值作为个体的适应度。
(4) 选择运算选择运算(或称为复制运算)把当前群体中适应度较高的个体按某种规则或模型遗传到下一代群体中。
一般要求适应度较高的个体将有更多的机会遗传到下一代群体中。
本例中,我们采用与适应度成正比的概率来确定各个个体复制到下一代群体中的数量。
其具体操作过程是:•先计算出群体中所有个体的适应度的总和fi ( i=1.2,…,M );•其次计算出每个个体的相对适应度的大小 fi / fi ,它即为每个个体被遗传到下一代群体中的概率,•每个概率值组成一个区域,全部概率值之和为1;•最后再产生一个0到1之间的随机数,依据该随机数出现在上述哪一个概率区域内来确定各个个体被选中的次数。
(5) 交叉运算交叉运算是遗传算法中产生新个体的主要操作过程,它以某一概率相互交换某两个个体之间的部分染色体。
遗传算法入门(上)代码中的进化学说与遗传学说写在之前算法所属领域遗传算法的思想解析为什么要用遗传算法?科研现状应用现状遗传算法入门系列文章:(中篇)遗传算法入门(中)实例,求解一元函数最值(MATLAB版)(下篇)遗传算法入门(下)实例,求解TSP问题(C++版)写在之前说明:本想着用大量篇幅写一篇“关于遗传算法的基本原理”作为本系列入门的第一篇,但是在找寻资料的过程中,看到网络上有大量的关于遗传算法的介绍,觉得写的都挺好,所以本文我就简单写点自己的理解。
推荐几篇关于遗传算法的介绍性文章:遗传算法详解(GA)(个人觉得很形象,很适合初学者)算法所属领域相信每个人学习一门知识之前,都会想知道这门知识属于哪一门学科范畴,属于哪一类技术领域?首先对于这种问题,GA是没有绝对的归属的。
算法的定义是解决问题的一种思想和指导理论。
而遗传算法也是解决某一问题的一种思想,用某一编程语言实现这种思想的程序具有很多特点,其中一个便是智能性和进化性,即,不需要大量的人为干涉,程序本身能够根据一定的条件自我筛选,最终得出令人满意的结果。
所以按照这种特性,把它列为人工智能领域下的学习门类毫无疑问是可以的。
遗传算法的思想是借鉴了达尔文的进化学说和孟德尔的遗传学说,把遗传算法说成是一门十足的仿生学一点都不过分。
然而从应用的角度出发,遗传算法是求最优解问题的好方法,如信号处理中的优化、数学求解问题、工业控制参数最优解、神经网络中的激活函数、图像处理等等,所以把遗传算法说成优化范畴貌似也说的过去。
为了方便理解,我们可以暂时将其定位为人工智能–智能优化,这也是很多书中描述遗传算法的惯用词汇。
遗传算法的思想解析遗传算法(gentic algorithms简称GA)是模拟生物遗传和进化的全局优化搜索算法我们知道,在人类的演化中,达尔文的进化学说与孟德尔的遗传学说起着至关重要的理论指导。
每个人作为一个个体组成一个人类种群,正是经历着物竞天择,才会让整个群体慢慢变的更好,即更加适应周围的环境。
而每一代正是靠着基因交叉与变异才能繁衍出更加适应大自然规律的下一代个体。
总之,在漫长的迭代进化中,一个不适应环境的群体,在物竞天择和交叉变异中慢慢变的适应了环境。
GA的思想完全模拟了生物的进化和遗传方式。
我们在求解一个问题的最优解时,先人为的产生很多任意的解,组成一个解集(一个解是一个个体,一个解集是一个种群),这些解有好有坏。
我们的最终目的是让这些解通过“物竞天择”慢慢演化成最终适合所求的最优解。
如果说大自然中是周围的环境对种群中的个体做出选择,那么在求解问题时,就可以用一个问题的模型函数来对众多解做出选择,即:对于一个要解决的问题,我们通过数学建模的方式将其建立为一个纯数学函数F=f(x,y.)" role="presentation">F=f(x,y.)F=f(x,y.)F = f(x,y.) , 该函数就能反应该问题的特性,例如我们需要求解汽车过隧道问题。
可以将隧道抽象成一个倒立的抛物线函数,通过研究该抛物线的特性来研究隧道口的高度。
如果我们在之前先产生一个解集,将解集中的所有解带入抛物线,得出一个结果集,则结果集中的每个结果肯定有好有坏,好的结果所对应的解就是好解,反之亦然。
所以,这个模型函数就充当了自然界中的环境因素。
在遗传算法中,这个模型函数称为目标函数,而在实际的算法运行中,因为考虑到算法的设计,往往会在目标函数上做一些不会改变函数特性,但是会改变函数形式的改进,例如F(x)=x+1" role="presentation">F(x)=x+1F(x)=x+1F(x) = x+1 改为F(x)=5x+1" role="presentation">F(x)=5x+1F(x)=5x+1F(x)=5x+1 ,改变前和改变后,函数都是线性函数,但改变后的函数变得更加陡峭。
有些改变是为让函数在定义域内不再有负值等等。
这些改变后的函数称为适应度函数,总之,适应度函数是为了不改变目标函数对个体选择的特性下为了更好的进行写代码而生的。
我们早在设计算法的一开始就对每个解进行了编码,编码的方式有很多,并不难理解,如适应度函数F(x,y,z)=x2+y2+z2" role="presentation">F(x,y,z)=x2+y2+z2F(x,y,z)=x2+y2+z2F(x,y,z) =x^2+y^2+z^2 , 我们随机生成了一个解(个体)567" role="presentation">567567567 ,其中x=5" role="presentation">x=5x=5x= 5, y=5" role="presentation">y=5y=5y=5, z=7" role="presentation">z=7z=7z=7 ,将其带入函数,可以得出一个适应度值,这个值的大小可以反应该解是否是好的解。
567" role="presentation">567567567 这一个解称之为一个个体,你也可以形象的称之为一个染色体,而三个数字中的每一个数字称之为基因,正如许多基因组成一个染色体(人体)一样。
在上述中,将函数的每个变量对应个体中的每个基因的方式,我们称之为实数编码,当然我们可以通过某一对应法则,将十进制的基因变成二进制,如上述的个体567" role="presentation">567567567,通过某一对应法则变成0101|0110|0111"role="presentation">0101|0110|01110101|0110|01110101| 0110| 0111 ,对于这种形式的编码称之为二进制编码,而此时的基因变成0或1 。
种群中的个体通过遗变异和变异(遗传学说)作为产生新个体的依据,通过适应度函数(环境)控制的选择(物竞天择)对个体进行筛选,经过上百次的循环(繁殖),最终会产生非常接近符合适应度函数(使用环境)的个体(物种),而最好个体中的基因便是最好的变量,即最好的解。
为什么要用遗传算法?为什么要用遗传算法?通过分析遗传算法的思想,我们知道遗传算法说明白了就是用来求解某适应度函数的某些特定值(如最大值,最小值)。
你可能会说,既然给定了纯数学的适应度函数公式,我们完全可以用数学上诸如极限、微积分、解线性方式等方法求解最大值。
但是理论往往只是理论,在实际生产中,如工业、医疗、各种业中,我们通过数学建模抽象出的适应度函数往往是不可导、不连续的,这些复杂的函数根本无法用数学中的推论解决。
而遗传算法根本不用考虑是否连续,是否可导,只要简单的随机给定一个不管是好还是坏的种群,一点击运行代码,即可求出最终的最优解。
这也是遗传算法得意被众多人研究和得以被广泛应用的根本之所在。
科研现状节选本人当年写的《遗传算法综述》随着应用领域的扩展,遗传算法的研究出现了几个引人注目的新动向:一是基于遗传算法的机器学习,这一新的研究课题把遗传算法从历来离散的搜索空间的优化搜索算法扩展到具有独特的规则生成功能的崭新的机器学习算法。
这一新的学习机制对于解决人工智能中知识获取和知识优化精炼的瓶颈难题带来了希望。
二是遗传算法正日益和神经网络、模糊推理以及混沌理论等其它智能计算方法相互渗透和结合,这对开拓21世纪中新的智能计算技术将具有重要的意义。
三是并行处理的遗传算法的研究十分活跃。
这一研究不仅对遗传算法本身的发展,而且对于新一代智能计算机体系结构的研究都是十分重要的。
四是遗传算法和另一个称为人工生命的崭新研究领域正不断渗透。
所谓人工生命即是用计算机模拟自然界丰富多彩的生命现象,其中生物的自适应、进化和免疫等现象是人工生命的重要研究对象,而遗传算法在这方面将会发挥一定的作用。
五是遗传算法和进化规划(Evolution Programming,EP)以及进化策略(Evolution Strategy,ES)等进化计算理论日益结合。
EP和ES几乎是和遗传算法同时独立发展起来的,同遗传算法一样,它们也是模拟自然界生物进化机制的智能计算方法,即同遗传算法具有相同之处,也有各自的特点。
目前,这三者之间的比较研究和彼此结合的探讨正形成热点。
额…….,我突然发现我的综述对现状的描写实在过多,而且里面有大量其他论文引用,大家真需要看的话,去下载我的《遗传算法综述》吧,下面只列出一些标题性的内容,不在粘贴过多的解释了遗传操作的改进。
体现在选择、交叉和变异的改进上。
……………………………….参数的自适应选取大多体现在种群规模N、交叉概率Pc和变异概率Pm 的动态自适应选取上。
……………混合遗传算法是指GA与其他算法的融合。
……………………………………小生境技术。
对于多模态函数优化问题和多峰函数优化问题,往往要求搜索多个全局最优解和有意义的局部最优解,传统的GA容易陷入局部极值。
…………………………….分布并行遗传算法。
……………………………….应用现状节选本人当年写的《遗传算法综述》(1)函数优化函数优化是遗传算法的经典应用领域,也是对遗传算法进行性能评价的常用算例。
许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高纬函数、单峰函数和多峰函数等。
对于一些非线性、多模型、多目标的函数优化问题,用其它优化方法较难求解,而遗传算法可以方便的得到较好的结果。
(2)组合优化问题优化问题包括函数优化和组合优化两种。
函数优化是遗传算法的经典领域,也是对遗传算法进行性能评价的常用算例。
对于组合优化,随着问题规模的扩大,搜索空间急剧扩大,这类复杂问题,人们已经意识到把精力放在寻找其满意解上。
实践证明,遗传算法对于组合优化中的NP完全问题非常有效。
(3)自动控制在自动控制领域中许多与优化相关的问题需要求解,遗传算法的应用日益增加,并显示了良好的效果。
例如用遗传算法进行航空控制系统的优化、基于遗传算法的参数辨识、利用遗传算法进行人工神经网络的结构优化设计和权值学习,都显示了遗传算法在这些领域中应用的可能性。
(4)机器学习学习能力是高级自适应系统所具备的能力之一,基于遗传算法的机器学习,特别是分类器系统,在很多领域中都得到了应用。
遗传算法被用于学习模糊控制规则,可以更好地改进模糊系统的性能;基于遗传算法的机器学习不但可以用来调整人工:神经网络的连接权,也可用于人工神经网络结构的优化设计。