高速信号测试基础知识
- 格式:ppt
- 大小:5.15 MB
- 文档页数:39
测量高速信号快速且比较干净的测量方法
测量高速信号快速的、比较干净的测量方法
您想在高速信号上进行快速而又比较干净(精确)的测量吗?
没时间把探头尖端焊接到器件上?
不确定高速设计的问题来自哪儿?
这些都是工程师们经常遇到的问题。
随着时间压力越来越大,偶发问题阻碍项目竣工,您需要一种快捷、简便、高性能的方法,来测量高速信号。
在示波器上捕获信号的传统方式一直是采用手持式示波器探头。
这种点测探头方式值得信赖,有很多优势,如通过在不同测试点之间移动探头尖端,能够迅速扫描一系列信号。
如果不担心测量的保真度,那幺这种浏览方式的效果很好,因为看到DC电压电平或工作时钟已经足够了。
如果需要更详细的分析或更高的测量保真度,那幺许多工程师会选择把探头尖端焊接到电路板上。
而现在,由于泰克P7700探头的问世,工程师们有了一种新的选择,可以使用精密的点测探头尖端连接到高带宽差分探头或TriMode™探头上。
通过新的高带宽点测探头尖端,您可以快速简便地在不同测试点之间移动探头,同时仍能保持测量保真度。
物理挑战
您可能会说:我需要探测形状非常小的电路特点和元器件。
我的元器件尺寸是0201,差分线对最近可能会达到14mils (0.35mm)。
当前元器件体积这幺小,电路板密度这幺高,接触测试点极具挑战性。
此外,测试点通路是BGA 封装部件背面的通路或位于较大部件之间的解耦电容器。
电路板设计试图把尽可能多的功能封装到器件中,只要PCB设计规则允许,那幺通路间距会尽。
高速信号常见问题分析(一)----一个25MHZ时钟信号的单调性问题测试分析美国力科公司上海代表处胡为东【摘要】本文结合实际测试中遇到的时钟信号回沟问题介绍了高速信号的概念,进一步阐述了高速信号与高频信号的区别,分析了25MHZ时钟信号沿上的回沟等细节的测试准确度问题,并给出了高速信号测试时合理选择示波器的一些建议。
【关键词】高速信号示波器时钟回沟带宽采样率一、问题的提出下图1为一个25MHZ 时钟信号的测试结果截图:图1 使用一个1G带宽、10GS/S的示波器测试一个25M的时钟信号的频率、上升时间等测试结果测得上升时间为485ps,时钟频率为25MHZ左右。
从这个测试结果图上我们并不能看出什么问题来,时钟频率的偏差也很小。
对于时钟信号,我们通常是使用其上升沿或者下降沿的中间电平位置来采样数据,因此时钟信号上升沿或者下降沿的单调性就显得非常重要。
下图2为该时钟上升沿的细节,从该图上我们可以清楚的看到示波器对该信号的采样点位置及采样点个数。
图2 使用一个1G带宽、10GS/S的示波器测试一个25M的时钟上升沿的测试结果从图2上我们可以看到波形上升沿比较平滑,单调性很好。
那么如果我们用一个更高带宽、更高采样率的示波器来测这个时钟会有什么样的变化呢?下图3为用一个6G带宽的示波器,20GS/s采样率去测量该时钟信号,我们发现在该时钟信号的上升沿的中点位置处明显有一个回沟,说明事实上该时钟信号的上升沿是非完全单调的!图3使用一个6G带宽、20GS/S的示波器测试一个25M的时钟上升沿的测试结果那么到底是由于示波器带宽的原因还是由于示波器采样率的原因导致该时钟信号在1G带宽的示波器上和6G带宽的示波器上测试结果的差异呢?下图4为用一个6G带宽的示波器,10GS/s采样率去测量该时钟信号的测试结果图:图4 使用一个6G带宽、10GS/S的示波器测试一个25M的时钟上升沿的测试结果从图4中我们可以看到,波形的回沟已经变得很不明显,和1G带宽,10GS/s 采样率的示波器测得的结果很类似,另外我们还将6GHZ带宽的示波器带宽限制到了1GHZ ,当使用10Gs/s的采样率的时候,上升沿上看不到回沟;当使用20Gs/s 的采样率的时候,能够看到回沟,通过分析比较我们应该可以认为该时钟信号的非单调边沿未能准确测试主要原因应该是示波器采样率不足,示波器带宽也可能有一定的影响,但是影响应该很小。
高速信号:通常我们定义,一个信号边沿的上升时间如果小于等于4~6 倍的信号传输延时,则认为该信号是高速信号,对该信号的分析要引入传输线理论,而该信号的设计也要考虑信号完整性问题。
如对于一个10MHz 的信号,假设其边沿的上升时间为1ns,而常见的FR- 4 基材的PCB 的表层走线的传输速度为180ps/inch。
可以推算,如果该信号从源端到宿端的走线长度超过了28000mil,就必须作为高速信号对待了。
阻抗不匹配可能带来的问题阻抗不匹配可能引起很多信号质量问题,最常见的包括过冲、振荡、台阶、回沟等。
这些信号质量问题可能会给电路的可靠工作埋下隐患甚至导致系统完全失效。
(1)过冲过冲多是由于驱动太强或匹配不足而导致,过冲的幅度如果超过了芯片允许的最大输入电压,则会对芯片造成损伤,导致器件寿命大大降低。
(2)振荡振荡多是由于传输线上电感量太大或阻抗不匹配而引起多次反射造成的。
如果振荡的幅度太大同样会对器件寿命造成损伤,同时,振荡会使系统的EMC 性能劣化。
另外,如果振荡的幅度超过了信号的判决电平,则会造成错误判决。
(3)台阶产生台阶的可能原因是匹配电阻过大,台阶如果出现在阈值电平附近可能会导致错误判决。
(4)回沟产生回沟的原因可能是匹配电阻过大或串扰。
回沟也会导致错误判决,而且,如果时钟信号在阈值电平附近出现回沟,则可能导致时序电路两次触发。
阻抗匹配端接策略(1)使负载阻抗与传输线阻抗匹配,即并行端接;(2)使源阻抗与传输线阻抗匹配,即串行端接。
如果负载反射系数或源反射系数二者任一为零,反射将被消除.一般应采用并行端接,因其是在信号能量反射回源端之前在负载端消除反射,这样可以减少噪声、电磁干扰以及射频干扰。
但是串行端接比较简单,应用也很广泛。
并行端接并行端接主要是在尽量靠近负载端的位置加上拉或下拉阻抗以实现终端的阻抗匹配,根据不同的应用环境,并行端接又可分为以下几种类型:①简单的并行端接②戴维宁(Thevenin)并行端接③主动并行端接④并行AC 端接⑤二极管并行端接串行端接串行端接是通过在尽量靠近源端的位置串行插入一个电阻(典型阻值10Ω到75Ω)到传输线中来实现的。
四步检查法轻松搞定示波器测量高速信号随着电子技术的高速发展,通信信号频率越来越高,信号质量要求也越来越严。
那么要测量这些高速信号要用什么参数的示波器呢?有些人就会说那选一个贵一些高端一些的示波器不就可以了么。
其实并不是这样的,如果不注重一些细节问题用再贵的示波器也不见得能够测量的很精准。
下面看看如何更好的利用示波器来测量高速信号:一、带宽的选择:测量高速信号,首先要考虑测试系统的带宽,这个测试系统的带宽包括探头的带宽和示波器的带宽。
要测量500MHz的信号,用一个500MHz带宽的示波器是不是就可以了?一些用户可能对带宽的概念并不是很清晰。
认为500MHz带宽的示波器就可以测量500MHz的信号了,其实并不是这样。
带宽所指的频率是正弦波信号衰减到-3dB时的频率,而我们一般测量的数字信号都不是正选波,而是接近方波。
这两者对带宽的需求是不同的。
根据傅里叶变换可知,方波可以分解为奇次倍数频率的正弦波。
比如1MHz的方波,是由1MHz、3MHz、5MHz、7MHz......等正弦波叠加而成。
下图为不同滤波器下方波信号的响应。
分别为把滤波器设置为方波基频频率、3次谐波频谱、5次谐波频率、7次谐波频率的方波响应。
图1 截至频率为方波频率的滤波情况图2 截至频率为方波3次谐波频率的滤波情况图3 截至频率为方波5次谐波频率的滤波情况图4 截至频率为方波7次谐波频率的滤波情况可以看出想要得到较为完整的方波信息,最少需要5次谐波分量,而且如果想要获得更加准确的信息,就需要能够测量到更多的谐波分量。
所以选择示波器和探头带宽时至少要选择被测量方波信号的5次谐波频率以上的带宽。
二、探头的选择示波器是无法直接对信号进行测量的,必须通过一个物理连接将信号传输到示波器内。
这种物理连接就是探头。
探头对高速信号测量来说至关重要。
普通无源探头一般有1:1探头和10:1探头两种。
这两种探头除了衰减比例不同外,还会对高速信号产生很大的差异。
高速设计基本知识点高速设计是现代电子工程领域的一个重要分支,它涉及到许多关键的技术和概念。
本文将介绍高速设计的基本知识点,帮助读者理解和掌握这一领域的基础要点。
一、时序和延迟时序是指信号在电路中传播的速度和时间关系。
在高速设计中,我们需要注意信号的传播延迟。
延迟可以通过调整电路布局、使用特殊的信号线和缓冲器来控制。
二、信号完整性高速信号的完整性是指信号在传输过程中保持准确和可靠的能力。
为了保证信号的完整性,我们需要考虑信号的反射、干扰和噪音等因素。
常用的方法包括使用终端电阻、匹配信号线的阻抗、增加屏蔽层等。
三、功率分配和地面引入在高速设计中,电源和地面的布局对于系统的性能和稳定性非常重要。
合理的功率分配和地面引入可以减少电源噪音、提高信号完整性和抑制辐射干扰。
四、布线和层叠高速设计中的布线需要考虑到信号线长度、走线路径、相邻信号线间的间距等因素。
合理的布线可以降低串扰和延迟,提高系统性能。
层叠是指在多层PCB中将信号和电源层相互叠加,以达到电磁兼容和信号完整性的要求。
五、信号完美匹配为了确保信号在各个组件之间的传输准确和高效,我们需要进行信号完美匹配。
信号完美匹配包括对信号线的长度、阻抗、延迟等进行精确地控制,以保证信号在不同组件之间传输的匹配性。
六、引脚排布和设计规则在高速设计中,合理的引脚排布可以最大程度地减少信号线的长度和延迟,提高系统性能。
此外,合理的设计规则也是高速设计的关键要素,可以通过减小信号线长度、增加引脚功率等方式来提高系统性能和稳定性。
七、仿真和调试在高速设计的过程中,仿真和调试是必不可少的步骤。
通过仿真软件可以模拟和分析信号在系统中的传输,找出潜在的问题并进行优化。
而调试过程则是对设计的硬件进行验证和问题排查的过程。
结论高速设计作为电子工程领域的重要分支,需要掌握并熟悉其中的基本知识点。
本文介绍了高速设计中的时序和延迟、信号完整性、功率分配和地面引入、布线和层叠、信号完美匹配、引脚排布和设计规则以及仿真和调试等基本知识点。
示波器测量高速信号时的注意事项随着电子技术的快速发展,通信信号频率越来越高,信号质量要求也越来越严。
测量这些高速信号是不是只要选一个昂贵的示波器就行了呢?其实不然,如果一些细节没有被注意,再贵的示波器也不见得测得准!一、带宽选择测量高速信号,首先要考虑测试系统的带宽,这个测试系统的带宽包括探头的带宽和示波器的带宽。
要测量100MHz的信号,用一个100MHz带宽的示波器是不是就可以了?一些用户可能对带宽的概念并不是很清晰。
认为100MHz带宽的示波器就可以测量100MHz 的信号了,其实并不是这样。
带宽所指的频率是正弦波信号衰减到-3dB时的频率,而我们一般测量的数字信号都不是正选波,而是接近方波。
这两者对带宽的需求是不同的。
根据傅里叶变换可知,方波可以分解为奇次倍数频率的正弦波。
比如1MHz的方波,是由1MHz、3MHz、5MHz、7MHz......等正弦波叠加而成。
下图为不同滤波器下方波信号的响应。
分别为把滤波器设置为方波基频频率、3次谐波频谱、5次谐波频率、7次谐波频率的方波响应。
图 1 截至频率为方波频率的滤波情况图 2 截至频率为方波3次谐波频率的滤波情况图 3 截至频率为方波5次谐波频率的滤波情况图 4 截至频率为方波7次谐波频率的滤波情况可以看出想要得到较为完整的方波信息,最少需要5次谐波分量,而且如果想要获得更加准确的信息,就需要能够测量到更多的谐波分量。
所以选择示波器和探头带宽时至少要选择被测量方波信号的5次谐波频率以上的带宽。
二、探头的选择示波器是无法直接对信号进行测量的,必须通过一个物理连接将信号传输到示波器内。
这种物理连接就是探头。
探头对高速信号测量来说至关重要。
普通无源探头一般有1:1探头和10:1探头两种。
这两种探头除了衰减比例不同外,还会对高速信号产生很大的差异。
想要解释这个问题,需要现讨论一下探头的一个关键特性——负载效应。
理想情况下,我们希望我们的测量设备的阻抗无穷大,这样测试设备的接入就不会对被测系统产生任何影响,从而保证测量的真实性。
高速信号常见问题分析(一)----一个25MHZ时钟信号的单调性问题测试分析胡为东美国力科公司上海代表处2008年10月【摘要】本文结合实际测试中遇到的时钟信号回沟问题介绍了高速信号的概念,进一步阐述了高速信号与高频信号的区别,分析了25MHZ时钟信号沿上的回沟等细节的测试准确度问题,并给出了高速信号测试时合理选择示波器的一些建议。
【关键词】高速信号示波器时钟回沟带宽采样率一、问题的提出下图1为一个25MHZ 时钟信号的测试结果截图:图1 使用一个1G带宽、10GS/S的示波器测试一个25M的时钟信号的频率、上升时间等测试结果测得上升时间为485ps,时钟频率为25MHZ左右。
从这个测试结果图上我们并不能看出什么问题来,时钟频率的偏差也很小。
对于时钟信号,我们通常是使用其上升沿或者下降沿的中间电平位置来采样数据,因此时钟信号上升沿或者下降沿的单调性就显得非常重要。
下图2为该时钟上升沿的细节,从该图上我们可以清楚的看到示波器对该信号的采样点位置及采样点个数。
图2 使用一个1G带宽、10GS/S的示波器测试一个25M的时钟上升沿的测试结果从图2上我们可以看到波形上升沿比较平滑,单调性很好。
那么如果我们用一个更高带宽、更高采样率的示波器来测这个时钟会有什么样的变化呢?下图3为用一个6G带宽的示波器,20GS/s采样率去测量该时钟信号,我们发现在该时钟信号的上升沿的中点位置处明显有一个回沟,说明事实上该时钟信号的上升沿是非完全单调的!图3使用一个6G带宽、20GS/S的示波器测试一个25M的时钟上升沿的测试结果那么到底是由于示波器带宽的原因还是由于示波器采样率的原因导致该时钟信号在1G带宽的示波器上和6G带宽的示波器上测试结果的差异呢?下图4为用一个6G带宽的示波器,10GS/s采样率去测量该时钟信号的测试结果图:图4 使用一个6G带宽、10GS/S的示波器测试一个25M的时钟上升沿的测试结果从图4中我们可以看到,波形的回沟已经变得很不明显,和1G带宽,10GS/s采样率的示波器测得的结果很类似,另外我们还将6GHZ带宽的示波器带宽限制到了1GHZ ,当使用10Gs/s的采样率的时候,上升沿上看不到回沟;当使用20Gs/s的采样率的时候,能够看到回沟,通过分析比较我们应该可以认为该时钟信号的非单调边沿未能准确测试主要原因应该是示波器采样率不足,示波器带宽也可能有一定的影响,但是影响应该很小。
什么是高速数字信号?高速数字信号由信号的边沿速度决定,一般认为上升时间小于4倍信号传输延迟时可视为高速信号,而高频信号是针对信号频率而言的。
高速电路涉及信号分析、传输线、模拟电路的知识。
错误的概念是:8KHz帧信号为低速信号。
多高的频率才算高速信号?当信号的上升/下降沿时间< 3~6倍信号传输时间时,即认为是高速信号.对于数字电路,关键是看信号的边沿陡峭程度,即信号的上升、下降时间,信号从10%上升到90%的时间小于6倍导线延时,就是高速信号!即使8KHz的方波信号,只要边沿足够陡峭,一样是高速信号,在布线时需要使用传输线理论。
信号完整性研究:什么是信号完整性?时间:2009-03-11 20:18来源:sig007 作者:于博士点击: 1813次信号完整性主要是指信号在信号线上传输的质量,当电路中信号能以要求的时序、持续时间和电压幅度到达接收芯片管脚时,该电路就有很好的信号完整性。
当信号不能正常响应或者信号质量不能使系统长期稳定工作时,就出现了信号完整性问题,信号完整性主要表现在延迟、反射、串扰、时序、振荡等几个方面。
一般认为,当系统工作在50MHz时,就会产生信号完整性问题,而随着系统和器件频率的不断攀升,信号完整性的问题也就愈发突出。
元器件和PCB板的参数、元器件在PCB板上的布局、高速信号的布线等这些问题都会引起信号完整性问题,导致系统工作不稳定,甚至完全不能正常工作。
1、什么是信号完整性(Singnal Integrity)?信号完整性(Singnal Integrity)是指一个信号在电路中产生正确的相应的能力。
信号具有良好的信号完整性(Singnal Integrity)是指当在需要的时候,具有所必须达到的电压电平数值。
主要的信号完整性问题包括反射、振荡、地弹、串扰等。
常见信号完整性问题及解决方法:问题可能原因解决方法其他解决方法过大的上冲终端阻抗不匹配终端端接使用上升时间缓慢的驱动源直流电压电平不好线上负载过大以交流负载替换直流负载在接收端端接,重新布线或检查地平面过大的串扰线间耦合过大使用上升时间缓慢的发送驱动器使用能提供更大驱动电流的驱动源时延太大传输线距离太长替换或重新布线, 检查串行端接头使用阻抗匹配的驱动源, 变更布线策略振荡阻抗不匹配在发送端串接阻尼电阻2、什么是串扰(crosstalk)?串扰(crosstalk)是指在两个不同的电性能之间的相互作用。