桩基低应变检测曲线实例分析范文
- 格式:doc
- 大小:626.50 KB
- 文档页数:10
低应变动力测桩典型曲线实例分析报告赵竹占教授级高工0571-********(0) 88075752(h) 136******** E-mail:hzzhaozz@PDF 文件使用 "pdfFactory Pro" 试用版本创建 欢迎Welcome!低应变动力测桩典型曲线分析报告PDF 文件使用 "pdfFactory Pro" 试用版本创建 一、低应变法(LST法)利用低能量的激振力产生纵向振动或沿 桩身纵向传播的波动检测桩身完整性的方法:方法包括: 1.反射波法:冲击力激振,检测和分析纵向波动在桩内传播过 程中的响应。
优点:方法简单、轻便,抽样率高,可用于判定桩身的完整性和 缺陷部位的位置和性质。
缺点:对缺陷程度难以定量化,难以发现长桩深部的缺陷,不能 求取桩的承载力。
2.机械阻抗法:在桩头上施加一激振力(稳态、瞬态)来研究 桩体结构在激振力作用下与产生的结构响应(a、v、u)之比 值,进而来评定桩体的刚度Kb=2πfm/| v/k|m以及相应 的承载力。
优点:评价桩身的定量化高于反射波法,可提供单桩的初始刚度。
缺点:现场工作效率低于反射波,对桩身局部缺陷的类型判别不 如反射波直观。
低应变动力测桩典型曲线分析报告PDF 文件使用 "pdfFactory Pro" 试用版本创建 二、高应变法:(HST法)利用高能量的冲击力打动桩 身,使桩周土阻力得以充分发挥并研究桩承载力和 桩身完整性,分析方法包括: 1.凯司法:在理想化的桩土条件下根据波动方程的闭 合解计算桩周土阻力的一种分析方法。
2.实测曲线拟合法:根据高应变的测试F-V曲线,用 一维波动方程“反演”出桩周—土模型,进而获得与 静荷载试验相似的一些成果。
优点:能使桩侧土和桩端土在一定程度上得以发挥, 可估计桩的极限承载力,以及评价桩身质量。
缺点:抽样率和代表性差,较耗资和费时,属于间接 法,所提供的极限承载力具有较强的经验性,对大 长桩和嵌岩桩可靠性较差。
桩基低应变检测曲线实例分析1、完整桩一般完整桩在时程曲线上的反应:对于摩擦桩和嵌岩桩表现有三种情况:桩底反射与初始入射波同相;桩底反射不明显,以及桩底反射与初始入射波先反相后同相。
如图所示:预制管桩外径Φ500mm,h=13.3m壁厚100mm,砼强度等级C60,在空气中的反射波曲线预应力空心管桩,外径Φ500mm,h=12m,壁厚80mm,砼强度等级C80,在空气中的反射波曲线实例:桩类型:Φ1.2m,H=38.5m钻孔灌注桩地点:杭宁高速公路K76+8930-R2/0-R3桩评价:完整嵌岩桩该桩径1.2m,桩长38.5m,C30钻孔灌注桩,桩尖进入微风化泥质岩2m,测试波形完整。
纵波速度为3600-3700m/s,桩底反向,说明无沉渣.为完整嵌岩桩.地层影响的时程曲线桩桩类型:Φ1200mm,h=28.4m冲孔灌注桩地点:诸永高速台州一段25标某桥桩评价:该桩砼强度c25,采用冲抓钻,12m见基岩后采用冲击钻,一直到桩底,从波形可见进入基岩有明显的反向反射,为地层的反映特殊桩形的曲线桩类型:Φ1000mm,L约13m,冲击桩地点:温州洞头中心渔港石码头评价:完整桩该外加5mm壁厚钢护筒至强风化,后变径800嵌岩2D。
故在桩底前同向反映为钢护筒底变径处的部位,经钻孔验证而不是缺陷2、桩头缺陷桩桩头疏松桩头浮浆或强度偏低的桩,测试结果无法反映桩的完整性,曲线反应为入射波峰较低而且脉冲较缓,而且后续波形呈低频,此类现象均属桩头强度偏低。
如图所示:桩类型:Φ1.2m,L=18.7m钻孔灌注桩地点:杭兴高速公路MP14—R3桩评价:桩头砼强度低该桩径1.2m,长18.7m,设计混凝土强度等级为C25,测试发现曲线呈低频振荡,判为桩头浅部强度低或局部离柝,经取芯验证,0-1m岩芯松散,1-2.7m岩芯有气孔,强度低,2.7m以后岩芯强度达到要求,芯样完整,要求凿去3m桩头重新接上桩头处理.3、桩底缺陷桩桩类型:Φ800,H=19.0m钻孔灌注桩地点:温州某工地嵌岩桩评价:桩长明显沉渣该桩设计桩长19m,单桩承载力3000kN,若按3520m/s计,测试桩底在18m处同向反射明显,取芯后有50cm淤泥沉渣,未进入中风化,后注浆再测也有同向反映,说明效果不明显。
桩基低应变检测分析1、目前检测存在的问题(1)多次变径多次反射互相干扰低应变反射波法检测桩基完整性,对直孔桩来讲就比较简单清晰,根据反射信号的时间、幅度和相位即可判断缺陷的位置和程度,而且判断效果比较好,而对于在施工中出现异常的桩,它的实际形态可能是正常、扩径互层,而下部的正常桩径相对于上部的扩径来讲,就表现为相对的缩径,对这类桩的检测相对来讲就困难的多,第一次扩径由于距离桩头近,反射能量直达桩头上安装的传感器,产生强烈的一次反向反射,二次同向反射和三次反向反射,它往往屏蔽甚至淹没了第二次,第三次扩径所产生的反射信号,因此第一次的扩径的多次反射是一个重要的干扰源。
(2)低应变反射波法不是准确测试低应变反射波法由于采用尼龙力棒产生激振,其冲击脉冲频率低,频带窄,高频分量缺陷,识别缺陷分辨率较低。
低应变反射波法检测缺陷位置的原理是准确测出反射回波时间来确定其位置,由于低应变应力波速不是常数,它与混凝土的强度、骨料等有关,而且混凝土是非均质材料,应力波在不同密度的材料中传播速度不同,因此在确定缺陷位置时,实际上是一个包括二个未知数的方程,而实际工作中我们是假设一定的波速来确定位置,因此这种检测方法只是比较粗糙的识别。
(3)数值积分导致消息损失在实际检测过程中,加速度计采集的信号用离散函数的数值积分求解。
在积分过程中,它滤除了加速计曲线中的部分高频信息,提升了信号的低频分量幅度,增强了桩深部缺陷反射信号幅度,变的比较容易识别桩低反射信号,同时降低了识别精度,尤其是上部缺陷的漏判。
2、地质条件对检测结果的影响对于基桩的理论假设是建立在一维波动理论上来描述杆的波动问题的.这种理论假设只是在特定边界条件下的假设,在实际基桩测试过程中,由于复杂的地质条件、施工方法和技术,这种假设有时并不能得到完全满足,应在检测过程中予以注意。
虽然低应变冲击能量小,所激发桩周土阻力很小,但桩周土阻力对应力波传播的影响非常大。
不同地质条件,在基桩检测中均会对检测结果产生不同的影响和干扰。
低应变法检测原理及案例宝子们!今天咱来唠唠低应变法检测这个事儿。
先说说低应变法检测原理哈。
你可以把要检测的桩想象成一个小怪兽,这个小怪兽藏在地下,咱得想办法知道它内部是不是有啥毛病。
低应变法呢,就像是给这个小怪兽来个小震动,然后看它的反应。
具体来说呀,咱用一个小锤子在桩顶轻轻敲那么一下,就像在小怪兽的脑袋上轻轻弹了个脑瓜崩儿。
这一敲呢,就会产生应力波,这个应力波就会沿着桩身往下跑。
如果桩身是健康的、完整的,那这个应力波就会比较顺畅地跑下去,再反弹回来,就像一个小球在一个光滑的管道里弹来弹去一样。
但是呢,如果桩身有缺陷,比如说中间有个地方断了或者有个大空洞,那这个应力波到了这个地方就会像遇到了一堵墙一样,一部分波就会反射回来,而且这个反射回来的波和正常的波就不一样啦。
咱就可以通过检测这个反射波的情况,来判断桩身是不是有问题,就像通过小怪兽被弹脑瓜崩儿后的反应来判断它是不是哪里不舒服一样。
咱再聊聊案例吧。
就说我之前经历过的一个工程。
那是一个盖大楼的工程,地下的桩可多啦。
有一根桩看起来好像没啥问题,表面也挺光滑的。
可是呢,按照规定还是得做低应变法检测。
检测的师傅就拿着小锤子,“当当当”地敲了几下。
结果仪器上显示的波就有点怪怪的。
这就像是小怪兽本来应该正常叫几声,结果却发出了一种很奇怪的声音。
师傅就仔细研究这个波形,发现这个波在桩身大概中间的位置有一个很强的反射信号。
这就意味着啥呢?很可能这个桩中间有缺陷啊。
后来施工方就把这根桩周围挖开一看,好家伙,原来在浇筑桩身的时候,中间有一部分混凝土没有灌好,有个大空洞呢。
多亏了这个低应变法检测,要是没发现这个问题,这大楼盖在这根有问题的桩上,那可就危险了,说不定以后大楼会倾斜或者出现裂缝呢。
这就好比你穿了一双鞋,要是鞋底有个大洞你不知道,走着走着可能就会摔跤一样。
还有一个案例呢。
在一个桥梁工程里,那些桩就像桥梁的脚一样,必须得稳稳当当的。
检测的时候,刚开始看波形好像都挺正常的。
桩基低应变检测曲线实例分析对桩基低应变检测曲线实例分析。
1、完整桩一般完整桩在时程曲线上的反应:对于摩擦桩和嵌岩桩表现有三种情况:桩底反射与初始入射波同相;桩底反射不明显,以及桩底反射与初始入射波先反相后同相。
如图所示:预制管桩外径Φ500mm,h=13.3m壁厚100mm,砼强度等级C60,在空气中的反射波曲线预应力空心管桩,外径Φ500mm,h=12m,壁厚80mm,砼强度等级C80,在空气中的反射波曲线实例:桩类型:Φ1.2m,H=38.5m钻孔灌注桩地点:杭宁高速公路K76+893 0-R2/0-R3桩评价:完整嵌岩桩该桩径1.2m,桩长38.5m,C30钻孔灌注桩,桩尖进入微风化泥质岩2m,测试波形完整。
纵波速度为3600-3700m/s,桩底反向,说明无沉渣.为完整嵌岩桩.地层影响的时程曲线桩桩类型:Φ1200mm,h=28.4m冲孔灌注桩地点:诸永高速台州一段25标某桥桩评价:该桩砼强度c25,采用冲抓钻,12m见基岩后采用冲击钻,一直到桩底,从波形可见进入基岩有明显的反向反射,为地层的反映特殊桩形的曲线桩类型:Φ1000mm, L约13m,冲击桩地点:温州洞头中心渔港石码头评价:完整桩该外加5mm壁厚钢护筒至强风化,后变径800嵌岩2D。
故在桩底前同向反映为钢护筒底变径处的部位,经钻孔验证而不是缺陷2、桩头缺陷桩桩头疏松桩头浮浆或强度偏低的桩,测试结果无法反映桩的完整性,曲线反应为入射波峰较低而且脉冲较缓,而且后续波形呈低频,此类现象均属桩头强度偏低。
如图所示:桩类型:Φ1.2m,L=18.7m钻孔灌注桩地点:杭兴高速公路MP14—R3桩评价:桩头砼强度低该桩径1.2m,长18.7m,设计混凝土强度等级为C25,测试发现曲线呈低频振荡, 判为桩头浅部强度低或局部离柝,经取芯验证,0-1m岩芯松散,1-2.7m岩芯有气孔,强度低,2.7m以后岩芯强度达到要求,芯样完整,要求凿去3m桩头重新接上桩头处理.3、桩底缺陷桩桩类型: Φ800, H=19.0m钻孔灌注桩地点: 温州某工地嵌岩桩评价: 桩长明显沉渣该桩设计桩长19m,单桩承载力3000kN,若按3520m/s计,测试桩底在18m处同向反射明显, 取芯后有50cm淤泥沉渣,未进入中风化,后注浆再测也有同向反映,说明效果不明显。
承台-基桩低应变法实测曲线分析杨晓攻#(合肥市建设工程监测中心有限责任公司,安徽合肥230001)作者简介:杨晓娟(1984-),女,安徽合肥人,毕业于安徽工商管理学院M'A,工程师,主要从事建筑工检测、管理等。
;册嗥»:酣:中图分类号:TU473文献标识码:B文章编号:1007-7359(2020)09-0124-02DOI:10.16330/j.c n ki.1007-7359.2020.09.0590引言低应变法检测基桩完整性,因其快速、便捷和经济等特点3在基础检测过程中广泛应用,应用范围不仅仅包括工业与民用建筑、道路桥梁、港□码头等工程的桩基基础,还应用于输变电路铁塔等桩基基础。
低应变法检测基桩完整性时,其测试原理:在桩身顶部进行竖向激振,桩的质点受迫振动产生沿桩身向下传播的应力波,当桩身存在明显波阻抗差异的界面(如桩底、断桩和严重离析等部位)或桩身截面面积变化部位,应力波就会发生反射。
利用基桩检测系统将这些包含有桩身质量信息的反射信号接收,通过对反射波的波形、振幅、频谱和相位的综合分析3从而判断被测桩的桩身结构完整性3对桩身存在缺陷的部位和相对程度作出判断12」。
目前,国内外对承台-基桩低应变法检测的研究有了较丰硕的成果。
文献[3-4]对应力波在平台-基桩系统传播进行了试验研究和数值分析模拟研究,文献⑸建立了存在上部结构的群桩模型,在承台不同位置激振,桩身不同位置拾振,用有限元分析软件进行了数值分析研究,文献9通过交错网格差分法开展了三维桩土条件下承台-桩低应变动测研究。
本文通过对安九铁路(安徽段)电力迁改工程某线承台-基桩的低应变法实测曲线对比分析,确定承台-基桩最优低应变法检测方案。
1工程概况安九高铁自新安庆西站引出,终点为九江市庐山站,正线全长170km,是北摘要:目前低应变法已成为基桩完整性的主要检测手段。
通常情况下,低应变法检测时都是在桩头位置放置传感器,同时进行竖向激振产生沿桩身向下传播的应力波,当桩身存在明显波阻抗差异的界面(如桩底、断桩和严重离析等部位)或桩身截面面积变化部位,应力波就会发生反射。
低应变法在桩基完整性检测中的几个案例浅析摘要:本文结合几个案例,介绍了低应变检测技术在桩基完整性检测中的注意事项及其缺陷判定方法。
关键词:低应变法桩基完整性缺陷一、概述桩基质量检测技术主要有直接检测和间接检测两种:直接检测主要包括静载试验和钻芯法,间接检测主要包括低应变法、高应变法和声波透射法。
其中,低应变法检测相对于桩基的其他检测方法更加简便、快捷。
低应变法检测,具有仪器轻便、基桩信息采集快速、测试成本低廉、检测耗时短、对桩身无损等优点,因此在桩基质量检测中应用最为广泛。
低应变法主要用于检查基桩桩身完整性,能够根据反射波形判断出基桩的扩径、缩径、离析、裂缝、断桩等桩身可能存在的异常及大概位置等。
一般地,由混凝土、CFG等刚性材料形成的,与其周围介质存在显著声学差异的的桩,均可用低应变法进行完整性检测判断。
二、低应变法检测的历史20世纪70年代初,A.G.Davis、J.Stenbach和E.Vey分别提出了机械阻抗法和应力波传播法在桩基无损检测中的传播理论,为桩基低应变法检测桩基完整性奠定了理论基础。
20世纪80年代,国内外同时又相继研究和发展了各种激振式的动力测桩法,低应变法检测桩基完整性因此而逐步发展。
直到现在,低应变法检测也因为其经济便捷的优势已经成为了桩基完整性检测的主要方法。
三、低应变法检测的原理简介一般我们将基桩检测工作中的桩近似地看作一维弹性均质杆件,因为一维弹性杆件的波动理论与基桩检测中的敲击激发方式相符合。
基桩检测中,利用激振锤撞击桩体时所产生的反射信号,被桩头传感器传送给动测仪,再经计算机对这些信号进行分析,我们便能以此作为对桩身质量的判断依据。
简介原理如图1四、低应变法检测前的准备工作对于基桩的低应变检测,除了按照相应检测技术规范准备外,还需注意以下内容:(1)敲击工具的选择:力棒敲击能激发宽脉冲,它激发出的波穿透能力较强,但判别能力稍差,适宜于较长的基桩;手锤敲击能激发窄脉冲,它激发出的波穿透能力较弱,但判别能力较强,适宜于较短的基桩。
WORD格式
首波波峰一般为桩头,在接近桩底是会有个能看出来的桩底反射波(会比较小),这个反射波的波峰位置一般为桩底位置。
中间段如果有频率与该波形图大体频率不同的杂波时,一般认为是砼本身质量有问题,可能是离析,蜂窝等等。
如果中间段出现与波形图频率大体相同但振幅较突出的波时,该区域桩体可能形状发生改变(扩径或缩颈),突出波前半周期为波峰一般为缩颈,前半周期为波谷一般为扩径,正常波形图应该是先一个周期的大波(先出现波峰)然后沿着轴是振幅很小的波(可以看成是直线)然后桩底位置又一个波(波较小,先出现波峰),波峰位置为桩底。
大应变试桩的基本原理:用重锤冲击壮顶,使桩-土产生足够的相对位移,以充分激发桩周土阻力和桩端支承力,通过安装在桩顶以下桩身两侧的加速度传感器和安装在重锤上的加速度传感器接收桩和锤的应力波信号,应用应力波理论分析处理力和速度时程曲线,从而判定桩的承载力和评价桩身质量完整性。
而小应变测桩身结构完整性的基本原理是:通过在桩顶施加激振信号产生应力波,该应力波沿桩身传播过程中,遇到不连续界面(如蜂窝、夹泥、断裂、孔洞等缺陷)和桩底面时,将产生反射波,检测分析反射波的传播时间、幅值和波形特征,就能判断桩的完整性。
专业资料整理。
桩基低应变检测曲线实例分析
对桩基低应变检测曲线实例分析。
1、完整桩
一般完整桩在时程曲线上的反应:对于摩擦桩和嵌岩桩表现有三种情况:桩底反射与初始入射波同相;桩底反射不明显,以及桩底反射与初始入射波先反相后同相。
如图所示:
预制管桩外径Φ500mm,h=13.3m壁厚100mm,砼强度等级C60,在空气中的反射波曲线
预应力空心管桩,外径Φ500mm,h=12m,壁厚80mm,砼强度等级C80,在空气中的反射波曲线
实例:桩类型:Φ1.2m,H=38.5m钻孔灌注桩
地点:杭宁高速公路K76+893 0-R2/0-R3桩
评价:完整嵌岩桩
该桩径1.2m,桩长38.5m,C30钻孔灌注桩,桩尖进入微风化泥质岩2m,测试波形完整。
纵波速度为3600-3700m/s,桩底反向,说明无沉渣.为完整嵌岩桩.
地层影响的时程曲线桩
桩类型:Φ1200mm,h=28.4m冲孔灌注桩
地点:诸永高速台州一段25标某桥桩
评价:该桩砼强度c25,采用冲抓钻,12m见基岩后采用冲击钻,一直到桩底,从波形可见进入基岩有明显的反向反射,为地层的反映
特殊桩形的曲线
桩类型:Φ1000mm, L约13m,冲击桩
地点:温州洞头中心渔港石码头
评价:完整桩
该外加5mm壁厚钢护筒至强风化,后变径800嵌岩2D。
故在桩底前同向反映为钢护筒底变径处的部位,经钻孔验证而不是缺陷
2、桩头缺陷桩桩头疏松
桩头浮浆或强度偏低的桩,测试结果无法反映桩的完整性,曲线反应为入射波峰较低而且脉冲较缓,而且后续波形呈低频,此类现象均属桩头强度偏低。
如图所示:桩类型:Φ1.2m,L=18.7m钻孔灌注桩
地点:杭兴高速公路MP14—R3桩
评价:桩头砼强度低
该桩径1.2m,长18.7m,设计混凝土强度等级为C25,测试发现曲线呈低频振荡, 判为桩头浅部强度低或局部离柝,经取芯验证,0-1m岩芯松散,1-2.7m岩芯有气孔,强度低,2.7m以后岩芯强度达到要求,芯样完整,要求凿去3m桩头重新接上桩头处理.
3、桩底缺陷桩
桩类型: Φ800, H=19.0m钻孔灌注桩
地点: 温州某工地嵌岩桩
评价: 桩长明显沉渣
该桩设计桩长19m,单桩承载力3000kN,若按3520m/s计,测试桩底在18m处同向反射明显, 取芯后有50cm淤泥沉渣,未进入中风化,后注浆再测也有同向反映,说明效果不明显。
桩类型: Φ800, H=11.2m钻孔灌注桩
地点: 杭州某监站围墙桩工地
评价: 桩长明显偏短
该桩设计桩长11.2m,测试桩底反射明显,波速达4790m/s,若按3500m/s计, 桩仅为8m,明显反映为桩偏短.
4、缩径夹泥桩
缩径桩在时程曲线上的反映比较规则,缩径部位的缺陷呈先同相后反相,或仅见到同相反射的信号,视严重程度,可能有多次反射,此类缺陷桩一般可见桩底信号。
如图所示:桩类型:,桩径0.8m,桩长39.6m钻孔桩,
地点:温州苍南码头桩桩。
评价:该桩第一次测发现5m处明显缩径,后凿去4m再复测表明:因凿不到位,露出部分桩头是缩径处,故形成第二次测试为扩径反映
该桩为钻孔灌注桩,桩长17m,混凝土强度等级为C30,在2.4m处存在明显缺陷经开挖验证,找到一块疯狂的石头。
桩身畸变,呈S形状,由以上曲线也可判断,施工过程中堵管,拒灌,后二次灌注。
桩类型: Φ800 mm , H=33m钻孔灌注桩
地点:杭州市下沙高教城职工技术学院
评价:严重夹泥
该桩径0.8m,桩长33m,强度C25,通长钢筋笼,测试在1.5-2m处严重缩径或夹泥,经开挖证实2m处严重夹泥达一半桩径。
经凿除后再进行复测(下图),桩身完整。
5、扩径桩扩径
桩在曲线上反射波形较为规则,扩径处的反射子波呈反相,或先反相后续同相,也可能有多次反射,一般情况看到桩底反射。
如图所示:桩类型: Φ1200mm,L=16.1m钻孔灌注桩地点: 温州某大桥桩
评价: 扩径桩
上图11m处反向反射明显,为扩径反映属扩径后逐渐回缩。
下图在8m处由反向转同向,属扩径后马上回缩.
6、离析桩
由于离析部位的混凝土松散,对应力波能呈吸收较大,形成的缺陷子波不规则后续信号杂乱,而且频率较低,波速偏小,一般不易见到桩底反射。
如图所示:
桩类型:φ700 mm, h=34m,钻孔灌注桩
地点:某大楼工程桩
评价:离析桩
该桩经测试发现在8.6m左右有同相多次低频反射,经钻孔取芯在8.1-9.5m严重离析,无法取到芯样,原因在该处仃灌3小时,在7m处为扩径反映,该处超灌5方混凝土。
7、断裂脱焊脱节桩断裂桩
由于在断裂处波阻抗的突变,故形成以下三种情况:上部断裂往往呈高频多次同相反射、反射波频率值较高,衰减较慢;中部断裂反映为多次同相反射,缺陷的反射波幅值较低;而深部断裂波形,类似摩擦桩桩底反射,但算得的波速明显高于正常桩的波速。
如图所示:桩类型: Φ600 mm , H=45.0m钻孔桩
地点:温州某工程二期80#桩
评价:断裂桩
该桩径o.8m,长45.0m,设计强度C25,,因基坑开挖造成部分桩断裂,经测试在近4.2m处断裂,波形呈多次反射,经开挖验证为4.5m断裂凿去断处后重测说明下部桩身完整再进行接桩。
桩类型:φ500mm,h=35mphc空芯管桩
地点:浙江加兴某工地
评价:脱节桩
该桩径500mm,壁厚10mm,桩长35m(12,11,11)phc管桩,由于施工和挤土的原因,造成局部脱焊,或地表第一节上抬,並与下桩脱接
8、脱焊虚焊等不良焊接桩
预制桩和管桩的焊接质量及成桩时由于受损造成焊接处表现为有同相反射,严重时难以见到下部位较大的缺陷或桩底反射。
如图所示:
桩类型: Φ500~600 mmh=40m(12+12+11+5)预应力
地点:杭州东新园安居小区
评价:断桩
该桩为pvc500mm空芯管桩,桩间距1.5m,电梯间采用Φ600管桩,用600吨静压桩机压有部分欠压, 桩高出设计标高2~3m。
由于一次性开挖(3.5m),造成土体挤压,而使绝大部分欠压桩形成2~5m断裂。