小学奥数—数论之同余问题
- 格式:doc
- 大小:2.16 MB
- 文档页数:21
数论之同余问题欧阳光明(2021.03.07)余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:(1)当时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当时:我们称a不可以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c 捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
同余问题的奥数题同余问题是一个数学中的问题,它涉及到整数除以某个数后的余数的性质和关系。
具体来说,给定一个整数n和一个正整数m,同余问题就是研究关于a 的同余方程a ≡b (mod m) 的性质和解的情况。
其中,a是被除数,b是余数,"≡"表示同余关系,即a除以m的余数等于b,而mod表示取模运算。
这个问题可以进一步扩展为求解满足特定条件的整数解的数量或者找到所有满足条件的整数解等。
以下是一些常见的同余问题奥数题:1. 一个数除以5的余数是4,除以6的余数是3,除以7的余数是2,求这个数是多少?解答:我们可以使用中国剩余定理来解决这个问题。
首先,我们设这个数为x,则有x ≡4 (mod 5),x ≡3 (mod 6) 和x ≡2 (mod 7)。
根据中国剩余定理,我们有:x = 5 * k1 + 6 * k2 + 7 * k3,其中k1、k2、k3是整数。
由于5、6和7互质,所以可以分别求解得到:k1 = (4 - 2) / 5 = 0k2 = (3 - 0) / 6 = 1/2k3 = (2 - 0) / 7 = 2/7将k1、k2和k3代入x的表达式中,得到x = 5 * 0 + 6 * (1/2) + 7 * (2/7) = 19。
所以这个数是19。
2. 求方程x^2 - y^2 = 1999的所有正整数解。
解答:我们可以使用费马小定理来解决这个问题。
根据费马小定理,如果p 是一个素数且a是模p的一个原根,那么a^(p-1) ≡1 (mod p)。
在本题中,我们考虑模p=n,即要求满足x^2 - y^2 = n的正整数解的数量。
根据费马小定理,有:当n是完全平方数时,若n的质因数分解形式为p^2,且存在整数a使得a^((p-1)/2) ≡±1 (mod p),则n有一个非平凡的正整数解;当n不是完全平方数时,不存在满足条件的正整数解。
对于本题中的n=1999,它是一个完全平方数,因为1999 = 13 * 153。
六年级奥数同余问题
同余问题是奥数中常见的一个数论问题。
在六年级的奥数中,同余问题通常涉及到模运算和同余关系。
下面是一个简单的例子:
例题:求满足以下条件的最小正整数x:x除以7的余数为3,x除以5的余数为2。
解题思路:
根据题目的条件,我们可以设x = 7a + 3,又因为x除以5的余数为2,我们可以得到新的条件x ≡ 2 (mod 5)。
将前一个条件代入后一个条件得到7a + 3 ≡ 2 (mod 5)。
进一步化简得到2a ≡ 4 (mod 5),然后求解a的值,最后代回原方程解出x。
以上是一个简单的同余问题的求解过程,实际的同余问题可能会更加复杂,需要运用更多的数论知识和技巧来解决。
1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a 同余于b ,模m 。
2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;知识点拨教学目标5-5-3.同余问题⑷整数N被3或9除的余数等于其各位数字之和被3或9除的余数;⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】2003年,人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。
同余问题(一)在平时解题中,我们经常会遇到把着眼点放在余数上的问题。
如:现在时刻是7时30分,再过52小时是几时几分?我们知道一天是24小时,,也就是说52小时里包含两个整天再加上4小时,这样就在7时30分的基础上加上4小时,就是11时30分。
很明显这个问题的着眼点是放在余数上了。
1. 同余的表达式和特殊符号37和44同除以7,余数都是2,把除数7称作“模7”,37、44对于模7同余。
记作:(mod7)“”读作同余。
一般地,两个整数a和b,除以大于1的自然数m所得的余数相同,就称a、b对于模m同余,记作:2. 同余的性质(1)(每个整数都与自身同余,称为同余的反身性。
)(2)若,那么(这称作同余的对称性)(3)若,,则(这称为同余的传递性)(4)若,,则()(这称为同余的可加性、可减性)(称为同余的可乘性)(5)若,则,n为正整数,同余还有一个非常有趣的现象:如果那么(的差一定能被k整除)这是为什么呢?k也就是的公约数,所以有下面我们应用同余的这些性质解题。
【例题分析】例1. 用412、133和257除以一个相同的自然数,所得的余数相同,这个自然数最大是几?分析与解答:假设这个自然数是a,因为412、133和257除以a所得的余数相同,所以,,说明a是以上三个数中任意两数差的约数,要求最大是几,就是求这三个差的最大公约数。
所以a最大是31。
例2. 除以19,余数是几?分析与解答:如果把三个数相乘的积求出来再除以19,就太麻烦了,利用同余思想解决就容易了。
所以此题应用了同余的可乘性,同余的传递性。
例3. 有一个1997位数,它的每个数位都是2,这个数除以13,商的第100位是几?最后余数是几?分析与解答:这个数除以13,商是有规律的。
商是170940六个数循环,那么,即,我们从左向右数“170940”的第4个数就是我们找的那个数“9”,所以商的第100位是9。
余数是几呢?则所以商的个位数字应是“170940”中的第4个,商应是9,相应的余数是5。
⼩学⽣频道为⼤家整理的⼩学奥数数论同余问题练习题及答案,供⼤家学习参考。
求21000除以13的余数.
考点:同余问题.
分析:这类型的题⽬都是采⽤⼀般⽅法来做,就是⽤前⾯⼏个数字来找规律,寻找第⼏个数被13除后的余数是1,得出对应的次⽅就是余数变化的周期,从⽽求出因此2的1000次⽅除以13的余数是与2的4次⽅除以13的余数相同,进⽽得出⼤答案.
解答:解:因为⼀个数字m如果能被13除余1的话,它就可以写成 m=13n+1这种形式.
那么根据题意它再乘以2之后就是26m+2,
这个数被13除后的余数显然是2,⼜会跟第⼀个数的余数相同了.
所以这个数对应的次⽅就是余数变化的⼀个周期.
⾸先从2开始,2除以13的余数是2;2的2次⽅是4,余数是4;按照这个⽅法⼀直找下去,
发现第12个数也就是2的12次⽅被13除后余1,所以12是余数变化的周期.
接下来把1000除以12后得到余数是4,因此2的1000次⽅除以13的余数是与2的4次⽅除以13的余数相同.
∵2的4次⽅也就是16,除以13余数为3.
故21000除以13的余数为3.点评:此题主要考查了同余问题的性质,得出2的1000次⽅除以13的余数是与2的4次⽅除以13的余数相同是解决问题的关键.。
小学奥数知识讲解:余数问题
一、同余的定义:
①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。
②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。
二、同余的性质:
①自身性:a≡a(mod m);
②对称性:若a≡b(mod m),则b≡a(mod m);
③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);
④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);
⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);
⑥乘方性:若a≡b(mod m),则an≡bn(mod m);
⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);
三、关于乘方的预备知识:
①若A=a×b,则MA=Ma×b=(Ma)b
②若B=c+d则MB=Mc+d=Mc×Md
四、被3、9、11除后的余数特征:
①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3);
②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);
五、费尔马小定理:
如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。
1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a 同余于b ,模m 。
2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;知识点拨教学目标5-5-3.同余问题⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。
数论之同余问题余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
数论---同余问题余数问题是我们数论知识非常重要的一大板块,许多名校小升初考试中,各大杯赛中经常会考到,所以序号本讲内容堆学生来讲是非常重要的。
定理1:几个数相加,如果存在一个加数,不能被数a整除,那么它们的和,就不能被整数a整除。
如:35除以5,7余0,除以3余2;63除以3,7余0,除以5余3;30除以3,5余0,除以7余2。
则35+63+30除以3余2,除以5余3,除以7余2。
定理2:两数不能整除,若除数扩大(或缩小)了几倍,而被除数不变,则其商和余数也同时扩大(或缩小)相同的倍数(余数必小于除数)。
一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a同余于b,模m。
由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除用式子表示为:如果有a≡b ( mod m ),那么一定有a-b=mk,k是整数,即m|(a-b)三、弃九法原理:在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:++++=例如:检验算式12341898189226789671789028899231234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。
上述检验方法恰好用到的就是我们前面所讲的余数的加法定理,即如果这个等式是正确的,那么左边几个加数除以9的余数的和再除以9的余数一定与等式右边和除以9的余数相同。
而我们在求一个自然数除以9所得的余数时,常常不用去列除法竖式进行计算,只要计算这个自然数的各个位数字之和除以9的余数就可以了,在算的时候往往就是一个9一个9的找并且划去,所以这种方法被称作“弃九法”。
所以我们总结出弃九发原理:任何一个整数模9同余于它的各数位上数字之和。
以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。
利用十进制的这个特性,不仅可以检验几个数相加,对于检验相乘、相除和乘方的结果对不对同样适用注意:弃九法只能知道原题一定是错的或有可能正确,但不能保证一定正确。
例如:检验算式9+9=9时,等式两边的除以9的余数都是0,但是显然算式是错误的但是反过来,如果一个算式一定是正确的,那么它的等式2两端一定满足弃九法的规律。
这个思想往往可以帮助我们解决一些较复杂的算式迷问题。
四、中国剩余定理:1.中国古代趣题:中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。
”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。
韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。
刘邦茫然而不知其数。
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。
孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。
中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位。
2.核心思想和方法:对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。
⨯=,即5和7的最小公倍数出发,先看35除以3余2,不符合要求,那么就继续看5和先由5735⨯=是否可以,很显然70除以3余17的“下一个”倍数35270类似的,我们再构造一个除以5余1,同时又是3和7的公倍数的数字,显然21可以符合要求。
最后再构造除以7余1,同时又是3,5公倍数的数字,45符合要求,那么所求的自然数可以这样计算:⨯+⨯+⨯±=-,其中k是从1开始的自然数。
270321245[3,5,7]233[3,5,7]k k也就是说满足上述关系的数有无穷多,如果根据实际情况对数的范围加以限制,那么我们就能找到所求的数。
例如对上面的问题加上限制条件“满足上面条件最小的自然数”,⨯+⨯+⨯-⨯=得到所求那么我们可以计算2703212452[3,5,7]23如果加上限制条件“满足上面条件最小的三位自然数”,我们只要对最小的23加上[3,5,7]即可,即23+105=128。
例题精讲:【模块一:带余除法的定义和性质】【例 1】(第五届小学数学报竞赛决赛)用某自然数a去除1992,得到商是46,余数是r,求a和r.【解析】因为1992是a的46倍还多r,得到19924643 (14)a=,=⨯+,所以43÷=,得1992464314 r=.14【巩固】(清华附中小升初分班考试)甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数.【解析】(法1)因为甲=乙1132⨯+=;⨯++乙=乙12321088⨯+,所以甲+乙=乙1132则乙(108832)1288=-÷=,甲1088=.=-乙1000(法2)将余数先去掉变成整除性问题,利用倍数关系来做:从1088中减掉32以后,1056就应当是乙数的(111)+倍,所以得到乙数10561288=-=.=÷=,甲数1088881000【巩固】一个两位数除310,余数是37,求这样的两位数。
【解析】本题为余数问题的基础题型,需要学生明白一个重要知识点,就是把余数问题---即“不整除问题”转化为整除问题。
方法为用被除数减去余数,即得到一个除数的倍数;或者是用被除数加上一个“除数与余数的差”,也可以得到一个除数的倍数。
本题中310-37=273,说明273是所求余数的倍数,而273=3×7×13,所求的两位数约数还要满足比37大,符合条件的有39,91.【例1】(2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【解析】被除数+除数+商+余数=被除数+除数+17+13=2113,所以被除数+除数=2083,由于被除数是除数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968.【巩固】用一个自然数去除另一个自然数,商为40,余数是16.被除数、除数、商、余数的和是933,求这2个自然数各是多少?【解析】本题为带余除法定义式的基本题型。
根据题意设两个自然数分别为x,y,可以得到40164016933x y x y =+⎧⎨+++=⎩,解方程组得85621x y =⎧⎨=⎩,即这两个自然数分别是856,21. 【例 2】 (2000年“祖冲之杯”小学数学邀请赛试题)三个不同的自然数的和为2001,它们分别除以19,23,31所得的商相同,所得的余数也相同,这三个数是_______,_______,_______。
【解析】 设所得的商为a ,除数为b .(19)(23)(31)2001a b a b a b +++++=,7332001a b +=,由19b <,可求得27a =,10b =.所以,这三个数分别是19523a b +=,23631a b +=,31847a b +=。
【巩固】 (2004年福州市“迎春杯”小学数学竞赛试题)一个自然数,除以11时所得到的商和余数是相等的,除以9时所得到的商是余数的3倍,这个自然数是_________.【解析】 设这个自然数除以11余a (011)a ≤<,除以9余b (09)b ≤<,则有1193a a b b +=⨯+,即37a b =,只有7a =,3b =,所以这个自然数为84712=⨯。
【例 3】 (1997年我爱数学少年数学夏令营试题)有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够.问:第二组有多少人?【解析】 由48412÷=,4859.6÷=知,一组是10或11人.同理可知48316÷=,48412÷=知,二组是13、14或15人,因为二组比一组多5人,所以二组只能是15人,一组10人.【巩固】 一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数.【解析】 因为一个两位数除以13的商是6,所以这个两位数一定大于13678⨯=,并且小于13(61)91⨯+=;又因为这个两位数除以11余6,而78除以11余1,这个两位数为78583+=.【模块二:三大余数定理的应用】【例 4】 有一个大于1的整数,除45,59,101所得的余数相同,求这个数.【解析】 这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据同余定理,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.1014556-=,594514-=,(56,14)14=,14的约数有1,2,7,14,所以这个数可能为2,7,14。