炮灰模型---------- 对女生选择追求者的数学模型的建立
- 格式:doc
- 大小:116.00 KB
- 文档页数:6
灰⾊理论预测模型灰⾊理论通过对原始数据的处理挖掘系统变动规律,建⽴相应微分⽅程,从⽽预测事物未来发展状况。
优点:对于不确定因素的复杂系统预测效果较好,且所需样本数据较⼩;缺点:基于指数率的预测没有考虑系统的随机性,中长期预测精度较差。
灰⾊预测模型在多种因素共同影响且内部因素难以全部划定,因素间关系复杂隐蔽,可利⽤的数据情况少下可⽤,⼀般会加上修正因⼦使结果更准确。
灰⾊系统是指“部分信息已知,部分信息未知“的”⼩样本“,”贫信息“的不确定系统,以灰⾊模型(G,M)为核⼼的模型体系。
灰⾊预测模型建模机理灰⾊系统理论是基于关联空间、光滑离散函数等概念,定义灰导数与会微分⽅程,进⽽⽤离散数据列建⽴微分⽅程形式的动态模型。
灰⾊预测模型实验以sin(pi*x/20)函数为例,以单调性为区间检验灰⾊模型预测的精度通过实验可以明显地看出,灰⾊预测对于单调变化的序列预测精度较⾼,但是对波动变化明显的序列⽽⾔,灰⾊预测的误差相对⽐较⼤。
究其原因,灰⾊预测模型通过AGO累加⽣成序列,在这个过程中会将不规则变动视为⼲扰,在累加运算中会过滤掉⼀部分变动,⽽且由累加⽣成灰指数律定理可知,当序列⾜够⼤时,存在级⽐为0.5的指数律,这就决定了灰⾊预测对单调变化预测具有很强的惯性,使得波动变化趋势不敏感。
本⽂所⽤测试代码:1 clc2 clear all3 % 本程序主要⽤来计算根据灰⾊理论建⽴的模型的预测值。
4 % 应⽤的数学模型是 GM(1,1)。
5 % 原始数据的处理⽅法是⼀次累加法。
6 x=[0:1:10];7 x1=[10:1:20];8 x2=[0:1:20];9 y=sin(pi*x/20);10 n=length(y);11 yy=ones(n,1);12 yy(1)=y(1);13 for i=2:n14 yy(i)=yy(i-1)+y(i);15 end16 B=ones(n-1,2);17 for i=1:(n-1)18 B(i,1)=-(yy(i)+yy(i+1))/2;19 B(i,2)=1;20 end21 BT=B';22 for j=1:n-123 YN(j)=y(j+1);24 end25 YN=YN';26 A=inv(BT*B)*BT*YN;27 a=A(1);28 u=A(2);29 t=u/a;30 t_test=5; %需要预测个数31 i=1:t_test+n;32 yys(i+1)=(y(1)-t).*exp(-a.*i)+t;33 yys(1)=y(1);34 for j=n+t_test:-1:235 ys(j)=yys(j)-yys(j-1);36 end37 x=1:n;38 xs=2:n+t_test;39 yn=ys(2:n+t_test);40 det=0;41 for i=2:n42 det=det+abs(yn(i)-y(i));43 end44 det=det/(n-1);4546 subplot(2,2,1),plot(x,y,'^r-',xs,yn,'b-o'),title('单调递增' ),legend('实测值','预测值');47 disp(['百分绝对误差为:',num2str(det),'%']);48 disp(['预测值为: ',num2str(ys(n+1:n+t_test))]);495051 %递减52 y1=sin(pi*x1/20);53 n1=length(y1);54 yy1=ones(n1,1);55 yy1(1)=y1(1);56 for i=2:n157 yy1(i)=yy1(i-1)+y1(i);58 end59 B1=ones(n1-1,2);60 for i=1:(n1-1)61 B1(i,1)=-(yy1(i)+yy1(i+1))/2;62 B1(i,2)=1;63 end64 BT1=B1';65 for j=1:n1-166 YN1(j)=y1(j+1);67 end68 YN1=YN1';69 A1=inv(BT1*B1)*BT1*YN1;70 a1=A1(1);71 u1=A1(2);72 t1=u1/a1;73 t_test1=5; %需要预测个数74 i=1:t_test1+n1;75 yys1(i+1)=(y1(1)-t1).*exp(-a1.*i)+t1;76 yys1(1)=y1(1);77 for j=n1+t_test1:-1:278 ys1(j)=yys1(j)-yys1(j-1);79 end80 x21=1:n1;81 xs1=2:n1+t_test1;82 yn1=ys1(2:n1+t_test1);83 det1=0;84 for i=2:n185 det1=det1+abs(yn1(i)-y1(i));86 end87 det1=det1/(n1-1);8889 subplot(2,2,2),plot(x1,y1,'^r-',xs1,yn1,'b-o'),title('单调递增' ),legend('实测值','预测值');90 disp(['百分绝对误差为:',num2str(det1),'%']);91 disp(['预测值为: ',num2str(ys1(n1+1:n1+t_test1))]);9293 %整个区间93 %整个区间94 y2=sin(pi*x2/20);95 n2=length(y2);96 yy2=ones(n2,1);97 yy2(1)=y2(1);98 for i=2:n299 yy2(i)=yy2(i-1)+y2(i);100 end101 B2=ones(n2-1,2);102 for i=1:(n2-1)103 B2(i,1)=-(yy2(i)+yy2(i+1))/2;104 B2(i,2)=1;105 end106 BT2=B2';107 for j=1:n2-1108 YN2(j)=y2(j+1);109 end110 YN2=YN2';111 A2=inv(BT2*B2)*BT2*YN2;112 a2=A2(1);113 u2=A2(2);114 t2=u2/a2;115 t_test2=5; %需要预测个数116 i=1:t_test2+n2;117 yys2(i+1)=(y2(1)-t2).*exp(-a2.*i)+t2;118 yys2(1)=y2(1);119 for j=n2+t_test2:-1:2120 ys2(j)=yys2(j)-yys2(j-1);121 end122 x22=1:n2;123 xs2=2:n2+t_test2;124 yn2=ys2(2:n2+t_test2);125 det2=0;126 for i=2:n2127 det2=det2+abs(yn2(i)-y2(i));128 end129 det2=det2/(n2-1);130131 subplot(2,1,2),plot(x2,y2,'^r-',xs2,yn2,'b-o'),title('全区间' ),legend('实测值','预测值'); 132 disp(['百分绝对误差为:',num2str(det2),'%']);133 disp(['预测值为: ',num2str(ys2(n2+1:n2+t_test2))]);。
男生追女生的数学模型周星1,克居正2国防科技大学信息系统与管理学院,湖南长沙410073摘要:考虑了同性竞争因素和家长的影响因素下的男生追女生的问题,通过建立微分方程模型,深入分析了男生与女生的关系以及男生的学业成绩在时间上满足局部稳定关系,最后给出了较好的追求策略.虽然所建立的数学模型仅是从学生角度出发,但此模型可以适用于其他多种实际情形和多种领域.关键词: 男生追女生;微分方程模型;家长因素;竞争因素;局部稳定性2011-09-132011年湖南省普通高等学校教学改革研究项目资助,国防科技大学预研基金(JC110202)代表男生的为一定值鲞,学业将荒废,他!2.由图1可知【~,’ ̄、一q H Jf况是男生的内关系变亲密,侄@@[1]教育部《普通高校学生管理规定》,2005.@@[2] 2010年第六次全国人口普查主要数据公报(第1号).@@[3]王伟华,科学网博客,网址:http://blog.sciencenet.cn.@@[4]丁同仁,李承志.常微分方程教程(第二版)[M].北京:高等教育出版社,2005.The Boy-after-girl Mathematical Model ZHOU XingKE Ju-zheng男生追女生的数学模型作者:周星, 克居正, ZHOU Xing, KE Ju-zheng作者单位:国防科技大学信息系统与管理学院,湖南长沙,410073刊名:数学的实践与认识英文刊名:Mathematics in Practice and Theory年,卷(期):2012,42(12)1.教育部普通高校学生管理规定 20052.2010年第六次全国人口普查主要数据公报(第1号)3.王伟华查看详情4.丁同仁;李承志常微分方程教程 20051.任勇数学课结尾的教学设计[期刊论文]-福建中学数学2012(8)2.冯静.齐东玉.黄廷祝与P矩阵和LCP有关的量(英文)[期刊论文]-大学数学2012,28(3)3.杨靖长余辉发光材料的机理及应用[期刊论文]-本溪冶金高等专科学校学报2004,6(4)本文链接:/Periodical_sxdsjyrs201212001.aspx。
数学建模中的常见模型数学建模综合评价模型是一种通过对各个评价指标进行量化,并将它们按照权重进行加权,最终得到一个综合评价值的方法。
这个模型可以应用于多指标决策问题,用于对被评价对象进行排名或分类。
常见的数学建模综合评价模型包括模糊综合评价模型、灰色关联分析模型、Topsis(理想解法)、线性加权综合评价模型、熵值法和秩和比法等。
模糊综合评价模型是一种基于模糊数学理论的方法,它将评价指标的模糊程度考虑在内,得到一个模糊评价结果。
该模型的步骤包括确定评价指标及其权重、构建模糊评价矩阵、进行模糊运算、得到模糊评价结果。
灰色关联分析模型是一种用于分析指标间关联性的方法,它可以帮助我们确定各个指标对被评价对象的影响程度。
该模型的步骤包括确定关联度计算方法、计算各个指标的关联度、得到综合关联度。
Topsis(理想解法)是一种基于距离的方法,它通过计算每个评价对象与理想解的距离,得到一个综合评价值。
该模型的步骤包括确定正负理想解、计算距离、得到综合评价值。
线性加权综合评价模型是一种常用的多指标决策方法,它将各个评价指标的权重与指标值线性组合起来,得到一个综合评价值。
该模型的优点是简单易操作,计算方便,可以对各个指标的重要性进行量化,并将其考虑在评价中。
但是,该模型的权重确定较为主观,且假设指标之间相互独立,不考虑相关性。
熵值法是一种基于信息熵理论的方法,它通过计算每个指标的熵值,得到一个综合评价值。
该模型的步骤包括计算指标的熵值、计算权重、得到综合评价值。
秩和比法是一种用于处理多指标决策问题的方法,它通过计算指标的秩和比,得到一个综合评价值。
该模型的步骤包括编秩、计算秩和比、得到综合评价值。
根据具体的评价需求和问题特点,我们可以选择合适的数学建模综合评价模型来进行评价。
每个模型都有其优点和缺点,需要根据具体情况进行选择和应用。
<span class="em">1</span><spanclass="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [数学建模——评价模型]()[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_sourc e":"vip_chatgpt_mon_search_pc_result","utm_medium":"di stribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_itemstyle="max-width: 100%"] [ .reference_list ]。
男生追女生的数学模型
男生追女生的数学模型通常用来描述男性行为中的竞争行为,比如看法改变、决定追求对象、对对象的位置和态度等。
这些行为通常受到社会压力和文化影响,而发展出一个数学模型可以借助男性的行为数据来描述这些行为模式。
男生追女生的数学模型通常是一个非线性常微分方程组或一个非线性规划模型。
它可以用来表示男性追求女性的行为,包括初恋、婚介、恋爱关系、结婚等行为的特征。
其原理是通过分析男女的互动性,建模男性及其发展关系的动态变化,用数学方法来描述男性追求女性的行为模式。
男生追女生的数学模型的输入部分包括男女的特征和性格参数,以及社会环境。
这些特征和性格参数是由参与对话的双方对对方的态度,比如欣赏、好感等,以及特定社会环境提供的限制,包括家庭、社会、法律等。
输出部分包括男性追求女性的行为结果,包括接受或拒绝的行为。
这个模型的实际应用通常是尝试在重要的选择和关键时期,对双方的行为用相关数学方程式来模拟,从而推断对方的立场和看法,协助男性做出最佳决策。
另外,研究还可以应用这个模型来发现男女行为方面的规律,便于男性在追求女性时有更多以及更好的成功经历。
§3 灰色模型GM(1,N)及其应用客观系统无论本征非灰,还是本征灰,一般都存在能量吸收、储存、释放等过程,加之生成数列一般都有较强的指数变化趋势,所以灰色系统理论指出用离散的随机数,经过生成变为随机性被显著削减的较有规律的生成数,这样便可以对变化过程做较长时间的描述,进而建立微分方程形式的模型。
建模的实质是建立微分方程的系数。
设有N 个数列N i n X X X X i i i i ,,2,1))(,),2(),1(()0()0()0()0( ==对)0(i X 做累加生成,得到生成数列Ni n X n X X X X m X m XXXi i i i i nm i m iii,,2,1))()1(,),2()1(),1(())(,,)(),1(()0()1()0()1()1(1)0(21)0()0()1( =+-+==∑∑==我们将数列)1(i X 的时刻n k ,,2,1 =看作连续的变量t ,而将数列)1(i X 转而看成时间t 的函数)()1()1(t X X i i =。
如果数列)1()1(3)1(2,,,N X X X 对)1(1X 的变化率产生影响,则可建立白化式微分方程)1(1)1(32)1(21)1(1)1(1N N X b X b X b aX dtdX -+++=+ (1) 这个微分方程模型记为GM (1,N )。
方程(1)的参数列记为T N b b b a ),,,(121-= α,再设T N n X X X Y ))(,),3(),2(()0(1)0(1)0(1 =,将方程(1)按差分法离散,可得到线性方程组,形如αˆB Y N = (2)按照最小二乘法,有N T T Y B B B 1)(ˆ-=α (3)其中,利用两点滑动平均的思想,最终可得矩阵⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+--+-+-=)()())()1((21)3()3())3()2((21)2()2())2()1((21)1()1(2)1(1)1(1)1()1(2)1(1)1(1)1()1(2)1(1)1(1n X n X n X n X X X X X X X X X B N N N 求出αˆ后,微分方程(1)便确定了。
灰色预测模型的研究及应用
灰色预测模型是一种用于预测问题的数学模型,广泛应用于各个领域。
它在1982年由中国科学家GM灰所提出,因此得名为“灰色预测模型”。
灰色预测模型基于灰色系统理论,它假设事物的发展具有一定的规律性和趋势性,但也存在不确定性的因素。
它通过对已知数据的分析和处理,来预测未来的发展趋势。
灰色预测模型的核心思想是将已知数据序列分解为两个部分:灰色部分和白色部分。
灰色部分是由数据的数量级和函数形式决定的,因此可以用来预测未来的趋势。
白色部分则是由不确定的随机因素引起的,往往被视为噪声,不具备预测能力。
灰色预测模型有多种形式,其中最常用的是GM(1,1)模型。
该模型通过建立一阶线性微分方程来描述数据的变化趋势,然后利用指数累减生成灰色模型。
基于灰色模型,可以进一步进行累加、累减、累乘等操作,来实现更复杂的预测。
灰色预测模型在各个领域都有广泛的应用。
其中最典型的应用是经济预测领域,包括国民经济、金融市场等。
此外,它还可以应用于工业生产、环境保护、农业发展、医疗卫生等方面的预测。
灰色预测模型的优点是简单易懂、计算量小、适用范围广。
它可以对数据的趋势进行较为准确的预测,尤其适用于数据量较小或者不完整的情况下。
缺点是对数据的要求较高,数据的采
样点要均匀分布,并且在建立模型时需要进行一些参数的选择,可能存在主观性和不确定性。
总之,灰色预测模型是一种有效的预测方法,具有广泛的应用前景。
在实际应用中,需要对具体问题进行合理的建模和参数选择,以提高预测的准确性。
【数学建模】灰色预测模型(预测)文章目录•一、算法介绍•o 1.灰色预测模型o 2.灰色系统理论o 3. 针对类型o 4. 灰色系统o 5. 灰色生成o 6. 累加生成o7. GM(1,1)模型o▪推导▪精度检验▪精度检验等级参照表•二、适用问题•三、算法总结•o 1. 步骤•四、应用场景举例•o 1. 累加生成o 2. 建立GM(1,1)模型o 3. 检验预测值•五、MATLAB代码•六、实际案例•七、论文案例片段(待完善)灰色预测模型主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——四、五另外之前看过一篇比较完整的【数学建模常用算法】之灰色预测模型GM,作者:張張張張视频回顾一、算法介绍1.灰色预测模型灰色预测模型(Gray Forecast Model)是通过少量的、不完全的的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。
2.灰色系统理论灰色系统理论是研究解决灰色系统分析、建模、预测、决策和控制的理论.灰色预测是对灰色系统所做的预测。
目前常用的一些预测方法(如回归分析等),需要较大的样本,若样本较小,常造成较大误差,使预测目标失效。
灰色预测模型所需建模信息少,运算方便,建模精度高,在各种预测领域都有着广泛的应用,是处理小样本预测问题的有效工具。
3. 针对类型灰色系统理论是由华中理工大学邓聚龙教授于1982年提出并加以发展的。
二十几年来,引起了不少国内外学者的关注,得到了长足的发展。
目前,在我国已经成为社会、经济、科学技术在等诸多领域进行预测、决策、评估、规划控制、系统分析与建模的重要方法之一。
特别是它对时间序列短、统计数据少、信息不完全系统的分析与建模,具有独特的功效,因此得到了广泛的应用.4. 灰色系统灰色系统是黑箱概念的一种推广。
设T时刻A君的学业成绩为Y(t);其B女对A君的疏远度为X(t);当A君没开始追求B女时B女对A君的疏远度增长(平时发现的A君的不良行为)符合Malthus模型,即dX/dt=aX(t)其中a为正常数。
当Y(t)存在时,单位时间内减少X(t)的值与X(t)的值成正比,比例常数为b,从而dX(t)/dt=aX(t)-bX(t)Y(t).在假定A君发起对B女追求攻势后,立即转化为B女对A君的好感,并设定转化系数为α,而随着的A君发起对B女的攻势后,A君学业的自然下降率与学业成绩成正比,比例系数为e。
于是有dY(t)/dX=αbX(t)Y(t)-eY(t).这样,就得到了由学业与疏远度所构成的两个数字在无外界干扰的情况下互相作用的模型:{dX(t)/dt=aX-bXY;dY(t)/dt=cXY-eY.(1)}其中c=αb.这是一个非线性自治系统,为了求两个数X与Y的变化规律,我们对它作定性分析。
令{aX-bXY=0;cXY-eY=0.}解得系统(1)的两个平衡位置为:O(0,0),M(d/c,a/b).从(1)的两方程中消去dt,分离变量可求得首次积分:F(X,Y)=cX-dln?X?-aln?Y?=k. (2)容易求出函数F(X,Y)有唯一驻点为M(d/c,a/b)再用第五章中所讲的极值的充分条件判断条件可以判断M是F的极小值点。
同时易见,当X→∞(B女对A君恨之入骨)或Y→∞(A君是一块只会学习的木头)时均有F →∞;而X→0(A君作了变形手术,B女对他毫无防备);Y→0(A君不学无术,丝毫不学习)时也有F→∞.由此不难看出,在第一像限内部连续的函数,z=F(X,Y)的图形是以M为最小值点,且在第一卦限向上无限延伸的曲面,因而它与z=k(k>0)的交线在相平面XOY的投影F(X,Y)=k(k>0)是环绕点M的闭曲线簇。
这说明学业成绩和疏远度的指数成周期性变化。
从生态意义上看这是容易理解的,当A君的学习成绩下降时,B女会疏远A君;于是A君就又开始奋发图强,学习成绩Y(t)又上升了。
灰色理论与灰色预测模型研究与应用灰色理论是一种基于不完全信息的数学方法,由中国科学家陈纳德于1982年提出。
它主要用于解决样本数据有限、不完整、不确定的问题,适用于各种领域的预测和决策。
灰色预测模型是灰色理论的核心内容之一,通过对数据序列进行建模和预测,可以在一定程度上弥补数据不完整性带来的问题。
灰色理论的核心思想是通过构建灰色模型,对数据进行预测和分析。
灰色模型是一种基于时间序列的预测模型,它主要包括GM(1,1)模型和GM(2,1)模型。
GM(1,1)模型适用于一阶动态系统,通过建立灰微分方程和灰累加方程,可以对数据进行预测和分析。
GM(2,1)模型是GM(1,1)模型的扩展,适用于二阶动态系统,通过引入二次累加生成序列,可以提高预测的准确性。
灰色预测模型的应用非常广泛,可以用于经济、环境、医疗、交通等领域的预测和决策。
以经济领域为例,灰色预测模型可以用于宏观经济指标的预测,如国内生产总值、物价指数等。
通过对历史数据的分析和建模,可以预测未来一段时间内的经济走势,为政府和企业的决策提供参考。
在环境领域,灰色预测模型可以用于空气质量、水质监测等方面的预测和评估。
通过对历史数据的分析,可以预测未来一段时间内的环境状况,为环境保护和治理提供科学依据。
灰色预测模型的优势在于能够处理数据不完整、不确定的问题。
在实际应用中,往往会遇到数据缺失、数据质量差等问题,传统的预测模型很难处理这些问题。
而灰色预测模型通过对数据序列的分析和建模,可以在一定程度上弥补数据不完整性带来的问题,提高预测的准确性。
此外,灰色预测模型还具有模型简单、计算快速等特点,适用于大规模数据的处理和分析。
然而,灰色预测模型也存在一些不足之处。
首先,灰色预测模型对数据的要求较高,需要满足一定的前提条件,如数据序列的稳定性、线性关系等。
如果数据不满足这些条件,就无法进行有效的预测和分析。
其次,灰色预测模型对参数的选择较为敏感,不同的参数选择可能会导致不同的预测结果。
炮灰模型----------对女生选择追求者的数学模型的建立
Geng Quan, Department of Electronic Engineering, Tsinghua University
引言:
上周我的一个朋友第N次向女生表白遭到拒绝,作为好朋友的我除了同情之外觉得应该做点什么。
之前一次聊天受到菠菜的启发,加上出于对数学的兴趣,我对女生“选择与拒绝”的策略试着做了一个简单的建模,并得出比较有意义的结论。
摘要:
每一个女生都渴望找到自己心中的白马王子,找到自己一生的幸福。
但是面对追求者们,女生应该是选择还是拒绝,怎样才能以最大的可能找到自己的Mr. Right呢?在这篇文章中我们运用数学中概率论的知识对女生选择追求者的这一过程进行数学建模,得到女生的选择的最优策略,最后对结果进行简单的讨论。
关键词:
炮灰模型排列选择
模型假设:
众所周知生活中涉及到感情的事情是很复杂的,把所有可能影响的因素都考虑到几乎是不可能的。
为此我们先对现实进行简化,并做出一些合理的假设,考虑比较简单的一种情况。
假设一个女生愿意在一段时间中和一位男生开始一段感情,并且在这段时间中有N个男生追求这位女生。
说明:这里的N不是事先确定的,每个女生根据自身条件,并结合以往的经历和经验,猜测确定这个数字N。
比如其它各方面都相同的两个女生,一般来说,PP的女生就要比不PP的女生N值相对要大一些。
在适合这个女生的意义上,假设追求者中任何两个男生都是可以比较的,而且没有相等的情况。
这样我们对这N个男生从1到N进行编号,其中数字越大表示越适合这个女生。
这样在这段时间中,女生的Mr. Right就是男生N了。
现在问题变成面对这N个追求者应该以怎样的策略才能使得在第一次选择接受的男生就是N的可能性最大,注意到这N个男生是以不同的先后顺序来追求这位女生的。
为了将实际复杂的问题进行简化,我们做出下面几条合理的假设:
1、N个男生以不同的先后顺序向女生表白,即在任一时刻不存在两个或
两个以上的男
生向这位女生表白的情况的发生,而且任何一种顺序都是完全等概率的。
2、面对表白后的男生,女生只能做出接受和拒绝两种选择,不存在暧昧
或者其它选择。
3、任一时刻,女生最多只能和一位男生谈恋爱,不存在脚踏多船的情况。
4、已经被拒绝的男生不会再次追求这位女生。
基于上述假设,我们想要找到这样一种策略,使得女生以最大的概率在第一次选择接受
的那个男生就是N,i.e. Mr. Right。
先考虑最简单的一种策略,如果一旦有男生向女生表白,女生就选择接受。
这种策略下显然女生以1/N的概率找到自己的Mr. Right。
当N比较大的时候,这个概率就很小了,显然这种策略不是最优的。
基于上面这些假设和模型,我们提出这样一种策略:对于最先表白的M个人,无论女生感觉如何都选择拒绝;以后遇到男生向女生表白的情况,只要这个男生的编号比前面M个男生的编号都大,即这个男生比前面M个男生更适合女生,那么女生选择接受,否则选择拒绝。
下面以N=3为例说明:
三个男生追求女生,共有六种排列方式:
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
如果女生采用上述最简单的策略,那么只有最后两种排列方式选择到Mr. Right,概率为2/3!=1/3。
如果女生采用上面我们提出的策略,这里我们取M=1,即无论第一个人是否优秀,女生都选择拒绝。
然后对于之后的追求者,只要他比第一个男生更适合女生就选择接受,否则拒绝。
基于这种策略,“1 3 2”、“2 1 3”、“ 2 3 1”这三种排列顺序下女生都会在第一次做出接受的选择时遇到“3”,这样我们就把这种概率增大到3/3!=1/2。
现在我们的问题就归结为,对于一般的N,什么样的M才会使这种概率达到最大值呢?(在这种模型中,前面M个男生就被称为“炮灰”,无论他们有多么优秀都要被拒绝)
模型建立:
在这一部分中,根据上面的模型假设,我们先找到对于给定的M和
N(1<M<N),女生选择到Mr. Right的概率的表达式。
1到N个数字进行排列共有N!种可能。
当数字N出现在第P位置
(M<P<=N),如果使上述策略在第一次选择接受时遇到的是N,排列需要满足下面两个条件:
1、N在第P位置
2、从M+1到P-1位置的数字要比前M位置的最大数字要小
运用数学中排列组合的知识,不难知道符合上面两个条件的排列共有
这样对于给定的M和N,P可以从M+1到N变化,求和化简后得到给定M和N共有
种序列符合要求。
由此得到女生选择接受时遇到Mr. Right的概率为。
模型求解:(不感兴趣的话可以直接跳过这部分推导)
这一部分中我们求解使这个表达式取得最大值时M的值。
记函数,且设自变量取值为M时,函数取得最大值。
因此:
所以M应满足
我们知道,当x>0, In(1+x)< x ;
当x-->0, In(1+x) ~ x 。
所以由左不等式
所以:
当N比较大时,同理由右不等式可得M≈N/e,以上e为自然对数。
若记[x]为不大于x的最大整数,由以上推导我们可猜测当M取[N/e]或[N/e]+1时,该表达式取得最大值。
用MATLAB仿真,上述结论正确。
结果分析:
由上述分析可以得到如下结论:为了使一个女生以最大的概率在第一次选择接受男生时遇到的正是Mr. Right,女生应该采用以下的策略:
拒绝前M=[N/e]或者[N/e]+1个追求者,当其后的追求者比前M个追求者更适合则接受,否则拒绝。
“打战的时候,很多士兵身先士卒,跑到前线勇往直前。
通常来说,走在最前面的,都会给大炮打中(古代的大炮像象个球一样滚过来的)成为灰烬。
而后来的士兵,就踏着炮灰走到胜利,所以成为别人利益的牺牲品的人就叫炮灰.。
”--------百度上关于炮灰的解释
在本篇文章中介绍的“炮灰模型”中,前M个男生就成了炮灰的角色,无论其有多么优秀,都会被拒绝。
朋友,如果你追求一个女生而遭到拒绝,看完这篇文章后你会突然发现,也许这不是你的的错,也许你真的很优秀,只是很不幸,你成了“炮灰”。
这几天在校内上看到很多朋友都因为拒绝或失恋而苦恼。
希望上面这些看似复杂的推导和模型对你能有所启发。
不要因为一次的拒绝而伤心、失落,振作起来,你的Miss Right is waiting for you somewhere!
谨以此篇文章献给所有为爱而战的猛士们!
纯属娱乐
版权所有
未经许可
欢迎转载
附:
感谢胡波同学的补充和推导(详见105楼和106楼):
为向作者致敬,将这个策略的最优性简证如下(限于篇幅,不借助复杂的数学公式了):
1.作为“策略”,可以认为应该类似于算法,对于确定的输入有确定的输出。
因此对第M号追求者是否同意仅取决于之前M-1个人与该人的状况比较,以及M 的大小;进一步地,显然与前M-1个人的好坏顺序无关(因为前M-1个人的顺序与第M个人及以后无关)。
2.如果仅考虑选中N号,那么答应某个人的必要条件是此人比之前的都好(否则一定不是No.N)
3.综1、2,所有可能的策略都有相同形式:对于第K1,K2,...,Kt号人,如果比以前的都好,OK;如果不符合条件,“还是做朋友吧”
4.进一步,如果Km + 1<K(m+1),将Km替换为Km + 1。
简单计算可以发现(其实是我不想写了)在这一步答应且选对的概率不变(始终是1/n*前面没有答应的概率),但这一步答应的概率减小,后面答应且选对的概率相应增大(如果替换的是Kt,概率不变,但可以接着换K(t-1)使概率增大)。
由此可以得出K1到Kt应该是连续整数且Kt=n
5.(从楼主的文章继续)
再由作者的理论小推论一下:
设女性最为灿烂的青春为18-28岁,在这段时间中将会遇到一生中几乎全部的追求者(之前之后的忽略不计),且追求者均匀分布(),则女性从
18+10/e=21.7即22岁左右开始接受追求……这告诉我们,想谈恋爱找大四的……。