江苏省滨海县明达中学高三数学一轮复习教学案(全套)数列的求和
- 格式:pdf
- 大小:114.39 KB
- 文档页数:3
2021年高考数学一轮复习 6.4 数列求和精品教学案(学生版)新人教版【考纲解读】1.掌握等差、等比数列求和的基本公式及注意事项.2.理解并能运用数列求和的其他常见方法.【考点预测】高考对此部分内容考查的热点与命题趋势为:1.数列是历年来高考重点内容之一, 在选择题、填空题与解答题中均有可能出现,一般考查一个大题一个小题,难度中低高都有,在解答题中,经常与不等式、函数等知识相结合,在考查数列知识的同时,又考查转化思想和分类讨论等思想,以及分析问题、解决问题的能力.2.xx年的高考将会继续保持稳定,坚持考查数列与其他知识的结合,或在选择题、填空题中继续搞创新,命题形式会更加灵活.【要点梳理】【例题精析】考点一公式法与分组求数列的和例1.求11111,2,3,,(),2482nn 前n项和.【变式训练】1.(xx年高考重庆卷文科11)首项为1,公比为2的等比数列的前4项和考点二裂项相消法求数列的和例2.(xx 年高考山东卷文科18)已知等差数列满足:,.的前n 项和为.(Ⅰ)求 及;(Ⅱ)令(),求数列的前n 项和.【变式训练】2.计算11111447710(32)(31)n n ++++⨯⨯⨯-+= . 考点三 错位相减法求数列的和例3.(xx 年高考浙江卷文科19)已知数列{a n }的前n 项和为S n ,且S n =,n ∈N ﹡,数列{b n }满足a n =4log 2b n +3,n ∈N ﹡.(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n .【变式训练】3. (山东省济南市xx 年2月高三定时练习)已知数列为等差数列,且,;设数列的前项和为,且.(Ⅰ)求数列的通项公式;(Ⅱ)若(1,2,3,),n n n n c a b n T =⋅=…为数列的前项和,求【易错专区】问题:错位相减法求数列的和例. (xx 年高考江西卷理科16)已知数列{a n }的前n 项和,且S n 的最大值为8.(1)确定常数k ,求a n ;(2)求数列的前n 项和T n 。
【知识扫描】阅读课本P46-50 主备: 刘社新1.如果一个数列从第 项起,每一项与它的前一项的比都等于 那 么 这 个 数 列 就 叫 做 等 比 数 列 ,这个常数叫做等比数列的公比,公比通常用字母q表示.即:1n na q a += ,变式:212n n n a a a ++=⋅(*n N ∈ ) 2.等比数列{a n }的通项公式 ,其中a 1 为首项,q 为公比. 变式:n t n t a a q -=(*n N ∈),或 n t nta q a -=3.如果一个数列{a n }的通项公式为11n n a a q -=,其中a,q都是不为0的常数,那么这个数列一定是等比数列吗?4.前n 项和公式:n s = 或n s = 5.性质:(1)若2m n p q t +=+=,则(2)232,,,k kk k k s s s s s -- 仍为等差数列(3)项数为2n 时,s q s =偶奇6.等比中项:【课前练习】1.已知等比数列{}n a 中,33a =,10384a =,则该数列的通项公式n a = 。
2.等比数列}{n a 中,若11=a ,512-=n a ,前n 项的和341-=n s ,则公比q= , 项数n= 。
3.等比数列的前四项的和是前二项和的二倍,则该等比数列的公比是 。
4.某等比数列的前7项之和为48,前14项之和为60,则21项之和是 5.等比数列{}n a 的首项13a =,公比4q =,使3000n S >成立的最小自然数n = 。
6.等比数列}{n a 中,前n 项的和r s n n +=3,则r 等于班级: 姓名:例1:已知数列{}n a 的前n 项和为n S ,()131-=n n a S ()*N n ∈ (1)求21,a a (2)求证:数列{}n a 是等比数列例2:设首项为正数的等比数列,它的前n 项和为80,前2n 项的和为6560,且前n 项中数值最大的项为54,求此数列的首项和公比。
数列的求和方法及应用[素质教育目标]一、知识目标要求学生熟练掌握和运用等差、等比数列的前n项和的公式及一个数列求前n项和的基本方法和技巧。
二、能力目标培养学生观察问题和分析问题,独立思考,合作探究及运用数学思想解决问题的能力。
[教学重点、难点]一、重点等比数列、等差数列前n项和公式的应用。
二、难点通过分析通项,把原数列化归为基本数列求和。
[学法引导]通过合理设置情景问题,让学生探究结论,教师加以引导、归纳、总结。
[师生互动设计]1.通过例题的变化引申,激发学生的求知欲,让学生动手,教师参与讨论。
2.对难点、易错点让学生自行纠正,教师加以补充。
[教学课型]复习课[教学过程]一、情景回顾:(1)由学生推导等差数列的前n 项和公式,并总结出求一个数列的前n 项和的方法。
(学生活动)教师巡视,并及时观察总结二、 例题探究方法的应用(一)例1、 求和)(2,3211211101≥∈++++=*-----n N n nC C C C S n n n n n n Λ (学生观察,充分讨论,教师总结,学生活动为主,教师参与)解题过程视实际情况予以板书例题变式:求和n n n n n n nC C C C S ++++=Λ32132再次让学生讨论、比较,灵活运用知识解法一:n n n n n n nC C C C S ++++=Λ32132S n 又可写成12112)1(n n n n n n n C C C n nC S +++-+=--Λn n n n n nC nC nC S +++=Λ10212-•=∴n n n S解法二:11--=k n k n nC kC Θ111101----+++=∴n n n n n nC nC nC S Λ)(111101----+++=n n n n C C C n Λ12-•=n n三、 方法提炼:通过以上的例子我们可以得到求一个数列的前n 项和的一个基本方法——倒序相加法倒序相加法适用范围(学生回答)一个数列倒过来,与原数列相加时,若有公因式可提,且剩余项的和可求,这样的数列就可以用倒序相加法。
专题31 数列求和1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法。
1.求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式S n =n (a 1+a n ) 2=na 1+n (n -1)2d .②等比数列的前n 项和公式 (ⅰ)当q =1时,S n =na 1;(ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q.(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n = (-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 2.常见的裂项公式(1)1n (n +1)=1n -1n +1.(2)1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1.(3)1n +n +1=n +1-n .高频考点一 分组转化法求和例1、(2016·天津卷)已知{a n }是等比数列,前n 项和为S n (n ∈N +),且1a 1-1a 2=2a 3,S 6=63.(1)求{a n }的通项公式;(2)若对任意的n ∈N +,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和.【方法规律】(1)若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.(2)若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{a n }的前n 项和.【变式探究】 (1)数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( )A.n 2+1-12nB.2n 2-n +1-12nC.n 2+1-12n -1D.n 2-n +1-12n(2)数列{a n }的通项公式a n =n cos n π2,其前n 项和为S n ,则S 2 016等于( ) A.1 008B.2 016C.504D.0【答案】 (1)A (2)A高频考点二 错位相减法求和例2、(2016·山东卷)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n .求数列{c n }的前n 项和T n .【解析】 (1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5. 当n =1时,a 1=S 1=11,符合上式. 所以a n =6n +5.设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d , 可解得b 1=4,d =3.所以b n =3n +1.(2)由(1)知,c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1.. 又T n =c 1+c 2+…+c n .得T n =3×[2×22+3×23+…+(n +1)×2n +1].2T n =3×[2×23+3×24+…+(n +1)×2n +2].两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(1-2n )1-2-(n +1)×2n +2=-3n ·2n +2. 所以T n =3n ·2n +2.【方法规律】(1)一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解; (2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.【变式探究】 已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根. (1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.高频考点三裂项相消法求和例3、S n为数列{a n}的前n项和.已知a n>0,a2n+2a n=4S n+3.(1)求{a n}的通项公式;(2)设b n=1a n a n+1,求数列{b n}的前n项和.【方法规律】(1)利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.(2)将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.【变式探究】 设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3. (1)求a n ;(2)设b n =1S n,求数列{b n }的前n 项和为T n .【解析】 (1)设数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,(a 1+7d )-2(a 1+2d )=3,解得a 1=3,d =2, ∴a n =a 1+(n -1)d =2n +1.(2)由(1)得S n =na 1+n (n -1)2d =n (n +2),∴b n =1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2.∴T n =b 1+b 2+…+b n -1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝⎛⎭⎪⎫1+12-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2.【举一反三】在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝ ⎛⎭⎪⎫S n -12.(1)求S n 的表达式; (2)设b n =S n2n +1,求{b n }的前n 项和T n .1.【2016高考山东理数】(本小题满分12分)已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1).(2)n n n nn a c b ++=+ 求数列{}n c 的前n 项和T n . 【答案】(Ⅰ)13+=n b n ;(Ⅱ)223+⋅=n n n T .(Ⅱ)由(Ⅰ)知11(66)3(1)2(33)n n n nn c n n +++==+⋅+, 又n n c c c c T +⋅⋅⋅+++=321,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得234123[22222(1)2]n n n T n ++-=⨯⨯+++⋅⋅⋅+-+⨯224(21)3[4(1)2]2132n n n n n ++-=⨯+-+⨯-=-⋅ 所以223+⋅=n n n T【2015江苏高考,11】数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为 【答案】2011【解析】由题意得:112211(1)()()()1212n n n n n n n a a a a a a a a n n ---+=-+-++-+=+-+++=所以1011112202(),2(1),11111n n n S S a n n n n =-=-==+++【2015高考天津,理18】(本小题满分13分)已知数列{}n a 满足212()*,1,2n n a qa q q n N a a +=≠∈==为实数,且1,,且 233445,,a a a a a a 成等差数列.(I)求q 的值和{}n a 的通项公式; (II)设*2221log ,nn n a b n N a -=∈,求数列n b 的前n 项和. 【答案】(I) 1222,2,.n n n n a n -⎧⎪=⎨⎪⎩为奇数,为偶数; (II) 1242n n n S -+=-.(II) 由(I)得22121log 2n n n n a nb a --==,设数列{}n b 的前n 项和为n S ,则012111111232222n n S n -=⨯+⨯+⨯++⨯, 1231111112322222n n S n =⨯+⨯+⨯++⨯ 两式相减得2311111111*********2222212n n n n n n n n n n S --=+++++-=-=---, 整理得1242n n n S -+=-所以数列{}n b 的前n 项和为124,*2n n n N -+-∈. 【2015高考四川,理16】设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列.(1)求数列{}n a 的通项公式; (2)记数列1{}na 的前n 项和n T ,求得1|1|1000n T -<成立的n 的最小值. 【答案】(1)2n n a =;(2)10.(2)由(1)得112n n a =. 所以2311[1()]1111122112222212n n n nT -=++++==--. 由1|1|1000n T -<,得11|11|21000n --<,即21000n>. 因为9102512100010242=<<=, 所以10n ≥. 于是,使1|1|1000n T -<成立的n 的最小值为10. 【2015高考新课标1,理17】n S 为数列{n a }的前n 项和.已知n a >0,2n n a a +=43n S +.(Ⅰ)求{n a }的通项公式; (Ⅱ)设11n n n b a a +=,求数列{n b }的前n 项和. 【答案】(Ⅰ)21n +(Ⅱ)11646n -+ 【解析】(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3, 当2n ≥时,2211n n n n a a a a --+--=14343n n S S -+--=4na ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2,所以数列{n a }是首项为3,公差为2的等差数列,所以n a =21n +;(Ⅱ)由(Ⅰ)知,n b =1111()(21)(23)22123n n n n =-++++,所以数列{n b }前n 项和为12n b b b +++=1111111[()()()]235572123n n -+-++-++ =11646n -+. 1.(2014·江西卷)已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a nb n +1-a n +1b n +2b n +1b n =0.(1)令c n =a nb n,求数列{c n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .2.(2014·全国卷)等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .3.(2014·山东卷)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (1)求数列{a n }的通项公式; (2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .【解析】 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12, 由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)由题意可知,b n =(-1)n -14na n a n +1=(-1)n -14n(2n -1)(2n +1)=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1. 当n 为偶数时,T n =⎝⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝⎛12n -3+⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1=1-12n +1=2n2n +1. 当n 为奇数时,T n =⎝⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝⎛⎭⎪⎫12n -3+12n -1+⎝⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或T n=2n +1+(-1)n -12n +14.(2013·江西卷)正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n)=0. (1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n ,数列{b n }的前n 项和为T n ,证明:对于任意的n∈N *,都有T n <564.5.(2013·湖南卷)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n∈N *,则(1)a 3=________;(2)S 1+S 2+…+S 100=________.6.(2013·山东卷)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且T n +a n +12n =λ(λ为常数),令c n =b 2n (n∈N *),求数列{c n }的前n 项和R n .【解析】:(1)设等差数列{a n }的首项为a 1,公差为d. 由S 4=4S 2,a 2n =2a n +1得⎩⎪⎨⎪⎧4a 1+6d =8a 1+4d ,a 1+(2n -1)d =2a 1+2(n -1)d +1, 解得a 1=1,d =2,因此a n =2n -1,n∈N *.(2)由题意知T n =λ-n 2n -1,所以n≥2时,b n =T n -T n -1=-n 2n -1+n -12n -2=n -22n -1.故c n =b 2n =2n -222n -1=(n -1)⎝ ⎛⎭⎪⎫14n -1,n∈N *.所以R n =0×⎝ ⎛⎭⎪⎫140+1×⎝ ⎛⎭⎪⎫141+2×⎝ ⎛⎭⎪⎫142+3×⎝ ⎛⎭⎪⎫143+…+(n -1)×⎝ ⎛⎭⎪⎫14n -1,则14R n =0×⎝ ⎛⎭⎪⎫141+1×⎝ ⎛⎭⎪⎫142+2×⎝ ⎛⎭⎪⎫143+…+(n -2)×⎝ ⎛⎭⎪⎫14n -1+(n -1)×⎝ ⎛⎭⎪⎫14n ,两式相减得34R n =⎝ ⎛⎭⎪⎫141+⎝ ⎛⎭⎪⎫142+⎝ ⎛⎭⎪⎫143+…+⎝ ⎛⎭⎪⎫14n -1-(n -1)×⎝ ⎛⎭⎪⎫14n =14-⎝ ⎛⎭⎪⎫14n1-14-(n -1)×⎝ ⎛⎭⎪⎫14n=13-1+3n 3⎝ ⎛⎭⎪⎫14n , 整理得R n =194-3n +14n -1.所以数列{c n }的前n 项和R n =194-3n +14n -1.1.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( )A.120B.70C.75D.100【答案】 C【解析】析 因为S n n =n +2,所以⎩⎨⎧⎭⎬⎫S n n 的前10项和为10×3+10×92=75.2.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=( )A.9B.8C.17D.16【答案】 A3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A.200B.-200C.400D.-400【答案】 B【解析】析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.4.已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16等于( ) A.5 B.6 C.7 D.16【答案】 C【解析】析根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S16=2×0+7=7.故选C.5.已知数列{a n}满足a1=1,a n+1·a n=2n(n∈N+),则S2 016=( )A.22 016-1B.3·21 008-3C.3·21 008-1D.3·21 007-2【答案】 B【解析】a1=1,a2=2a1=2,又a n+2·a n+1a n+1·a n=2n+12n=2.∴a n+2a n=2.∴a1,a3,a5,…成等比数列;a2,a4,a6,…成等比数列,∴S2 016=a1+a2+a3+a4+a5+a6+…+a2 015+a2 016=(a1+a3+a5+…+a2 015)+(a2+a4+a6+…+a2 016)=1-21 0081-2+2(1-21 008)1-2=3·21 008-3.故选B.6.在等差数列{a n}中,a1>0,a10·a11<0,若此数列的前10项和S10=36,前18项和S18=12,则数列{|a n|}的前18项和T18的值是________.【答案】60【解析】析由a1>0,a10·a11<0可知d<0,a10>0,a11<0,∴T18=a1+…+a10-a11-…-a18=S10-(S18-S10)=60.7.整数数列{a n}满足a n+2=a n+1-a n (n∈N*),若此数列的前800项的和是2013,前813项的和是2000,则其前2015项的和为________.【答案】-138.已知正项数列{a n}的前n项和为S n,∀n∈N*,2S n=a2n+a n,令b n=1a n a n+1+a n+1a n,设{b n}的前n 项和为T n ,则在T 1,T 2,T 3,…,T 100中有理数的个数为________. 【答案】 99.已知数列{a n }中,a 1=3,a 2=5,且{a n -1}是等比数列. (1)求数列{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和T n . 【解析】 (1)∵{a n -1}是等比数列且a 1-1=2,a 2-1=4,a 2-1a 1-1=2,∴a n -1=2·2n -1=2n ,∴a n =2n+1.(2)b n =na n =n ·2n+n ,故T n =b 1+b 2+b 3+…+b n =(2+2×22+3×23+…+n ·2n)+(1+2+3+…+n ). 令T =2+2×22+3×23+…+n ·2n, 则2T =22+2×23+3×24+…+n ·2n +1.两式相减,得-T =2+22+23+ (2)-n ·2n +1=21-2n1-2-n ·2n +1,∴T =2(1-2n)+n ·2n +1=2+(n -1)·2n +1.∵1+2+3+…+n =n n +12, ∴T n =(n -1)·2n +1+n 2+n +42.10.正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +22a 2n ,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n <564.11.已知数列{a n }的前n 项和是S n ,且S n +12a n =1(n ∈N +).(1)求数列{a n }的通项公式;(2)设b n =log 13(1-S n +1)(n ∈N +),令T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .【解析】 (1)当n =1时,a 1=S 1, 由S 1+12a 1=1,得a 1=23,当n ≥2时,S n =1-12a n ,S n -1=1-12a n -1,则S n -S n -1=12(a n -1-a n ),即a n =12(a n -1-a n ),所以a n =13a n -1(n ≥2)..专业. 故数列{a n }是以23为首项,13为公比的等比数列. 故a n =23·⎝ ⎛⎭⎪⎫13n -1=2·⎝ ⎛⎭⎪⎫13n (n ∈N +).。
6.5 数列的综合应用要点集结1.重要思想:基本量思想、分类讨论思想、函数与方程思想,转化为“基本量”是解决问题的基本方法。
2.重要方法:配方法、迭代法、累加(乘)法,基本量法的解题思路为:设出首项、公差(比),借助于消元及解方程等方法来解决。
3.非等差(比)数列,注意向等差(比)数列转化。
4.①若数列{a n }是等差数列,则数列{}na a是 (1,0≠>a a )。
②若数列{a n }是等比数列,a n >0,则数列{log a a n }是 (1,0≠>a a )。
③既等差又等比的数列是 5.数列应用题的核心问题是建立数学模型,对平均增长率等实际问题要通过逐项的分析和归纳,掌握数列模型的建立方法,一般性的分析前后相邻项的关系,得到递推公式,再寻找问题的解决,往往事半功倍。
解决应用题的一般步骤:审题----建模-----解模-----作答。
基础自测1.已知数列{a n }的通项公式是a n =anbn +1,其中a ,b 均为正常数,那么a n 与a n +1的大小关系是________. 2.已知数列{a n }是首项为a 1,公差为d (0<d <2π)的等差数列,若数列{cos a n }是等比数列,则其公比为 。
3.若数列x ,a 1,a 2,y 成等差数列,x ,b 1,b 2,y 成等比数列,则(a 1+a 2)2b 1·b 2的取值范围是________.4.已知数列{a n }中,a 1=a ,a 为正实数,a n +1=a n -1a n(n ∈N *),若a 3>0,则a 的取值范围是________.5.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4=________.考点探究【例1】在数列{a n }中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠). (Ⅰ)设1n n n b a a +=-(*n N ∈),证明{}n b 是等比数列;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)若3a 是6a 与9a 的等差中项,求q 的值,并证明:对任意的*n N ∈,n a 是3n a +与6n a +的等差中项.【例2】已知各项均为正数的数列{}n a 满足21+n a =212++n n n a a a ,且42342+=+a a a ,*∈N n ,①求数列{}n a 的通项公式,②设数列{}n b 满足()nnn n na b 212⋅+=,是否存在正整数()n m n m <<1,,使得n m b b b ,,1成等比数列?若存在,求出所有的n m ,的值;若不存在,则说明理由。
明达中学2009届高三数学一轮复习教学案 等差数列【知识扫描】阅读课本P33-44 主备:刘社新 1.如果一个数列从 项起,每一项减去它的前一项所得的差都等于_________,那么这个数列就叫做等差数列,这个常 叫做等差数列的公差,公差通常用d表示. 即:1n n a a d +-=或变式:11(2)n n n n a a a a n +--=-≥ (*n N ∈)2.等差数列{n a }的通项公式 ,其中1a 为首项,d为公差. 变式:()n t a a n t d =+- (*n N ∈) 或 tn a a d t n --= 3.如果一个数列{n a }的通项公式为n a =n k ⋅+b,其中k,b都是常数,那么这个数列一定是等差数列吗?4.前n 项和公式:n s = 或n s =【课前练习】1.已知等差数列{a n }中,d =-13,a 7=8,则a 1=________ 2.在等差数列{a n }中,a 3=10,a 9=28,则a 12= 。
3.在等差数列{a n }中,已知(1)已知1503,101,a a ==则50S = ;(2)已知113,,2a d ==则10S = 。
4.一个凸n 边形,各内角的度数成等差数列,公差为10°,最小内角为100°,则边数n= .5.{}n a 是首项1a =1,公差为d =3的等差数列,如果n a =2005,则序号n 等于6.首项为正数的等差数列,其前3项和与前11项和相等,则该数列的前 项和为最大。
班级:姓名:【课堂例题】例1:在等差数列{}n a 中,270,903015-==s s ,(1)求d a ,1;(2)第几项开始为负数?(3)为何值时,n s 最大?例2:已知在等差数列{}n a 中,n a n 525-=,求数列{}n a 的前n 项和n T .例3:设等差数列{}n a 的前n 项和为n S ,已知123=a ,012>S ,013<S(1)求公差d 的取值范围; (2)指出1221,,,S S S 中哪一个的值最大,并说明理由.【课后自测】1.已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是2.已知数列的通项52n a n =-+,则其前n 项和为n S = .3.首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是4.非常数数列的等差数列前 10 项之和是前 5 项之和的 4 倍,则首项与公差之比为5.已知等差数列}{n a 的前n 项和为122-++=p n pn S n ,则其通项n a =__________.6. 等差数列{}n a 满足4737a a =,且10a >,当前n 项和n S 最大时,n =7、已知数列{}n a 是等差数列,a 1=-9,S 3=S 7,那么使其前n 项和S n 最小的n是_____________.8.某公园设计节日鲜花摆放方案,其中一个花坛由一批花盆堆成六角垛.顶层一个,以下各层堆成正六边形,逐层每边增加一个花盆(如图所示).若这垛花盆底层最长一排共有 13 个花盆,则底层共有 个花盆。
数列求和及其综合应用【考点1】裂项相消法求和1.裂项相消法求和:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.2.裂项相消法求和主要应用在数列通项公式为分式结构时,其关键在于裂项后系数的确定. 3.裂项求和的几种常见类型: (1)()⎪⎭⎫⎝⎛+-=+k n n k k n n 1111;(2)1n +k +n =1k(n +k -n );(3)()()⎪⎭⎫⎝⎛+--=+-1211212112121n n n n ;(4)若{a n }是公差为d 的等差数列,则⎪⎪⎭⎫⎝⎛-=++111111n n n n a a d a a ; (5)211111()1211k k k <=---+2k; (6)211111111(1)(1)1k k k k kk k k k -=<<=-++--; (7)1111(1)(2)2(1)(1)(2)n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦; (8)()212212(1)11n n n n n n n n n +-=<<=--+++-.例1(2014·全国卷)等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .【点拨】(1)根据条件求得103≤d ≤-52,从而确定d =-3,故求得a n =13-3n .(2)利用裂项相消法求和,注意剩余项的个数.【解析】(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数.又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0,解得-103≤d ≤-52,因此d =-3.故数列{a n }的通项公式为a n =13-3n .(2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫110-3n -113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n 10(10-3n ). 【答案】(1)a n =13-3n ;(2)n10(10-3n ).【小结】本题考查裂项相消法求和.练习1:等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6. (1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{1b n}的前n 项和.【解题过程】【解析】(1)设数列{a n }的公比为q .由a 23=9a 2a 6,得a 23=9a 24,所以q 2=19.由条件可知q >0,故q =13.由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=13.故数列{a n }的通项公式为a n =13n .(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=()21+-n n .故1b n=()12+-n n =-2(1n -1n +1),1b 1+1b 2+…+1b n =-2[(1-12)+(12-13)+…+(1n -1n +1)]=-2nn +1.所以数列{1b n }的前n 项和为-2nn +1.例2(2014·广东卷)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()223n n S n n S -+--()230n n +=,n N *∈.(1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有()()()112211111113n n a a a a a a +++<+++.【点拨】(2)根据()()()221112n n n a S S n n n n n -⎡⎤=-=+--+-=⎣⎦求得n a ;(3)对()()()()1111111221212122121n n a a n n n n n n ⎛⎫=<=- ⎪++-+-+⎝⎭,然后求和求解.【解析】(1)令1n =得:()2111320S S ---⨯=,即21160S S +-=,()()11320S S ∴+-=,10S >,12S ∴=,即12a =;(2)由()()22233n n S n n S n n -+--+,得()()230n n S S n n ⎡⎤+-+=⎣⎦,()0n a n N *>∈,0n S ∴>,从而30n S +>,2n S n n ∴=+,所以当2n ≥时,()()()221112n n n a S S n n n n n -⎡⎤=-=+--+-=⎣⎦,又1221a ==⨯,()2n a n n N *∴=∈;(3)当1n =时,()11111112363a a ==<+⨯成立,当2n ≥时,()()()()1111111221212122121n n a a n n n n n n ⎛⎫=<=- ⎪++-+-+⎝⎭,则()()()()11223311111111n n a a a a a a a a ++++++++1111111111623525722121n n ⎛⎫⎛⎫⎛⎫<+-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭1111111623213633n n ⎛⎫=+-=-< ⎪++⎝⎭.【答案】(1)12a =;(2)2n a n =;(3)详见解析. 【小结】本题考查裂项求和及放缩法解不等式.练习2:等差数列{a n }中,2a 1+3a 2=11,2a 3=a 2+a 6-4,其前n 项和为S n . (1)求数列{a n }的通项公式; (2)设数列{b n }满足111n n b S +=-其前n 项和为T n ,求证: 34n T <(n ∈N *). 【解题过程】【解析】(1)2a 1+3a 2=2a 1+3(a 1+d )=5a 1+3d=11,2a 3=a 2+a 6-4,即2(a 1+2d )=a 1+d+a 1+5d-4,得d=2,a 1=1,a n =a 1+(n-1)d=1+(n-1)×2=2n-1. (2)证明: ()()2111111222n S na n n d n n n n =+-=⨯+-⨯=, ()221111111122211n n b S n n n n n +⎛⎫====- ⎪-+=⎝⎭+-.111111111112132435112n T n n n n ⎛⎫=-+-+-++-+- ⎪-++⎝⎭111113111212124212n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭.,n N *∈∴1110212n n ⎛⎫+> ⎪++⎝⎭∴34n T <. 【考点2】错位相减法1.错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的. 用错位相减法求和时,应注意(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式.2.错位相减只是实现求和的途径,其本质是相减后利用等比数列求和公式求和.在构造方程时,S n 的左右两边同乘以等比数列的公比.3.错位相减法的难点在于运算,为力求运算准确,要注意两式相减时幂指数相同的项要对齐,同时注意剩余的项.例3(2014·江西高考)已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a nb n,求数列{c n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .【点拨】(1)a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *)两边除以b n +1b n 证明数列{c n }是等差数列;(2)错位相减法求数列的和.【解析】(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a nb n=2,即c n +1-c n =2.所以数列{c n }是以首项c 1=1,公差d =2的等差数列,故c n =2n -1. (2)由b n =3n -1知a n =c n b n =(2n -1)3n -1,于是数列{a n }前n 项和S n =1·30+3·31+5·32+…+(2n -1)·3n -1,3S n =1·31+3·32+…+(2n -3)·3n -1+(2n -1)·3n,相减得-2S n =1+2·(31+32+…+3n -1)-(2n -1)·3n=-2-(2n -2)3n,所以S n =(n-1)3n+1.【答案】(1)c n =2n -1;(2)S n =(n -1)3n+1.【小结】本题考查等差数列的通项公式及错位相减法求数列的和.练习1:(2014·全国新课标Ⅰ)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根.(1)求{a n }的通项公式; (2)求数列{a n2n }的前n 项和.【解题过程】【解析】(1)解方程x 2-5x +6=0的两根为2,3,由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d ,故d =12,从而a 1=32.所以{a n }的通项公式为a n =12n +1.(2) 设{a n 2n }的前n 项和为S n ,由(1)知a n 2n =n +22n +1,则S n =322+423+…+n +12n +n +22n +1,12S n=323+424+…+n +12n +1+n +22n +2.两式相减得12S n =34+(123+…+12n +1)-n +22n +2=34+14(1-12n -1)-n +22n +2.所以S n =2-n +42n +1.例4(数学文卷·2015届江西省师大附中高三上学期期中考试)设数列{}n a 的前n 项和为n S ,已知1122(),2n n a S n N a ++=+∈=. (1)求数列{}n a 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列. 求证:1211115()16n n N d d d ++++<∈. 【点拨】遇到数列的前n 项和与通项构成的递推公式,可先利用前n 项和与通项之间的关系转化为项的递推公式进行解答,遇到与n 项和有关的不等式,可考虑先求和再证明. 【解析】(1) 2S 2a n 1n +=+,2S 2a 1n n +=-(2n ≥))S S (2a a 1n n n 1n -+-=-=na 2即3a a n1n =+(2n ≥)当1n =,得2a 2a 12+==6 1n 1n 1n 32q a a --⋅=⋅= 即123n n a -=⨯.(2)①1(1)n n n a a n d +=++,则1431n n d n -⨯=+,11143n n n d -+=⨯=+⋅⋅⋅++n 21d 1d 1d 1)31n 343332(411n 20-++⋅⋅⋅++设=n T 1n 2031n 343332-++⋅⋅⋅++① 则31=n T n22131n 343332++⋅⋅⋅++②①-②得:32=n T 2+n 1n 3231n 31313131+-+⋅⋅⋅++-=2+n1n 31n 311])31(1[31+----)31n 321(23415T n 1n n ++⋅-=-415<因此161541541d 1d 1d 1n 21=⋅<+⋅⋅⋅++ . 【答案】(1)123n n a -=⨯,(2)略.【小结】本题考查数列的通项公式,数列求和,等差数列.练习2:已知数列{a n }的前n 项和S n =a n +n 2-1,数列{b n }满足3n·b n +1=(n +1)a n +1-na n ,且b 1=3. (1)求a n ,b n ;(2)设T n 为数列{b n }的前n 项和,求T n ,并求满足T n <7时n 的最大值. 【解题过程】【解析】(1)n≥2时,S n =a n +n 2-1,S n -1=a n -1+(n -1)2-1,两式相减,得a n =a n -a n-1+2n -1,∴a n -1=2n -1.∴a n =2n +1,∴3n·b n +1=(n +1)(2n +3)-n (2n +1)=4n+3,∴b n +1=4n +33n ,∴当n≥2时,b n =4n -13n -1,又b 1=3适合上式,∴b n =4n -13n -1.(2)由(1)知,b n =4n -13n -1,∴T n =31+73+1132+…+4n -53n -2+4n -13n -1,①13T n =33+732+1133+…+4n -53n -1+4n -13n ,②;①-②,得23T n =3+43+432+…+43n -1-4n -13n =3+4·13⎝ ⎛⎭⎪⎫1-13n -11-13-4n -13n=5-4n +53n .∴T n =152-4n +52·3n -1.T n -T n +1=4n +1+52·3n -4n +52·3n -1=-4n +33n<0.∴T n <T n +1,即{T n }为递增数列.又T 3=599<7,T 4=649>7,∴当T n <7时,n 的最大值为3.【考点3】分组求和1.分组转化求和法:若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和而后相加减.例5已知等差数列{a n }的前n 项和为S n ,且a 3=5,S 15=225. (1)求数列{a n }的通项公式;(2)设b n =2a n +2n ,求数列{b n }的前n 项和T n .【点拨】(1)利用等差数列的通项公式及前n 项和公式求解;(2)把数列{b n }的前n 项和分成一个等比数列求和及一个等差数列求和.【解析】(1)设等差数列{a n }的首项为a 1,公差为d ,由题意,得⎩⎪⎨⎪⎧a 1+2d =5,15a 1+15×142d =225,解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1.(2)∵b n =2a n +2n =12.4n +2n ,∴T n =b 1+b 2+...+b n =12(4+42+ (4))+2(1+2+…+n )=4n +1-46+n 2+n =23·4n +n 2+n -23. 【答案】(1)a n =2n -1;(2)T n =23·4n +n 2+n -23.【小结】本题考查分组求和.练习:数列112,314,518,7116,…的前n 项和S n 为 .【解题过程】【解析】()1111135212482n n S n =++++-()135721n =+++++-+⎡⎤⎣⎦11111248162n ⎛⎫+++++ ⎪⎝⎭()2111121122112212n n n n n ⎛⎫- ⎪+-⎝⎭=+=+--. 【考点4】倒序相加法求和1.倒序相加法:如果一个数列{a n },首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的.例6设()442xxf x =+,利用倒序相加法,可求得12320142015201520152015f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值为 .【点拨】利用等差数列求和方法求解.【解析】()442x x f x =+()()1144114242x xx x f x f x --∴+-=+=++故可得12320141007110072015201520152015f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.【答案】1007【小结】本题考查倒序相加法求和.练习1:2222sin 1sin 2sin 3sin 89++++.【解题过程】【解析】设2222sin 1sin 2sin 3sin 89S =++++, 又∵2222sin 89sin 88sin 87sin 1S =++++, ∴ 289S =,892S =. 【考点5】数列分奇偶项讨论求和例7(2014·山东卷)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .【点拨】(1)利用等差数列的前n 项和及等比数列的等比中项求解;(2)分奇数项及偶数项讨论求和.【解析】(1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1,所以a n =2n -1. (2)由题意可知,b n =(-1)n -14na n a n +1=(-1)n -14n (2n -1)(2n +1)=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1.当n 为偶数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝⎛12n -3+⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1=1-12n +1=2n 2n +1.当n 为奇数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1.所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或T n =2n +1+(-1)n -12n +1【答案】(1)a n=2n -1;(2)T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n 2n +1,n 为偶数.【小结】本题考查分奇偶讨论求和及裂项求和.练习1:已知数列{}n a 的通项65()2()n n n n a n -⎧=⎨⎩为奇数为偶数,求其前n 项和n S .【解答过程】【解析】奇数项组成以11a =为首项,公差为12的等差数列,偶数项组成以24a =为首项,公比为4的等比数列;当n 为奇数时,奇数项有12n +项,偶数项有12n -项,∴1121(165)4(14)(1)(32)4(21)221423n n n n n n n S --++--+--=+=+-,当n 为偶数时,奇数项和偶数项分别有2n项, ∴2(165)4(14)(32)4(21)221423n n n n n n n S +----=+=+-,所以,1(1)(32)4(21)()23(32)4(21)()23n n nn n n S n n n -⎧+--+⎪⎪=⎨--⎪+⎪⎩为奇数为偶数.【考点6】数列与函数结合例8已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值.【点拨】(1)利用等差、等比数列的性质求解;(2)分奇偶讨论S n 的单调性从而求得数列{T n }的最大项的值与最小项的值.【解析】(1)设等比数列{a n }的公比为q ,因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列,所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3,于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12,故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .(2)由(1)得S n =1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n ,n 为奇数,1-12n ,n 为偶数.当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56;当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712. 所以数列{T n }最大项的值为56,最小项的值为-712. 【答案】(1)a n =(-1)n -1·32n ;(2)数列{T n }最大项的值为56,最小项的值为-712. 【小结】(1)当a n 或S n 中含有(-1)n时,n 的奇偶性影响结果,故应分类讨论.(2)把S n 看作自变量,则S n -1S n 是增函数(或减函数),故可根据S n 的范围,求S n -1S n的范围.练习1:(2013·宁波模拟)设公比大于零的等比数列{a n }的前n 项和为S n ,且a 1=1,S 4=5S 2,数列{b n }的前n 项和为T n ,满足b 1=1,T n =n 2b n ,n ∈N *. (1)求数列{a n }、{b n }的通项公式;(2)设c n =(S n +1)(nb n -λ),若数列c n 是单调递减数列,求实数λ的取值范围. 【解题过程】【解答】(1)由S 4=5S 2,a 1=1得1-q 41-q =51-q 21-q,又q >0,所以q =2,a n =2n -1.由()2111n nn n T n b T n b --⎧=⎪⎨=-⎪⎩得b n b n -1=n -1n +1(n >1),又b 1=1.则b n b n -1·b n -1b n -2·b n -2b n -3·…·b 2b 1=n -1n +1·n -2n ·n -3n -1·…·24·13=()21n n +.所以n >1时,b n =()21n n +,当n =1时,b 1=1也满足,故b n =()21n n +(n ∈N *).(2)S n =2n-1,所以c n =2n⎝ ⎛⎭⎪⎫2n +1-λ,若数列{c n }是单调递减数列,则c n +1-c n=2n⎝ ⎛⎭⎪⎫4n +2-2n +1-λ<0对n ∈N *都成立,即4n +2-2n +1-λ<0⇒λ>⎝ ⎛⎭⎪⎫4n +2-2n +1max ,4n +2-2n +1=()()212n n n ++=2n +3+2n,当n =1或2时,⎝ ⎛⎭⎪⎫4n +2-2n +1max =13,所以λ>13.即系数λ的取值范围为⎝ ⎛⎭⎪⎫13,+∞. 【习题反思】1.本题(1)中求数列{b n }的通项公式时利用累乘法,但需注意验证n =1时,b 1是否满足通项公式.2.数列与不等式的综合应用问题主要涉及两种题型:(1)比较大小,常采用作差比较法和放缩法;(2)证明不等式及不等式的应用,常采用比较法、分析综合法、基本不等式法、放缩法、最值法、反证法等.基础练习 (时间:45分钟)1.数列{a n }的通项公式a n =1n + n +1,若{a n }的前n 项和为24,则n 为________.2.数列()()1111,25588113n-132n ⨯⨯⨯⨯+,,,,的前n 项和为________.3.(2013温州高三质检)若已知数列的前四项是2112+、2124+、2136+、2148+,则数列前n 项和为 .4.(错位相减法求和)化简S n =n +(n -1)×2+(n -2)×22+…+2×2n -2+2n -1的结果是________. 5.数列23,2,3,,,n a a a na 其前n 项的和n S = .6.数列5,55,555,5555,…,5(101)9n-,…;其前n 项的和n S = . 7.S n 是等比数列{a n }的前n 项和,a 1=120,9S 3=S 6,设T n =a 1a 2a 3…a n ,则使T n 取最小值的n值为 .8.设数列{}n a 的前n 项和为n S ,且11a =,2(1)n n S na n n =--. (Ⅰ)求2a ,3a ,4a ,并求出数列{}n a 的通项公式; (Ⅱ)设数列11{}n n a a +⋅的前n 项和为n T ,求证:41<n T .9.(2015届辽宁省实验中学等五校协作体高三上学期期中联考)数列{a n }的前n 项和为S n ,且S n +a n =1,数列{b n }满足b 1=4,b n+1=3b n -2; (1)求数列{a n }和{b n }的通项公式;(2)设数列{c n }满足c n =a n log 3(b 2n-1-1),其前n 项和为T n ,求T n ;10.(2014·湖南高考)已知数列{}n a 的前n 项和*∈+=N n nn S n ,22. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设()n nan a b n 12-+=,求数列{}n b 的前n 2项和.11.(2014·宁波二模)设等差数列{a n}的前n项和为S n,且a2=8,S4=40.数列{b n}的前n项和为T n,且T n-2b n+3=0,n∈N*.(1)求数列{a n},{b n}的通项公式;(2)设c n=求数列{c n}的前n项和P n.参考答案1.【解析】a n =1n + n +1=-( n - n +1),前n 项和S n =-[(1-2)+(2-3)+…+(n -n +1)]= n +1-1=24,故n =624.2.【解析】1111111,=-+-++325583n-132n n n S S n ⎛⎫-⎪+⎝⎭设前项和为则1113232n ⎛⎫=- ⎪+⎝⎭64nn =+.3.【解析】因为通项21111222n a n n n n ⎛⎫==- ⎪++⎝⎭,所以此数列的前n 项和 11111111111---...--232435n-1n 1n n 2n S ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()()1111323122124212n n n n n +⎛⎫=+--=- ⎪++++⎝⎭. 4.【解析】S n =n +(n -1)×2+(n -2)×22+…+2×2n -2+2n -1,2S n =2n +(n -1)×22+(n -2)×23+…+2×2n -1+2n ,两式作差S n =2n +2n -1+2n -2+…+2-n =2n +1-2-n .5.【解析】2323n n S a a a na =++++, 当1a =时,123n S =+++ (1)2n n n ++=, 当1a ≠时,2323n S a a a =+++…n na + , 23423n aS a a a =+++…1n na ++, 两式相减得23(1)n a S a a a -=+++…11(1)1n n n n a a a nana a++-+-=--,∴212(1)(1)n n n na n a aS a ++-++=-. 6.【解析】555555555n n S =++++个5(999999999)9n =++++个235[(101)(101)(101)(101)]9n =-+-+-++- 235505[10101010](101)9819n n n n =++++-=--. 7.【解析】设等比数列的公比为q ,故由9S 3=S 6,得9×a 11-q 31-q =a 11-q 61-q,解得q=2,故T n T n -1=a n =120×2n -1,易得当n ≤5时,T n T n -1<1,即T n <T n -1;当n ≥6时,T n >T n -1,据此数列单调性可得T 5为最小值.8.【解析】(Ⅰ)由)1(2--=n n na S n n 得n na a n S S a n n n n n 4)1(111--+=-=+++.41=-∴+n n a a 所以,数列}{n a 是以1为首项,4为公差的等差数列34-=∴n a n ,13,9,5432===a a a(Ⅱ))14)(34(1139195151111113221+-++⨯+⨯+⨯=+++=+n n a a a a a a T n n n41)1411(41]141341131919151511[41<+-=+-+++-+-+-=n n n . 9.【解析】 (1)①当n=1时,a 1+S 1=1 ∴a 1=12②当n 2时,a n =S n -S n-1=(1-a n )-(1-a n-1)=a n-1-a n ∴a n =12a n-1∴数列{a n }是以a 1=12为首项,公比为12的等比数列;∴a n =12·(12)n-1=(12)n∵b n+1=3b n -2 ∴b n+1-1=3(b n -1)又∵b 1-1=3 ∴{b n -1}是以3为首项,3为公比的等比数列∴b n -1=3n∴b n =3n+1.(2)c n =(12)n ·log 332n-1=(2n-1)·(12)n T n =1×12+3×(12)2+5×(12)3+…+(2n-3)·(12)n-1+(2n-1)·(12)n 12T n =1×(12)2+3×(12)3+5×(12)4+…+(2n-3)·(12)n +(2n-1)·(12)n+1(1-12)T n =1×12+2[(12)2+(12)3+…+(12)n-1 +(12)n ]-(2n-1)·(12)n+1 =12+2×(12)2(1-(12)n-1)1-12-(2n-1)·(12)n+1=12+1-(12)n-1-(2n-1)·(12)n+1=32-4×(12)n+1-(2n-1)·(12)n+1 =32-(2n+3)(12)n+1∴T n =3-2n+32n . 10.【解析】(Ⅰ)当1n =时,111a S ==,当2n 时,()()2211122n n n n n n n a S S n --+-+=-=-=,∴数列{}n a 的通项公式是n a n =.(Ⅱ)由(Ⅰ)知,()21nnn b n =+-,记数列{}n b 的前2n 项和为2n T ,则()()122222212342n n T n =++++-+-+-+()2212122212n n n n +-=+=+--.∴数列{}n b 的前2n 项和为2122n n ++-.11.【解析】(1)由题意,得∴a n =4n .∵T n -2b n +3=0,①∴当n=1时,b 1=3,当n ≥2时,T n-1-2b n-1+3=0,②;①-②,得b n =2b n-1,(n ≥2),数列{b n }为等比数列,∴b n =3·2n-1. (2)c n =当n 为偶数时,P n =(a 1+a 3+…+a n-1)+(b 2+b 4+…+b n )=+=2n+1+n 2-2.当n 为奇数时,法一 n-1为偶数,P n =P n-1+c n =2(n-1)+1+(n-1)2-2+4n=2n+n 2+2n-1.法二 P n =(a 1+a 3+…+a n-2+a n )+(b 2+b 4+…+b n-1)=+=2n+n 2+2n-1.∴P n =.。
第四节 数列求和1.公式法(1)等差数列{a n }的前n 项和S n =n a 1+a n2=na 1+n n -1d2.推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =n n +12;②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和而后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.常用的裂项公式有:①1nn +1=1n -1n +1; ②12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n +n +1=n +1-n .(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.[小题体验]1.等比数列1,2,4,8,…中从第5项到第10项的和为________. 解析:由a 1=1,a 2=2,得q =2,∴S 10=1×1-2101-2=1 023,S 4=1×1-241-2=15,∴S 10-S 4=1 008. 答案:1 0082.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于________.答案:n 2+1-12n3.已知数列{}a n 的通项公式a n =1n +n +1,则该数列的前________项之和等于9.解析:由题意知,a n =1n +n +1=n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1=9,解得n =99.答案:991.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n ,a n +1的式子应进行合并.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项. [小题纠偏]1.设f (n )=2+24+27+210+…+23n +10(n ∈N *),则f (3)=________.答案:27(87-1)2.已知数列{a n }的前n 项和为S n 且a n =n ·2n,则S n =________. 答案:(n -1)2n +1+23.求和:11×2+12×3+…+1n -1n=________.解析:原式=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =1-1n .答案:1-1n考点一 公式法求和 基础送分型考点——自主练透[题组练透]1.(2019·南师大附中月考)《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”已知“日减功迟”的具体含义是每天比前一天少织同样多的布,则此问题的答案是________日.解析:易知每日织布数量构成一个等差数列,设此数列为{}a n ,则a 1=5,a n =1,S n =90,所以n 5+12=90,解得n =30.答案:302.(2018·无锡期末)设公比不为1的等比数列{a n }满足a 1a 2a 3=-18,且a 2,a 4,a 3成等差数列,则数列{a n }的前4项和为________.解析:设数列{a n }的公比为q (q ≠1).由等比数列的性质可得a 1a 2a 3=a 32=-18,所以a 2=-12.因为a 2,a 4,a 3成等差数列,所以2a 4=a 2+a 3,即2a 2q 2=a 2+a 2q ,化简得2q 2-q -1=0,即(q -1)(2q +1)=0,解得q =-12或q =1(舍去).又因为a 1=a 2q=1,所以S 4=a 11-q 41-q=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-1241-⎝ ⎛⎭⎪⎫-12=58.答案:583.已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 解:(1)设{a n }的公差为d ,则由已知条件得⎩⎪⎨⎪⎧ a 1+2d =2,3a 1+3×22d =92,化简得⎩⎪⎨⎪⎧a 1+2d =2,a 1+d =32,解得⎩⎪⎨⎪⎧a 1=1,d =12,故{a n }的通项公式a n =1+n -12,即a n =n +12.(2)由(1)得b 1=1,b 4=a 15=15+12=8. 设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2,故{b n }的前n 项和T n =b 11-q n 1-q =1×1-2n1-2=2n-1.[谨记通法]几类可以使用公式法求和的数列(1)等差数列、等比数列以及由等差数列、等比数列通过加、减构成的数列,它们可以使用等差数列、等比数列的求和公式求解.(2)奇数项和偶数项分别构成等差数列或等比数列的,可以分项数为奇数和偶数时,分别使用等差数列或等比数列的求和公式.考点二 分组转化法求和重点保分型考点——师生共研[典例引领](2018·天一中学检测)已知数列{a n }的首项a 1=3,通项a n =2n p +nq (n ∈N *,p ,q 为常数),且a 1,a 4,a 5成等差数列.求:(1)p ,q 的值;(2)数列{a n }前n 项和S n .解:(1)由a 1=3,得2p +q =3,①又由a 4=24p +4q ,a 5=25p +5q ,且a 1+a 5=2a 4, 得3+25p +5q =25p +8q ,② 由①②解得p =1,q =1. (2)由(1),知a n =2n+n .所以S n =(2+22+ (2))+(1+2+…+n )=21-2n1-2+n 1+n2=2n +1-2+n 2+n2.[由题悟法]分组转化法求和的常见类型[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.[即时应用]1.求数列1+1,1a +4,1a 2+7,1a 3+10,…,1an -1+(3n -2)的前n 项和.解:设数列的通项为a n ,前n 项和为S n ,则a n =1a n -1+(3n -2),∴S n =⎝⎛⎭⎪⎫1+1a +1a2+…+1a n -1+[1+4+7+…+(3n -2)].当a =1时,S n =n +n 1+3n -22=3n 2+n 2;当a ≠1时,S n =1-1a n1-1a+n1+3n -22=a n-1a n -a n -1+n3n -12. 2.(2018·南京四校联考)在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为q 的等比数列,求{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差是d . 因为a 3+a 8-(a 2+a 7)=2d =-6, 所以d =-3,所以a 2+a 7=2a 1+7d =-23,解得a 1=-1, 所以数列{a n }的通项公式为a n =-3n +2.(2)因为数列{a n +b n }是首项为1,公比为q 的等比数列, 所以a n +b n =qn -1,即-3n +2+b n =qn -1,所以b n =3n -2+q n -1.所以S n =[1+4+7+…+(3n -2)]+(1+q +q 2+…+q n -1)=n 3n -12+(1+q +q2+…+qn -1),故当q =1时,S n =n 3n -12+n =3n 2+n 2;当q ≠1时,S n =n 3n -12+1-q n1-q. 考点三 错位相减法求和重点保分型考点——师生共研[典例引领](2018·徐州调研)已知数列{a n }的前n 项和为S n ,满足S n =2a n -1,n ∈N *.数列{b n }满足nb n +1-(n +1)b n =n (n +1),n ∈N *,且b 1=1.(1)求数列{a n }和{b n }的通项公式;(2)若c n =a n ·b n ,数列{c n }的前n 项和为T n ,对任意的n ∈N *,都有T n ≤nS n -a ,求实数a 的取值范围.解:(1)当n =1时,S 1=2a 1-1=a 1,所以a 1=1. 当n ≥2时,S n =2a n -1,S n -1=2a n -1-1, 两式相减得a n =2a n -1,所以数列{a n }是首项a 1=1,公比q =2的等比数列, 故数列{a n }的通项公式为a n =2n -1.由nb n +1-(n +1)b n =n (n +1)两边同除以n (n +1), 得b n +1n +1-b nn=1, 所以数列⎩⎨⎧⎭⎬⎫b n n 是首项b 1=1,公差d =1的等差数列,所以b n n=n , 故数列{b n }的通项公式为b n =n 2. (2)由(1)得c n =a n ·b n =n ·2n -1,于是T n =1×20+2×2+3×22+…+n ×2n -1, 所以2T n =1×2+2×22+3×23+…+n ×2n,两式相减得-T n =1+2+22+…+2n -1-n ×2n=1-2n1-2-n ×2n,所以T n =(n -1)·2n+1, 由(1)得S n =2a n -1=2n-1, 因为对∀n ∈N *,都有T n ≤nS n -a , 即(n -1)·2n+1≤n (2n-1)-a 恒成立, 所以a ≤2n-n -1恒成立, 记c n =2n -n -1, 所以a ≤(c n )min , 因为c n +1-c n =[2n +1-(n +1)-1]-(2n -n -1)=2n-1>0,从而数列{c n }为递增数列,所以当n =1时,c n 取最小值c 1=0,于是a ≤0, 所以实数a 的取值范围为(-∞,0].[由题悟法]用错位相减法求和的3个注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[即时应用](2019·海门中学月考)已知数列{a n }的前n 项和为S n ,S n =n 2+n . (1)求{a n }的通项公式a n ;(2)若a k +1,a 2k ,a 2k +3(k ∈N *)恰好依次为等比数列{b n }的第一、第二、第三项,求数列⎩⎨⎧⎭⎬⎫n b n 的前n 项和T n .解:(1)当n =1时,a 1=S 1=12+1=2.当n ≥2时,a n =S n -S n -1=(n 2+n )-[(n -1)2+(n -1)]=2n . 当n =1时,符合上式, ∴a n =2n (n ∈N *).(2)由题意知a k +1,a 2k ,a 2k +3成等比数列,∴a 22k =a k +1·a 2k +3, 即(2·2k )2=2(k +1)·2(2k +3),解得k =3. ∴b 1=a 4=8,b 2=a 6=12,公比q =128=32,∴b n =8·⎝ ⎛⎭⎪⎫32n -1,∴n b n =18n ·⎝ ⎛⎭⎪⎫23n -1, ∴T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫230+2×⎝ ⎛⎭⎪⎫231+…+n ×⎝ ⎛⎭⎪⎫23n -1. ① ∴23T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫231+2×⎝ ⎛⎭⎪⎫232+…+n -1×⎝ ⎛⎭⎪⎫23n -1+n ×⎝ ⎛⎭⎪⎫23n . ② ①-②,得13T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫230+⎝ ⎛⎭⎪⎫231+…+⎝ ⎛⎭⎪⎫23n -1-18×n ×⎝ ⎛⎭⎪⎫23n =38-3+n 8⎝ ⎛⎭⎪⎫23n ,则T n =98-9+3n 8⎝ ⎛⎭⎪⎫23n.考点四 裂项相消法求和 题点多变型考点——多角探明[锁定考向]裂项相消法求和是历年高考的重点,命题角度凸显灵活多变,在解题中要善于利用裂项相消的基本思想,变换数列a n 的通项公式,达到求解目的.常见的命题角度有: (1)形如a n =1nn +k 型; (2)形如a n =1n +k +n型;(3)形如a n =n +1n 2n +22型.[题点全练]角度一:形如a n =1nn +k型 1.(2019·启东一中检测)在数列{}a n 中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎪⎫S n -12.(1)求S n 的表达式; (2)设b n =S n2n +1,求{}b n 的前n 项和T n . 解:(1)∵S 2n =a n ⎝ ⎛⎭⎪⎫S n -12,a n =S n -S n -1(n ≥2),∴S 2n =(S n -S n -1)⎝ ⎛⎭⎪⎫S n -12,即2S n -1S n =S n -1-S n . 由题意得S n -1·S n ≠0, ∴1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列,∴1S n=1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 角度二:形如a n =1n +k +n型2.已知函数f (x )=x α的图象过点(4,2),令a n =1f n +1+f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 018=________.解析:由f (4)=2可得4α=2,解得α=12,则f (x )=x 12.所以a n =1fn +1+f n =1n +1+n=n +1-n ,S 2 018=a 1+a 2+a 3+…+a 2 018=(2-1)+(3-2)+(4-3)+…+( 2 018-2 017)+( 2 019- 2 018)= 2 019-1. 答案: 2 019-1 角度三:形如a n =n +1n 2n +22型3.正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +22a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. 解:(1)由S 2n -(n 2+n -1)S n -(n 2+n )=0, 得[S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n .综上,数列{a n }的通项公式为a n =2n . (2)证明:由于a n =2n , 故b n =n +1n +22a 2n =n +14n 2n +22=116⎣⎢⎡⎦⎥⎤1n2-1n +22.T n =116⎣⎢⎡1-132+122-142+132-152+…+1n -12-1n +12+⎦⎥⎤1n2-1n +22=116⎣⎢⎡⎦⎥⎤1+122-1n +12-1n +22<116⎝ ⎛⎭⎪⎫1+122=564. [通法在握]利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项; (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2. [演练冲关](2018·镇江调研)已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)若b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由已知得⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2.所以{a n }的通项公式为a n =1+2(n -1)=2n -1. (2)b n =12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以数列{b n }的前n 项和T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1= 12×⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. 一抓基础,多练小题做到眼疾手快1.(2019·镇江调研)已知{}a n 是等差数列,S n 为其前n 项和,若a 3+a 7=8,则S 9=_______.解析:在等差数列{}a n 中,由a 3+a 7=8,得a 1+a 9=8, 所以S 9=a 1+a 9×92=8×92=36.答案:36 2.数列{1+2n -1}的前n 项和为________.解析:由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n-1.答案:n +2n-13.数列{a n }的通项公式是a n =(-1)n(2n -1),则该数列的前100项之和为________. 解析:根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100. 答案:1004.(2018·泰州期末)已知数列{}a n 的通项公式为a n =n ·2n -1,前n 项和为S n ,则S n =________.解析:∵a n =n ·2n -1,∴S n =1×1+2×2+3×22+…+n ×2n -1, 2S n =1×2+2×22+3×23+…+n ×2n,两式相减可得-S n =1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n,化简可得S n =(n -1)2n+1. 答案:(n -1)2n+15.已知等比数列{}a n 的公比q >1,且a 5-a 1=30,a 4-a 2=12,则数列⎩⎨⎧⎭⎬⎫a na n -1a n +1-1的前n 项和为________. 解析:因为a 5-a 1=30,a 4-a 2=12, 所以a 1(q 4-1)=30,a 1(q 3-q )=12, 两式相除,化简得2q 2-5q +2=0, 解得q =12或2,因为q >1, 所以q =2,a 1=2. 所以a n =2·2n -1=2n.所以a na n -1a n +1-1=2n2n-12n +1-1=12n -1-12n +1-1, 所以T n =1-13+13-17+…+12n -1-12n +1-1=1-12n +1-1.答案:1-12n +1-16.若数列{a n }满足a n -(-1)na n -1=n (n ≥2),S n 是{a n }的前n 项和,则S 40=________. 解析:当n =2k 时,即a 2k -a 2k -1=2k ,① 当n =2k -1时,即a 2k -1+a 2k -2=2k -1,② 当n =2k +1时,即a 2k +1+a 2k =2k +1,③ ①+②得a 2k +a 2k -2=4k -1, ③-①得a 2k +1+a 2k -1=1,S 40=(a 1+a 3+a 5+...+a 39)+(a 2+a 4+a 6+a 8+...+a 40)=1×10+(7+15+23+ (79)=10+107+792=440. 答案:440二保高考,全练题型做到高考达标1.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =________.解析:依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项、2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n 2+2n2=n 2+n .答案:n 2+n2.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.解析:由已知得b 1=a 2=-3,q =-4, 所以b n =(-3)×(-4)n -1,所以|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列. 所以|b 1|+|b 2|+…+|b n |=31-4n1-4=4n-1.答案:4n-13.已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16=________.解析:根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数列重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7. 答案:74.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项为2n,则数列{a n }的前n 项和S n =________.解析:因为a n +1-a n =2n,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n ,所以S n =2-2n +11-2=2n +1-2.答案:2n +1-25.(2019·宿迁调研)已知数列{}a n 中,a 1=1,a 2=3,若a n +2+2a n +1+a n =0对任意n ∈N *都成立,则数列{}a n 的前n 项和S n =________.解析:∵a 1=1,a 2=3,a n +2+2a n +1+a n =0, ∴a n +2+a n +1=-(a n +1+a n ),a 2+a 1=4.则数列{}a n +1+a n 是首项为4,公比为-1的等比数列, ∴a n +1+a n =4×(-1)n -1.当n =2k -1时,a 2k +a 2k -1=4×(-1)2k -2=4.∴S n =(a 1+a 2)+(a 3+a 4)+…+(a 2k -1+a 2k )=4k =2n . 当n =2k 时,a 2k +1+a 2k =-4.S n =a 1+(a 2+a 3)+…+(a 2k -2+a 2k -1)=1-4×(k -1)=5-4k =5-4×n +12=3-2n .∴S n =⎩⎪⎨⎪⎧3-2n ,n 为奇数,2n ,n 为偶数.答案:⎩⎪⎨⎪⎧3-2n ,n 为奇数,2n ,n 为偶数6.在等差数列{a n }中,首项a 1=3,公差d =2,若某学生对其中连续10项进行求和,在漏掉一项的前提下,求得余下9项的和为185,则此连续10项的和为________.解析:由已知条件可得数列{a n }的通项公式a n =2n +1,设连续10项为a i +1,a i +2,a i +3,…,a i +10,i ∈N ,设漏掉的一项为a i +k,1≤k ≤10,由a i +1+a i +10×102-a i +k =185,得(2i +3+2i +21)×5-2i -2k -1=185,即18i -2k =66,即9i -k =33,所以34≤9i =k +33≤43,3<349≤i ≤439<5,所以i =4,此时,由36=33+k 得k =3,所以a i +k =a 7=15,故此连续10项的和为200.答案:2007.(2019·邵阳模拟)《九章算术》是我国古代的数学名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知A ,B ,C ,D ,E 五人分5钱,A ,B 两人所得与C ,D ,E 三人所得相同,且A ,B ,C ,D ,E 每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E 分得________钱.解析:由题意,设A 所得为a -4d ,B 所得为a -3d ,C 所得为a -2d ,D 所得为a -d ,E 所得为a ,则⎩⎪⎨⎪⎧5a -10d =5,2a -7d =3a -3d ,解得a =23,故E 分得23钱.答案:238.已知数列{a n }中,a 1=2,a 2n =a n +1,a 2n +1=n -a n ,则{a n }的前100项和为________. 解析:由a 1=2,a 2n =a n +1,a 2n +1=n -a n ,得a 2n +a 2n +1=n +1,所以a 1+(a 2+a 3)+(a 4+a 5)+…+(a 98+a 99)=2+2+3+…+50=1 276,因为a 100=1+a 50=1+(1+a 25)=2+(12-a 12)=14-(1+a 6)=13-(1+a 3)=12-(1-a 1)=13,所以a 1+a 2+…+a 100=1 276+13=1 289.答案:1 2899.(2018·苏北四市期末)已知正项数列{a n }的前n 项和为S n ,且a 1=a ,(a n +1)(a n +1+1)=6(S n +n ),n ∈N *.(1)求数列{a n }的通项公式;(2)若对于∀n ∈N *,都有S n ≤n (3n +1)成立,求实数a 的取值范围. 解:(1)当n =1时,(a 1+1)(a 2+1)=6(S 1+1),故a 2=5. 当n ≥2时,(a n -1+1)(a n +1)=6(S n -1+n -1),所以(a n +1)(a n +1+1)-(a n -1+1)(a n +1)=6(S n +n )-6(S n -1+n -1), 即(a n +1)(a n +1-a n -1)=6(a n +1).又a n >0,所以a n +1-a n -1=6,所以a 2k -1=a +6(k -1)=6k +a -6,a 2k =5+6(k -1)=6k -1,故a n =⎩⎪⎨⎪⎧3n +a -3,n 为奇数,3n -1,n 为偶数.(2)当n 为奇数时,S n =12(3n +a -2)(n +1)-n ,由S n ≤n (3n +1),得a ≤3n 2+3n +2n +1恒成立,令f (n )=3n 2+3n +2n +1,则f (n +1)-f (n )=3n 2+9n +4n +2n +1>0,所以a ≤f (1)=4.当n 为偶数时,S n =12n (3n +a +1)-n ,由S n ≤n (3n +1)得,a ≤3(n +1)恒成立, 所以a ≤9.又a 1=a >0,所以实数a 的取值范围是(0,4].10.(2019·宿迁中学调研)已知各项均为正数的数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足a n S n +1-a n +1S n +a n -a n +1=λa n a n +1(λ≠0,n ∈N *).(1)若a 1,a 2,a 3成等比数列,求实数λ的值; (2)若λ=12,求S n .解:(1)令n =1,得a 2=21+λ. 令n =2,得a 2S 3-a 3S 2+a 2-a 3=λa 2a 3, 所以a 3=2λ+4λ+12λ+1.由a 22=a 1a 3,得⎝⎛⎭⎪⎫21+λ2=2λ+4λ+12λ+1, 因为λ≠0,所以λ=1.(2)当λ=12时,a n S n +1-a n +1S n +a n -a n +1=12a n a n +1,所以S n +1a n +1-S n a n +1a n +1-1a n =12,即S n +1+1a n +1-S n +1a n =12, 所以数列⎩⎨⎧⎭⎬⎫S n +1a n 是以2为首项,12为公差的等差数列,所以S n +1a n =2+(n -1)·12, 即S n +1=⎝ ⎛⎭⎪⎫n 2+32a n ,①当n ≥2时,S n -1+1=⎝ ⎛⎭⎪⎫n2+1a n -1,② ①-②得,a n =n +32a n -n +22a n -1,即(n +1)a n =(n +2)a n -1,所以a n n +2=a n -1n +1(n ≥2),所以⎩⎨⎧⎭⎬⎫a n n +2是常数列,且为13,所以a n =13(n +2).代入①得S n =⎝ ⎛⎭⎪⎫n 2+32a n -1=n 2+5n 6. 三上台阶,自主选做志在冲刺名校1.(2018·启东检测)《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果墙足够厚,S n 为前n 天两只老鼠打洞长度之和,则S n =________尺.解析:依题意大老鼠每天打洞的距离构成以1为首项,2为公比的等比数列,所以前n 天大老鼠打洞的距离共为1×1-2n1-2=2n-1.同理可得前n 天小老鼠打洞的距离共为1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=2-12n -1,所以S n =2n -1+2-12n -1=2n-12n -1+1. 答案:2n-12n -1+12.(2018·苏州高三暑假测试)等差数列{a n }的前n 项和为S n ,且a n -S n =n 2-16n +15(n ∈N *),若对任意n ∈N *,总有S n ≤S k ,则k 的值为________.解析:设等差数列{a n }的公差为d ,则a n -S n =a 1+(n -1)d -⎣⎢⎡⎦⎥⎤na 1+n n -12d =-d 2n 2+⎝ ⎛⎭⎪⎫32d -a 1n +a 1-d =n 2-16n +15,所以⎩⎪⎨⎪⎧-d2=1,32d -a 1=-16,a 1-d =15,解得⎩⎪⎨⎪⎧a 1=13,d =-2,所以S n =13n +n n -12×(-2)=-n 2+14n =-(n -7)2+49,所以(S n )max =S 7,所以S n ≤S 7对任意n ∈N *恒成立,所以k 的值为7.答案:73.(2019·南京一模)平面内的“向量列”{a n },如果对于任意的正整数n ,均有a n +1-a n =d ,则称此“向量列”为“等差向量列”,d 称为“公差向量”;平面内的“向量列”{b n },如果对于任意的正整数n ,均有b n +1=q ·b n (q ≠0),则称此“向量列”为“等比向量列”,常数q 称为“公比”.(1)如果“向量列”{a n }是“等差向量列”,用a 1和“公差向量”d 表示a 1+a 2+…+a n ; (2)已知{a n }是“等差向量列”,“公差向量”d =(3,0),a 1=(1,1),a n =(x n ,y n ),{b n }是“等比向量列”,“公比”q =2,b 1=(1,3),b n =(m n ,k n ),求a 1·b 1+a 2·b 2+…+a n ·b n .解:(1)∵“向量列”{a n }是“等差向量列”, ∴a 1+a 2…+a n =n a 1+(1+2+…+n -1)d =n a 1+n n -12d.(2)∵a 1=(1,1),d =(3,0),∴a n =(3n -2,1). ∵b 1=(1,3),q =2,∴b n =(2n -1,3·2n -1).∴a n ·b n =(3n -2,1)·(2n -1,3·2n -1)=(3n -2)·2n -1+3·2n -1=(3n +1)·2n -1,设S n =a 1·b 1+a 2·b 2+…+a n ·b n , 则S n ==4·20+7·21+…+(3n +1)·2n -1,2S n =4·2+7·22+…+(3n +1)·2n, 两式相减可得,-S n =4+3(2+22+…+2n -1)-(3n +1)·2n=4+3·21-2n -11-2-(3n +1)·2n =(2-3n )·2n-2,∴a 1·b 1+a 2·b 2+…+a n ·b n =(3n -2)·2n+2.。
数列的求和
班级:
姓名:
【知识扫描】主备:刘社新
数列求和的常用方法:
1. 公式法:适用于等差、等比数列或可转化为等差、等比数列的数列。
2.裂项相消法:适用于其中{ }是各项不为0的等差数列,c为常数;部分无理数列、含阶乘的数列等。
3.错位相减法:适用于其中{ }是等差数列,是各项不为0的等比数列。
4.倒序相加法: 类似于等差数列前n项和公式的推导方法.
5.分组求和法:重新分组后,化归为以上情形加以求和
6. 自然数的平方和
7. 自然数的立方和
【课前练习】
1. 数列的前n项和是 .
2.设,则=_______________________.
3.求和: .
4. 数列则它的前n项和= .
5. 数列的通项公式 ,
前n项和 .
6.等比数列的前n项和Sn=2n-1,则=____________.
【课堂例题】
例1:求和(1)
(2) .
例2:(1)回顾等差数列和等比数列前n项公式和推导方法.(2)求下列各数列前n项的和
①
②设f(x)=,则f()+f()+f()+…+f()=_______.
例3:(1)求和:1-4+7-10+……+(-1)n-1(3n-2)=
____________.
(2)已知数列中,,试求前2n项的和
例4:非等比数列中,前n项和,
(1)求数列的通项公式;
(2)设,,是否存在最大的整数m,使得对任意的n 均有总成立?若存在,求出m;若不存在,请说明理由。
【课后自测】
1.数列1,2,3,4,…,前n项和为__________________.
2.1-2+4-8+…+(-1)n-12n-1=____________.
3.已知数列{a n}的通项公式为a n=, 则前项和S n=___________.4.数列{a n}的前n项和S n=1-5+9-13+17-21+…+(-1)n-1(4n-3),则
S15+S22-S31的值是__________.
5.数列21,211,2111,…,的前n项和为__________________.6.数列1+3q+5q2+7q3+9q4= _______.
7.数列满足,,则通项公式,前n项和 .
8.=_______________
9.已知数列{a n},{b n}都是公差为1的等差数列,其首项分别
为a1,b1,且a1+b1=5,a1,b1∈N*,设c n=a(n∈N*),则数列{c n}的前10项和等于_______
10.(07全国1)设是等差数列,是各项都为正数的等比数列,且,,(Ⅰ)求、的通项公式;(Ⅱ)求数列的前n项和。
11.已知等差数列{a n}的前项和为S n=pn2-2n+q(p,q∈R),n∈N*.(1)求q的值;
(2)若a1与a5的等差中项为18,b n满足a n=2log2b n,求数列{b n}的前项和.
12.设数列{a n}的前n项和为S n=2n2,{b n}为等比数列,且a1=b1,b2(a2-a1)=b1.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)设c n=,求数列{c n}的前n项和T n.。