焦炉煤气提氢技术方案
- 格式:doc
- 大小:363.00 KB
- 文档页数:15
焦炉煤气制氢工艺流程焦炉煤气制氢工艺是一种用焦炉煤气为原料生产氢气的过程。
焦炉煤气是指焦炭燃烧产生的气体,主要成分是一氧化碳和氢气,含有少量的二氧化碳、氮气和其他杂质。
利用焦炉煤气制氢是一种高效、低成本的方法,可以用于工业生产、能源储存和环保等领域。
主要包括气体净化、变换反应、水煮和气体分离等步骤。
下面将详细介绍焦炉煤气制氢工艺的流程及各个步骤的原理和操作方法。
1. 气体净化焦炉煤气中含有杂质如硫化氢、苯、硫醛等,这些杂质会影响后续反应的进行,因此需要进行气体净化处理。
气体净化可以采用吸附剂或洗涤液来去除杂质,使焦炉煤气达到符合要求的纯度。
2. 变换反应气体净化后的焦炉煤气进入变换反应器,通过变换催化剂催化反应,将一氧化碳和水蒸气转化为氢气和二氧化碳。
变换反应是焦炉煤气制氢过程中的关键步骤,需要控制反应条件如温度、压力和催化剂性质等,以提高氢气产率和减少副产物。
3. 水煮变换反应产生的气体混合物经过冷凝和去除二氧化碳后,进入水煮塔。
在水煮塔中,气体混合物与热水接触,使氢气与水反应生成氢气和热能。
水煮塔的目的是通过水煮反应增加氢气的纯度和产量。
4. 气体分离水煮后得到的气体混合物含有水蒸气和氢气,需要进行气体分离。
气体分离可以采用冷凝、压缩、吸附和膜分离等方法,将氢气从水蒸气和其他气体分离出来,得到高纯度的氢气。
总结起来,焦炉煤气制氢工艺流程包括气体净化、变换反应、水煮和气体分离四个步骤。
通过这些步骤的组合应用,可以高效地生产出高纯度的氢气,满足不同领域的需求。
焦炉煤气制氢是一种成熟的工艺,具有较高的经济效益和环保性,是未来氢能源发展的重要途径之一。
储配分公司大青站制氢工段焦炉煤气提氢装置操作规程第一章工艺技术规程1.1 装臵概况1.1.1 装臵简介本装臵建成于2012年2月,焦炉煤气处理量≥4208.41Nm3/h( 干基)。
产品氢气流量2100Nm3/h。
本装臵主要采用6-2-2/V程序变压吸附工艺技术从焦炉煤气中提取高纯氢。
整个过程主要分为预净化工序、提纯氢气的PSA工序、氢气脱氧和干燥工序、产品压缩和装车五个工序。
1.1.2 工艺原理利用固体吸附剂对气体的吸附有选择性,以及气体在吸附剂上的吸附量随其分压的降低而减少的特性,实现气体混合物的分离和吸附剂的再生。
1.1.3工艺流程说明焦炉煤气经过压缩机加压至0.76MPa后进入预净化工序,经过预处理器脱除萘、焦油等杂质后进入变压吸附工序。
在吸附塔中氢气与其他杂质分离后进入脱氧干燥工序,纯度达99.99%的合格产品气经计量进入氢气压缩机压缩至20MPa后装车。
1.1.4 工艺原则流程图:焦炉煤气1.2 工艺指标: 1.2.1 原料气指标 原料气组成(干基) 组成H 2N 2CO 2CH 4 CO O 2 CnHm ΣV% 56.7 3.2 2.7 26.3 7.7 0.9 2.5 100 原料气中杂质含量(mg/Nm3) 组成 萘焦油 H 2S NH 3 mg/Nm 3冬≤50 夏≤100≤10≤20≤501.2.2 成品指标 组成H 2COO 2N 2CO 2CH 4 合计V% 99.992 0.0005 0.0005 0.006 0.0001 0.001 100 1.2.3 公用工程指标 项目 压力及规格 温度 流量及容量 蒸汽0.5MPa饱和温度夏天350kg/h 冬天430kg/h仪表空气 0.4-0.6MPa 常温 100Nm3/h 循环水给水0.4MPa回水0.25MPa 给水28℃回水40℃47t/h 电220V 50HZ 380V 50HZ安装容量:455KW 最大单台设备容预净化工序变压吸附单元 氢气加压单元脱氧、干燥单元产品装车单元量:132KW需要容量:382.86KW 低压氮气≧0.4MPa 常温开车初期一次1000Nm3/h 1.2.4 主要操作条件1. 预处理(100#)工序操作条件吸附压力(MPa)0.6-0.8吸附温度(℃)≦40再生压力(MPa)0.02-0.04再生温度(℃):进口150再生温度(℃):出口冷吹后温度达到110℃为标准切换周期(h/T)12其中:加热时间(h) 6冷吹时间(h) 6蒸汽压力(MPa)≧0.52. 变压吸附(200#)工序操作条件项目名称指标流量(Nm3/h)原料气4208.41(设计) 产品气2100(设计)浓度(%)原料气中氢56.7 产品气中氢99.9步骤设计压力(MPa)时间(S)A 吸附0.8 180E1D 一均降0.8→0.51 30E2D 二均降0.51→0.22 30D 逆放0.22→0.02 30V 抽空0.02→-0.08 120E2R 二均升-0.08→0.22 30E1R 一均升0.22→0.51 30FR 终升0.51→0.76 90循环周期540(设计)3. 脱氧干燥(300#)工序操作条件脱氧部分催化剂反应温度(℃)80-100 空塔速度(h-1)操作压力(MPa)0.8产品气中氧含量(ppm)≤5干燥塔部分操作压力(MPa)0.7-0.8温度(℃)40再生压力(MPa)0.8再生温度(℃):进口150出口≥环境温度+30切换时间(h)干燥4h,加热4h,冷吹4h蒸汽压力(MPa)0.6产品氢露点(℃)≤-60第二章工艺装臵操作指南2.1 100#工序操作要点2.1.1在操作中需定期取样分析净化后的原料气中C5组分的浓度,一般浓度控制在200ppm以下,否则要进行切换。
焦炉煤气制氢工艺存在的问题和应对方案浅析摘要:我国的现代化社会建设中,氢气制作受到了人们广泛关注,针对制氢工艺要以制取精度、制取纯度较高的方法为主要的研究方向,焦炉煤气制氢工艺的应用逐渐实现了这一目标。
本文对焦炉煤气制氢的特点进行了探讨,分析了焦炉煤气制氢工艺存在的问题及应对方案。
关键词:焦炉;煤气;制氢;工艺;问题前言:制取氢气的方法中,焦炉煤气制氢工艺具有较强的应用性和可行性,在规定的时间内达到生产目标,提高氢气制作的质量。
合理运用焦炉煤气制氢工艺,将工艺制氢的优势充分发挥出来,是焦炉煤气制氢工艺研究中的重点课题。
一、焦炉煤气制氢的特点焦炉煤制氢有着自动化程度高、制氢纯度高、能耗低的特点,焦炉煤气制氢工艺中应用到的装置最初是由热吸附净化空气装置升级和发展而来的,该装置利用变压吸附方式以及变温吸附的方式,能够在相同的吸附时间内提高空气净化度,保证高纯度的氢气制作,有着自动化的优势特点。
焦炉煤气制氢装置的介质气体燃点低,通过计算机应用控制阀门,对各项参数进行合理地设置和调节,以免发生爆炸问题。
该装置有低能耗的优势,制作氢气之后解析气体,实现了重复利用,体现了绿色环保的优势特点。
若是发现了装置中存在气体泄漏的问题,其中安装的警报装置能够立即发出警报,由中控计算机对系统状态进行细致、全面的检测,加强对产品质量的控制,合理调整参数的数值,避免发生故障问题。
焦炉煤气制氢工艺是由制氢系统、变温系统以及氢气精制系统三个部分构成,在具体的制氢过程中,由于焦煤质量不同,因此焦化的过程与最终效果也存在差异性,要尽可能选择优质质量的焦煤,保证氢气的制作纯度。
通过吸附工艺中的变压吸附,将定量杂质吸附后进行降压作业,结合顺向、逆向降压,回收塔内氢气。
将吸附杂质冲洗干净,做好冲压准备,利用预处理器在变温吸附工艺应用过程中,对塔进行吸附,逆向放压,增加温度,温度冷却后压力增加,脱氧干燥工艺应用,是利用催化反应将适量的催化剂加入吸附杂质[1]。
浅谈焦炉煤气制氢工艺焦炉煤气是焦炭生产过程中煤炭在高温、缓慢干馏过程中产生的一种可燃性气体。
我国是焦炭产量最大的国家,2023年我国焦炭产量43142.6万t,依此计算,我国焦炉煤气产量是非常高的。
全国焦炭产能约有1/3在钢铁联合企业,2/3在独立焦化企业。
独立焦化企业富余的焦炉气曾因无法直接用于生产而被大量放散,放散量最高峰时曾达30km³/a。
焦炉煤气自2023年1月1日起实施的《焦化行业准入条件》修订版规定,焦化生产企业生产的焦炉煤气应全部回收利用,不得放散。
这给焦炉煤气的综合利用提供了有利的政策支持,也进一步推动了焦炉煤气制氢、甲醇等工业技术的发展。
炼焦过程中释放的焦炉煤气中富含氢气(55%左右),焦炉煤气制氢是目前可实现的大规模低成本高效率获得工业氢气的重要途径。
而我国晋、冀、豫几省是资源大省和焦化大省,氢源非常丰富,如何高效、合理地利用是关系环保、资源综合利用和节能减排的重大课题。
1、焦炉煤气制氢原理焦炉煤气制氢工序主要有:脱硫脱萘、压缩预处理、变压吸附制氢、脱氧干燥等。
其中焦炉煤气预处理系统为变温吸附(TSA),制氢系统为变压吸附(PSA),而氢气精制系统也为变温吸附(TSA),可用焦炉煤气制取99.999%的氢气。
吸附剂在常温高压下大量吸附原料气中除氢以外的杂质组分,然后降解杂质的分压使各种杂质得以解吸。
在实际应用中一般依据气源的组成、压力及产品要求的不同来选择组合工艺。
变温吸附的循环周期长、投资较大,但再生彻底,通常用于微量杂质或难解吸杂质的净化;变压吸附的循环周期短,吸附剂利用率高,用量相对较少,不需要外加换热设备,广泛用于大气量、多组分气体的分离和提纯。
由于焦炉煤气提纯氢气的特点是:原料压力低,原料组分复杂并含有焦油、萘、硫、重烃等难以解吸的重组分,产品纯度要求高。
因而装置需采用“加压+TSA预处理+PSA氢提纯+脱氧+TSA干燥”流程。
2、主要生产过程焦炉煤气是炼焦的副产品,产率和组成因炼焦煤质量和焦化过程不同而有所差别,一般每吨干煤可生产焦炉煤气300~350m³(标准状态)。
目录前言 (3)第一节吸附工艺原理 (5)1.1 吸附的概念 (5)1.2 吸附的分类 (6)1.3 吸附力 (7)1.4 吸附热 (9)1.5 吸附剂 (9)1.6 吸附平衡 (12)1.7 PSA-H2工艺的特点 (14)第二节PSA-H2流程选择分析 (16)2.1 TSA与PSA流程的选择 (16)2.2 真空再生流程与冲洗再生流程的选择 (17)2.3 均压次数的确定 (17)第三节PSA-H2流程描述 (18)3.1 工艺流程简图 (18)3.2工艺流程简述...................................................................................... 错误!未定义书签。
2.3.1工艺方案的选择 (18)2.3.2本装置工艺技术特点 (18)2.4工艺流程简述 (20)2.4.1预净化工序100#(参见图P0860-32-101) (20)2.4.2压缩及预处理工序200#(参见图P0860-32-201、P0860-32-202) (20)2.4.3变压吸附提氢工序300#(参见图P0860-32-301) (21)2.4.4脱氧干燥工序400#(参见图P0860-32-401) (22)2.5装置布置(参见图P0860-33-01) (22)2.6主要工艺控制指标 (23)第四节PSA-H2操作参数的调整 (24)4.1 相关参数对吸附的影响 (24)4.2 吸附压力曲线及其控制方式 (24)4.3 关键吸附参数的设定原则及自动调节方式 (25)4.4 提高PSA-H2装置可靠性的控制手段 (26)第五节PSA-H2装置注意事项 (27)5.1 吸附剂装填注意事项 (27)5.2 生产注意事项 (27)前言吸附分离是一门古老的学科。
早在数千年前,人门就开始利用木炭、酸性白土、硅藻土等物质所具有的强吸附能力进行防潮、脱臭和脱色。
焦炉煤气制氢工程施工方案一、工程概述焦炉煤气制氢工程是利用焦化成品气中的一氧化碳和水蒸气进行变换反应,生成氢气的工艺流程。
其核心设备包括变换反应器、冷却器、分离装置等,主要工艺包括气体处理系统、催化变换系统、裂解分离系统。
该工程的建设对于提高能源利用率、减少环境污染、促进清洁能源发展具有重要意义。
二、施工前准备1. 勘察设计:在施工前,需要对工程现场进行详细的勘察和设计,包括地质勘察、环境影响评估、结构设计等,以保证工程施工的顺利进行。
2. 材料准备:按照设计要求,采购所需的原材料和设备,确保施工过程中有足够的材料供应。
3. 人力组织:组织施工团队,包括工程管理人员、技术人员、施工工人等,确保人力资源充足。
4. 环境保护措施:制定环保方案,对施工过程中可能产生的污染进行预防和控制。
5. 安全防护措施:制定安全生产方案,对施工现场进行安全评估,并提前采取措施,确保施工安全。
三、施工过程1. 地基处理:对工程现场进行地基处理,确保基础设施的承载能力和稳定性。
2. 设备安装:根据设计要求,对核心设备进行严格的安装与调试,保证其正常运转。
3. 管道布置:根据工艺流程要求,对气体管道进行合理的布置和连接。
4. 设备调试:对设备进行严格的调试和检测,确保设备运行正常。
5. 系统联调:对气体处理系统、催化变换系统、裂解分离系统等进行联调,确保系统运行顺利。
6. 软硬件集成:对控制系统进行软硬件集成调试,确保自动化控制系统的可靠运行。
7. 现场验收:对工程现场进行综合验收,检查工程质量和安全状况。
四、施工后工作1. 工程交接:在工程完工后,进行工程交接和验收,并保留相关施工记录和文件。
2. 运行维护:对工程设备进行定期维护和保养,确保其安全可靠运行。
3. 系统改进:根据运行情况,对工程系统进行优化改进,提高工程效率和安全性。
4. 工程总结:对工程施工过程进行总结,对操作经验进行总结,为今后的类似工程提供参考。
五、安全与环保1. 安全生产:严格遵守施工安全规定,保证施工人员的安全,确保工程施工的安全顺利进行。
一、总则1、概述有限公司为满足生产的需要,拟上一套5000Nm3/h焦炉煤气变压吸附制取氢气装置。
本章所载内容必须满足买方的要求。
卖方提供的合同设备(焦炉煤气氢气制取装置)应满足技术先进、安全可靠、运行稳定、维修方便的要求。
卖方应对焦炉煤气氢气制取装置的整体技术性能向买方负责。
焦炉煤气氢气制取装置应能够在安全、可靠、长周期条件下运行,高产低耗,满足改变工况及负荷调整的要求。
2、装置名称及规模装置名称:焦炉煤气提氢变压吸附制氢装置。
装置规模:装置的氢气产量为5000Nm3/h。
4、分包范围(详见)上一套5000Nm3/h焦炉煤气变压吸附制取氢气装置。
此装置采用界区内部分承包形式包给卖方,卖方承包范围包含工程设计、设备购置(仅吸附剂、程控阀)、人员培训(外出培训费用买方自己承担)、设备制造(卖方提供设计参数图纸,买方采购)、工程安装指导、生产调试指导、装置开车指导,最后通过性能考核交给买方。
5、装置的工艺路线界定本装置以焦炉煤气为原料,通过变压吸附分离提纯,生产纯度为≥99.9%的产品氢气。
6、卖方技术人员的派遣为了使合同设备顺利而有序的进行安装和调试,卖方负责派遣合格的技术人员到施工现场进行技术服务。
卖方技术人员的实际参加人数、专业、预计到达和离开项目现场的日期,根据现场施工的实际进度,由买卖双方商定。
卖方应根据其经验在供货文件中做出技术服务的详细安排,其费用包括在报价中。
7、卖方技术人员的服务范围及职责卖方技术人员将代表卖方提供技术服务,在合同设备安装、试车、投料试生产、性能考核及验收、运行操作、维修等方面完成合同规定的卖方应履行的任务和职责。
卖方技术人员将详细进行技术交底,详细讲解图纸、工艺流程、操作规程、设备性能及有关注意事项等,解答合同范围内买方提出的技术问题。
二、装置指标1、技术指标1.2副产解吸气压力:~0.01MpaG流量:~6900Nm3/h热值:~4800Kcal/Nm32、装置寿命指标2.1硬件设备类1)吸附塔等静止设备设计寿命15年;2)PSA提氢程控阀门正常使用寿命15年(密封件寿命大于2年);2.2 三剂填料类寿命指标1)除焦油吸附剂正常使用寿命一年:一年更换一次2)压缩机后除油塔内除油剂设计使用年限为:1年更换一次;3) TSA预处理吸附剂正常使用寿命≥3年;4) 脱苯工段吸附剂设计正常使用寿命1年;5) PSA提氢工段吸附剂设计正常使用寿命15年;6) 脱氧工段催化剂设计正常使用寿命≥3年;3. 物料平衡参考:(氢气收率:> 80%)说明:以上物料以实际运行为准。
焦炉煤气提氢技术及装置规模1、说明:利用焦炉煤气生产纯H2(PSA法),在我国已有多年的历史,其生产技术成熟,经济合理,特别是与水电解法制H2比较,效益更显著。
水电解法生产H2,耗电为6.5Wh度/m3,而利用焦炉煤气生产H2,仅耗电0.5Wh度/m3,当生产规模为1000Nm3/h的制H2装置,每年节约电费500~800万元(人民币),远远大于1000Nm3/hPSA法制H2装置的总投资。
焦炉煤气典型组分热值3900—4200大卡/Nm3(焦炉煤气中氢气含量高),从焦炉煤气中提取氢气后,剩下的气体供焦炉自身加热使用,(拟计划和高炉煤气掺混后供焦炉加热使用,GE发电用焦炉煤气)2、变压吸附分离技术的基本原理吸附现象早已被人类所知,但是吸附作为一种分离技术,在工业上被大规模采用,还是近几十年的事情。
吸附技术早期的应用是用于工业气体的干燥和净化。
六十年代初,这项技术成功用于H2的分离提纯,奠定了吸附分离技术大规模工业化的基础。
目前变压吸附技术已在世界范围内成为提纯H2的主要分离方法,并成功用于CO2、CO、N2、O2、CH4等气体的分离提纯和其它工业气体的净化。
吸附分离技术作为化工单元过程,正在迅速发展成为一门独立的学科,在石油化工、化学工业、冶金工业、电子、国防、医药、轻工、农业以及环境保护等行业,得到了越来越广泛的应用。
变压吸附技术已成为气体化合物分离和提纯的重要手段。
由进料预处理、预转化、烃类蒸汽转化、CO变换的PSA提纯系统组成。
3、PSA技术有以下特点:PSA技术是一种低能耗的气体分离技术。
PSA工艺所要求的压力一般在0.1~3.5MPa,允许压力变化范围较宽,一些有压力的气源,如氨厂弛放气、变换气等,本身的压力可满足PSA工艺的要求,可省去再次加压的能耗。
对于处理这类气源,PSA制氢装置的消耗仅是照明、仪表用电及仪表空气的消耗,能耗很低;PSA装置压力损失很小,一般不超过0.05MPa。
焦炉煤⽓制氢⼯艺流程⼀、引⾔随着全球能源结构的调整和环保要求的不断提⾼,氢⽓作为⼀种清洁、⾼效的能源,正⽇益受到⼈们的关注。
焦炉煤⽓作为钢铁⾏业的主要副产品,其⾼效利⽤和转化已成为⾏业研究的重点。
焦炉煤⽓制氢技术,不仅能有效回收利⽤煤⽓中的有效成分,还能为社会提供清洁的氢⽓能源,具有显著的环保和经济效益。
⼆、焦炉煤⽓成分与特性焦炉煤⽓主要由氢⽓、甲烷、⼀氧化碳等组成,其中氢⽓含量约为55%-60%,具有较⾼的热值。
通过焦炉煤⽓制氢,可以将煤⽓中的氢⽓提取出来,并转化为⾼纯度的氢⽓,满⾜⼯业和⽣活⽤氢的需求。
三、焦炉煤⽓制氢⼯艺流程焦炉煤⽓制氢⼯艺流程主要包括煤⽓净化、氢⽓提取和氢⽓纯化三个步骤。
1.煤⽓净化:由于焦炉煤⽓中含有⼤量的焦油、萘、硫等杂质,需要先进⾏净化处理。
净化过程主要包括除尘、脱硫、脱苯等步骤,以保证后续氢⽓提取和纯化的顺利进⾏。
2.氢⽓提取:净化后的焦炉煤⽓进⼊氢⽓提取阶段。
⽬前常⽤的氢⽓提取⽅法有蒸汽转化法、部分氧化法和⾃热转化法等。
这些⽅法都能有效地将煤⽓中的氢⽓提取出来,形成富含氢⽓的混合⽓体。
3.氢⽓纯化:提取出的富含氢⽓的混合⽓体需要进⼀步纯化,以满⾜不同⽤途对氢⽓纯度的要求。
氢⽓纯化⽅法主要有压⼒吸附法、低温液化法和膜分离法等。
这些⽅法能有效去除混合⽓体中的杂质,得到⾼纯度的氢⽓。
四、技术经济分析焦炉煤⽓制氢技术具有显著的经济效益和环保效益。
⼀⽅⾯,通过该技术可以有效回收利⽤焦炉煤⽓中的有效成分,减少资源浪费;另⼀⽅⾯,制得的氢⽓作为⼀种清洁能源,可⼴泛应⽤于化⼯、冶⾦、电⼒等领域,具有⼴阔的市场前景。
此外,焦炉煤⽓制氢过程中产⽣的副产物也可以进⼀步回收利⽤,形成循环经济。
五、发展趋势与挑战随着环保要求的不断提⾼和清洁能源的快速发展,焦炉煤⽓制氢技术正⾯临着巨⼤的发展机遇。
未来,该技术将朝着更⾼效、更环保的⽅向发展。
同时,也需要解决⼀些技术难题,如提⾼氢⽓提取和纯化的效率、降低能耗和排放等。
焦炉煤气制氢工艺流程随着社会对清洁能源的需求不断增加,氢能作为一种清洁能源备受瞩目。
而焦炉煤气制氢技术作为一种有效的氢能生产方式,受到了广泛关注。
焦炉煤气制氢工艺是指利用焦炉废气对焦化煤气进行蒸汽重整,产生高纯度氢气的一种生产方式。
下面将详细介绍焦炉煤气制氢的工艺流程。
一、焦炉煤气制氢的原理焦炉是将煤炭加热至高温进行干馏,产生焦炭、焦炉气和焦油等产品的设备。
焦炉废气中含有大量的一氧化碳和氢气,可以作为原料用于制氢。
该工艺流程利用了蒸汽重整法来转化含碳气体(一氧化碳和甲烷)成氢气和二氧化碳。
整个过程是一个热力学平衡的过程,同时需要一定的催化剂来提高反应效率。
利用高温蒸汽与一氧化碳发生水煤气反应生成氢气和二氧化碳,同时需要隔绝甲烷的反应,以保证氢气的纯度。
由此,得到高纯度的氢气,是能源的重要来源。
二、焦炉煤气制氢的工艺流程1. 原料准备焦炉煤气制氢的原料主要包括焦炉煤气和蒸汽。
焦炉煤气是焦化过程中产生的含有一氧化碳、氢气、一氧化碳、氮气等成分的气体,含氢量较高。
蒸汽则是从水中蒸发得到的水蒸气,以一定的流量、压力进入反应器。
2. 预处理在反应前,需要对焦炉煤气进行预处理,其中包括净化、除尘、除湿等阶段。
这是为了保证反应器内的气体纯度和稳定性。
3. 蒸汽重整蒸汽重整是焦炉煤气制氢工艺的核心步骤。
反应器内的蒸汽和焦炉煤气在一定的温度和压力下,通过催化剂的作用,发生水煤气反应,产生氢气和二氧化碳。
反应的主要化学方程式如下:CH4 + H2O → CO + 3H2CO + H2O → CO2 + H2这一步骤需要控制好反应温度和压力,以及催化剂的选择和使用,来保证反应的效率和产物的纯度。
4. 分离和回收在经过蒸汽重整后,需要将产生的氢气和二氧化碳进行分离和回收。
通常采用物理吸附或化学吸附的方法来实现氢气和二氧化碳的分离,以获得高纯度的氢气。
5. 氢气储存最后,得到的高纯度氢气需要进行储存。
通常采用压缩氢气或者液化氢气的方式进行储存。
1.2副产解吸气压力:~0.01MpaG流量:~6900Nm3/h热值:~4800Kcal/Nm32、装置寿命指标2.1硬件设备类1)吸附塔等静止设备设计寿命15年;2)PSA提氢程控阀门正常使用寿命15年(密封件寿命大于2年);2.2三剂填料类寿命指标1)除焦油吸附剂正常使用寿命一年:一年更换一次2)压缩机后除油塔内除油剂设计使用年限为:1年更换一次;3)TSA预处理吸附剂正常使用寿命≥3年;4)脱苯工段吸附剂设计正常使用寿命1年;5)PSA提氢工段吸附剂设计正常使用寿命15年;6)脱氧工段催化剂设计正常使用寿命≥3年;物料平衡参考:(氢气收率:>80%)3.说明:以上物料以实际运行为准。
4.公用工程消耗:4.1煤气净化系统(脱焦、脱萘、脱硫、脱氨、脱苯)4.3压缩系统4.4变压吸附系统装置总占地约:100×70m(不含气柜)气柜及煤气输送约:二、工艺设计基础2.1制氢装置原料气需求量:~12000Nm3/h原料压力:~8Kpa-g(未最终确定)原料温度:常温2.2原料气条件焦炉煤气组成三、执行标准和要求执行标准(按最新标准执行)略四、工艺流程简图工艺流程简图如下:1.装置界区及流程框图1)界区界定:上图中虚线包围的部分就是本装置界区,所有能源节点至界区处1米;2)从上面框图可以看出,本装置主要包括三大系统:煤气净化、压缩、变压吸附提氢;3)煤气净化包括:除焦、脱胺、脱苯、脱硫、TSA净化、压缩系统包括:一级压缩、二级压缩;变压吸附提氢系统包括:PSA提氢、脱氧干燥;五、工艺流程描述1脱硫、脱氨工序经过脱焦脱萘工序来的不高于30℃焦炉煤气从塔底进入脱硫塔,与塔顶喷淋的脱硫液逆流接触脱硫。
脱硫液经液封槽流入溶液循环槽,在此补充催化剂和氨水后,用溶液循环泵打入再生塔与工艺空气并流接触再生后,自流入脱硫塔循环使用。
再生脱硫液产生的硫泡沫经再生塔扩大部分流入硫泡沫槽,用硫泡沫泵打入熔硫釜,产品粗硫磺外销。
从脱硫塔出来的煤气进入洗氨塔,经循环氨水及蒸氨废水洗涤脱除氨后送出作为制氢的原料气。
洗氨后的富氨水送入蒸氨塔,蒸出的氨汽部分回流,部分经冷凝冷却器进一步冷却后送入脱硫液循环槽作为补充碱源,蒸氨塔底贫液送洗氨塔循环洗涤使用。
2脱焦脱萘工序经吸附塔,将焦油和萘进行脱除。
脱焦脱萘工序由两个吸附塔组成,吸附剂使用设计年限为一年。
3一级压缩工序脱胺后的原料气进入原料气压缩机,原料气压缩机为螺杆式压缩机。
压缩后的原料气压力约为0.5MPa-G,直接进入下一工序。
4脱苯工序脱苯工艺采用变温吸附脱苯方案,共由4台脱苯塔、一台加热器、一台电加热器组成。
两台为一组,其中脱苯塔一组吸附,一组再生。
经压缩后的净化煤气,自塔底进入一组脱苯塔,其中一组处于吸附脱苯状态,一台处于再生状态。
当脱苯塔吸附苯等饱和后即转入再生过程。
5TSA预处理工序为保证后续PSA提氢工段的长期连续稳定运行,焦炉煤气中残留的有害杂质(硫化氢、萘等有害杂质)在进入变压吸附工段以前必须予以脱除净化,避免这些有害物质(强吸附质)在变压吸附工段累积在吸附剂上造成吸附剂中毒而吸附效果降低。
在压缩机出口进入预处理工序,除去残留的硫化氢、萘等有害杂质。
TSA净化装置采用变温吸附的原理除去杂质。
变温吸附系统采用2台吸附塔,其中任意时刻总有1台处于吸附步骤,保证连续的脱除杂质,另1台处于再生步骤,实现吸附塔的再生。
每个预处理塔在一次循环中均需经历吸附(A)、逆向降压(D)、升温(H)、冷却(L)、升压(R)等五个步骤。
6二级压缩工序经过预处理系统除去萘、焦油、NH3、H2S及其它芳香族化合物,处理后的焦炉煤气经压缩机第二、三级压缩至~1.8MPa(G)后进入后续PSA氢提纯系统。
7PSA提氢工段脱除有害杂质(硫化氢、HCN和高烃类物质等)的焦炉煤气进入PSA提氢工段,从吸附塔底进入,塔顶获得产品氢气,塔底解吸出的逆放解吸气用作TSA 净化工段作再生气使用。
再生气送入尾气气柜经压缩送至燃烧系统。
PSA提氢工段采用8-2-3/P(8个吸附塔,2个塔同时吸附,3次均压)的常压解吸的工作方式。
每个吸附塔在一次循环中均需经历吸附(A)、一均降(E1D)、二均降(E2D)、三均降(E3D)、顺放(PP)、逆放(D)、冲洗(P)、三均升(E3R)、二均升(E2R)、一均升(E1R)以及终充(FR)等十一个步骤。
8脱氧干燥工段从变压吸附工段获得含有少量氧(~0.3%)的粗氢产品气,通过催化反应,氧与氢生成水,混合气中的水分采用变温吸附技术干燥除去。
脱氧工艺:由变压吸附工段输出氢气通过脱氧塔,在脱氧塔中通过钯催化剂床层,混合气中的氢和氧反应生成水,又通过冷却器和气液分离器分离除去被冷凝游离水分。
干燥采用等压变温吸附,系统由2台干燥器、1台辅助干燥器、1台加热器、1台冷却器、1台气液分离器和3台4通程序控制阀构成。
其中1台干燥器任意时刻始终处于吸附(干燥)步骤,另一台干燥器处于再生(加热或冷却)步骤,2台干燥器压力始终相同。
再生气取自还未被干燥的氢气,先后经辅助干燥器和加热器除去水分并升温(~150o C)后,用于干燥器的加热再生。
冷却干燥器带出的热量用于辅助干燥器的再生。
再生气中所含的水分经冷却器和气液分离器排出,其中氢气再返回未被干燥的氢气流中,经干燥后氢气露点≤-60o C。
六、主要设备配置(以施工图设计为准)1. 主要设备2. 主要吸附剂3. 专用程控阀4. 主要现场仪表、电气、分析终设计图及技术参数,并推荐厂商,由买方决定厂商。
七、卖方负责内容1、卖方负责完成界区内的设计内容平面布置;工艺设计;非标设备设计;定型设备选型;自控仪表设计;电气设计;配管设计;土建设计;界区内照明设计;静电接地网的设计。
界区内防雷接地的设计;负责装置的指导安装2、卖方负责界区内的供货范围三剂采购;程序控制阀采购指导三剂的装填;非标设备监制;(明确台数、名称)指导装置的安装、调试;指导开车。
八、买方负责内容㈠、设备材料1、非标设备制造采购及安装;2、定型设备采购;3、仪表采购及安装;4、控制系统采购及安装;5、电气采购;6、油漆保温;7、安装材料采购;8、装置的安装9、确定装置的建设位置并提供装置所在界区的总平面布置图。
㈡、公用配套1、装置配套公用工程的设计和施工,并负责接到装置界区外1米处。
2、界区内的的土建设计和土建施工,静电接地网的施工。
3、水道、通风、供电、通讯、热力的设计与施工。
4、装置外管的设计和确定装置进出界区管线的走向。
5、装置界区内的消防设施施工。
6、装置在当地的报建。
7、装置各类电缆、桥架、穿线管等材料的供应。
8、卖方物资到现场的卸货和保管,卖方派人参加验货清点,卖方进场后交由卖方保管。
9、本装置可燃气体泄漏报警设备及可视摄像设备的供应及安装。
九、交工资料卖方向买方提供相关竣工资料一套(买方采购安装的由买方提供)。
技术文件应完整、清楚,足够保证现场安装、试运转正常。
竣工资料包括所有非标设备竣工图纸、产品说明书、产品合格证、设备质量报告、试运行记录,设备及管道安装资料、记录、检验报告等,压力容器设备必须有当地锅检部门出具的检验合格证。
具体如下:1、装置开车、性能测试和操作由买方在卖方指导下进行。
2、装置正常开车后,双方协商确定性能考核时间和方案,考核内容符合(按技术指标、消耗指标内容)技术附件相关条款。
3、性能测试连续72小时达到装置指标,双方认可签字,合同装置正式被接收。
4、在装置连续运行30天内,由于买方原因不能完成性能测试和考核,合同装置视为自动验收。
5、由于卖方提供的技术或设备原因没有达到买方对产品气的要求,可允许协商确定第二次测试,最多允许三次测试,卖方负责对工艺、设备进行整改,保证产品达到技术要求,产生相应界区内的费用由卖方承担。
6、在装置验收合格后,甲乙双方签署书面验收报告和安全备忘录,装置移交买方使用后,买方必须严格按照卖方提供的安全规程要求进行安全生产,并承担使用后的一切安全责任。
十一、工程进度表建议建设工期如下,可根据用户要求进行适量调整。
装置设计周期为:75天(综合材料统计完成);具体如下:1、合同生效后开始工艺设计,30天内完成;2、设备设计在工艺设计进行15天后开始,45天内完成;3、土建设计与工艺设计同步开展,45天内完成;4、仪表电器在工艺设计完成后即30天后开始,45天内完成;5、土建施工在土建设计完成后即45天后开始;6、设备执照、采购、运输在设备设计完成即合同生效60天后开始。
十二、安全卫生1、装置生产过程中接触的介质均属易燃、易爆气体,非标设备采取露天布置,压缩机设于室内。
现场设有可燃气体泄漏报警探头及可视摄像头,供控制室人员监控。
2、装置的设备、建筑物、构筑物的布置均遵守《石油化工企业设计防火规范》(GB50160-92)、《爆炸和火灾危险环境电力装置设计规范》(GB50058-92)。
装置系统物料为易燃易爆原料气,防火危险性为甲(A)类,爆炸危险场所均在2区内。
3、装置不正常生产时排出的气体直接放空。
4、装置设计除按有关规定外,还充分考虑了当地风压,地震烈度及场地土质因素。
5、装置内均设足够的氮气软管站,使可能出现的泄漏点均在消防软管控制范围内。
6、为提高防火安全的可靠性和自救能力,在装置操作区设有手提式干粉灭火器。
消防水管网及消防设施设备在装置边界线外,供消防用。
所需费用由买方负责。
十三、培训在装置安装开车期间,卖方对买方操作人员和分析人员进行现场的技术培训,保证买方操作人员和分析人员能独立操作。
十四、服务保证1、设备质保期为设备到货后18个月或设备投运12个月,两者以先到者为准。
2、在质保期内如发现卖方产品不能达到技术协议中操作参数或出现设备设计、选型、制造等质量问题,卖方保证在接到买方书面通知后在24小时内到现场。
3、卖方保证以80%合同价格及时提供给买方备品备件。
4、卖方保证所供设备必须符合买方所要求的质量、规格、性能要求,制造标准、规范应采用国家最新标准及规范。
5、质保期内,凡属卖方工艺设计、设备制造问题或外购设备自身质量问题(非人为造成的),卖方将无偿进行解决或更换。
卖方所供的设备如因设备自身质量问题或服务不及时给买方造成的相应经济损失,由卖方负责承担。
6、质保期以外,卖方终身为用户提供优质服务,卖方保证一年内对本装置回访两次。