江苏省苏州市2018年中考数学模拟试题(7)及答案
- 格式:doc
- 大小:707.23 KB
- 文档页数:8
江苏省苏州市2018年中考数学真题试题一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.2.(3.00分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1063.(3.00分)下列四个图案中,不是轴对称图案的是()A.B. C.D.4.(3.00分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.5.(3.00分)计算(1+)÷的结果是()A.x+1 B.C.D.6.(3.00分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.7.(3.00分)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100°B.110°C.120°D.130°8.(3.00分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里 B.60海里 C.20海里D.40海里9.(3.00分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD (点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A.3 B.4 C.2D.310.(3.00分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为()A.3 B.2C.6 D.12二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.(3.00分)计算:a4÷a= .12.(3.00分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是.13.(3.00分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n= .14.(3.00分)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为.15.(3.00分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为°.16.(3.00分)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D 均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r;若用扇1形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r,则的值为.217.(3.00分)如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′= .18.(3.00分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB 的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为(结果留根号).三、解答题(每题只有一个正确选项,本题共10小题,共76分)19.(5.00分)计算:|﹣|+﹣()2.20.(5.00分)解不等式组:21.(6.00分)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC ∥EF.22.(6.00分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23.(8.00分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?24.(8.00分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?25.(8.00分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.26.(10.00分)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.27.(10.00分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,= ;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.28.(10.00分)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G处,最后沿公路l回到点A处.设AE=x米(其中x>0),GA=y米,已知y与x之间的函数关系如图②所示,(1)求图②中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.【分析】将各数按照从小到大顺序排列,找出最大的数即可.【解答】解:根据题意得:﹣3<0<<,则最大的数是:.故选:C.【点评】此题考查了有理数大小比较,将各数按照从小到大顺序排列是解本题的关键.2.(3.00分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于384 000有6位,所以可以确定n=6﹣1=5.【解答】解:384 000=3.84×105.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3.00分)下列四个图案中,不是轴对称图案的是()A.B. C.D.【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(3.00分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可.【解答】解:由题意得x+2≥0,解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.5.(3.00分)计算(1+)÷的结果是()A.x+1 B.C.D.【分析】先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.【解答】解:原式=(+)÷=•=,故选:B.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.6.(3.00分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【解答】解:∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,故选:C.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.7.(3.00分)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100°B.110°C.120°D.130°【分析】根据互补得出∠AOC的度数,再利用圆周角定理解答即可.【解答】解:∵∠BOC=40°,∴∠AOC=180°﹣40°=140°,∴∠D=,故选:B.【点评】此题考查圆周角定理,关键是根据互补得出∠AOC的度数.8.(3.00分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里 B.60海里 C.20海里D.40海里【分析】首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题;【解答】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB•tan60°,∴PC=2×20×=40(海里),故选:D.【点评】本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.9.(3.00分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD (点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A.3 B.4 C.2D.3【分析】取BC的中点G,连接EG,根据三角形的中位线定理得:EG=4,设CD=x,则EF=BC=2x,证明四边形EGDF是平行四边形,可得DF=EG=4.【解答】解:取BC的中点G,连接EG,∵E是AC的中点,∴EG是△ABC的中位线,∴EG=AB==4,设CD=x,则EF=BC=2x,∴BG=CG=x,∴EF=2x=DG,∵EF∥CD,∴四边形EGDF是平行四边形,∴DF=EG=4,故选:B.【点评】本题考查了平行四边形的判定和性质、三角形中位线定理,作辅助线构建三角形的中位线是本题的关键.10.(3.00分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为()A.3 B.2C.6 D.12【分析】由tan∠AOD==可设AD=3a、OA=4a,在表示出点D、E的坐标,由反比例函数经过点D、E列出关于a的方程,解之求得a的值即可得出答案.【解答】解:∵tan∠AOD==,∴设AD=3a、OA=4a,则BC=AD=3a,点D坐标为(4a,3a),∵CE=2BE,∴BE=BC=a,∵AB=4,∴点E(4+4a,a),∵反比例函数y=经过点D、E,∴k=12a2=(4+4a)a,解得:a=或a=0(舍),则k=12×=3,故选:A.【点评】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D、E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.(3.00分)计算:a4÷a= a3.【分析】根据同底数幂的除法解答即可.【解答】解:a4÷a=a3,故答案为:a3【点评】此题主要考查了同底数幂的除法,对于相关的同底数幂的除法的法则要求学生很熟练,才能正确求出结果.12.(3.00分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是8 .【分析】根据众数的概念解答.【解答】解:在5,8,6,8,5,10,8,这组数据中,8出现了3次,出现的次数最多,∴这组数据的众数是8,故答案为:8.【点评】本题考查的是众数的确定,一组数据中出现次数最多的数据叫做众数.13.(3.00分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n= ﹣2 .【分析】根据一元二次方程的解的定义把x=2代入x2+mx+2n=0得到4+2m+2n=0得n+m=﹣2,然后利用整体代入的方法进行计算.【解答】解:∵2(n≠0)是关于x的一元二次方程x2+mx+2n=0的一个根,∴4+2m+2n=0,∴n+m=﹣2,故答案为:﹣2.【点评】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.14.(3.00分)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为12 .【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【解答】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.【点评】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构即可解答.15.(3.00分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为80 °.【分析】依据DE∥AF,可得∠BED=∠BFA,再根据三角形外角性质,即可得到∠BFA=20°+60°=80°,进而得出∠BED=80°.【解答】解:如图所示,∵DE∥AF,∴∠BED=∠BFA,又∵∠CAF=20°,∠C=60°,∴∠BFA=20°+60°=80°,∴∠BED=80°,故答案为:80.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.16.(3.00分)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D 均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为.【分析】由2πr1=、2πr2=知r1=、r2=,据此可得=,利用勾股定理计算可得.【解答】解:∵2πr1=、2πr2=,∴r1=、r2=,∴====,故答案为:.【点评】本题主要考查圆锥的计算,解题的关键是掌握圆锥体底面周长与母线长间的关系式及勾股定理.17.(3.00分)如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′= .【分析】根据勾股定理求出AC,过C作CM⊥AB′于M,过A作AN⊥CB′于N,求出B′M、CM,根据勾股定理求出B′C,根据三角形面积公式求出AN,解直角三角形求出即可.【解答】解:在Rt△ABC中,由勾股定理得:AC==5,过C作CM⊥AB′于M,过A作AN⊥CB′于N,∵根据旋转得出AB′=AB=2,∠B′AB=90°,即∠CMA=∠MAB=∠B=90°,∴CM=AB=2,AM=BC=,∴B′M=2﹣=,在Rt△B′MC中,由勾股定理得:B′C===5,∴S==,△AB′C∴5×AN=2×2,解得:AN=4,∴sin∠ACB′==,故答案为:.【点评】本题考查了解直角三角形、勾股定理、矩形的性质和判定,能正确作出辅助线是解此题的关键.18.(3.00分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为2(结果留根号).【分析】连接PM、PN.首先证明∠MPN=90°设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),构建二次函数,利用二次函数的性质即可解决问题;【解答】解:连接PM、PN.∵四边形APCD,四边形PBFE是菱形,∠DAP=60°,∴∠APC=120°,∠EPB=60°,∵M,N分别是对角线AC,BE的中点,∴∠CPM=∠APC=60°,∠EPN=∠EPB=30°,∴∠MPN=60°+30°=90°,设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),∴MN===,∴a=3时,MN有最小值,最小值为2,故答案为2.【点评】本题考查菱形的性质、勾股定理二次函数的性质等知识,解题的关键是学会添加常用辅助线,构建二次函数解决最值问题.三、解答题(每题只有一个正确选项,本题共10小题,共76分)19.(5.00分)计算:|﹣|+﹣()2.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=+3﹣=3【点评】本题考查实数的运算,解题的关键是熟练运用运算法则,本题属于基础题型.20.(5.00分)解不等式组:【分析】首先分别求出每一个不等式的解集,然后确定它们解集的公关部分即可.【解答】解:由3x≥x+2,解得x≥1,由x+4<2(2x﹣1),解得x>2,所以不等式组的解集为x>2.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6.00分)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC ∥EF.【分析】由全等三角形的性质SAS判定△ABC≌△DEF,则对应角∠ACB=∠DFE,故证得结论.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴BC∥EF.【点评】本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.22.(6.00分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).【分析】(1)由标有数字1、2、3的3个转盘中,奇数的有1、3这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况数,得出这两个数字之和是3的倍数的情况数,再根据概率公式即可得出答案.【解答】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(8.00分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?【分析】(1)由“乒乓球”人数及其百分比可得总人数,根据各项目人数之和等于总人数求出“羽毛球”的人数,补全图形即可;(2)用“篮球”人数占被调查人数的比例乘以360°即可;(3)用总人数乘以样本中足球所占百分比即可得.【解答】解:(1),答:参加这次调查的学生人数是50人;补全条形统计图如下:(2),答:扇形统计图中“篮球”项目所对应扇形的圆心角度数是72°;(3),答:估计该校选择“足球”项目的学生有96人.【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8.00分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?【分析】(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元,根据“1台A型电脑的钱数+2台B型打印机的钱数=5900,2台A型电脑的钱数+2台B型打印机的钱数=9400”列出二元一次方程组,解之可得;(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台,根据“(a﹣1)台A 型电脑的钱数+a台B型打印机的钱数≤20000”列出不等式,解之可得.【解答】解:(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元,根据题意,得:,解得:,答:每台A型电脑的价格为3500元,每台B型打印机的价格为1200元;(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台,根据题意,得:3500(a﹣1)+1200a≤20000,解得:a≤5,答:该学校至多能购买5台B型打印机.【点评】本题主要考查一元一次不等式与二元一次方程组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程组与不等式.25.(8.00分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C 为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.【分析】(1)解方程求出点A的坐标,根据勾股定理计算即可;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.【解答】解:(1)由x2﹣4=0得,x1=﹣2,x2=2,∵点A位于点B的左侧,∴A(﹣2,0),∵直线y=x+m经过点A,∴﹣2+m=0,解得,m=2,∴点D的坐标为(0,2),∴AD==2;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,y=x2+bx+2=(x+)2+2﹣,则点C′的坐标为(﹣,2﹣),∵CC′平行于直线AD,且经过C(0,﹣4),∴直线CC′的解析式为:y=x﹣4,∴2﹣=﹣﹣4,解得,b1=﹣4,b2=6,∴新抛物线对应的函数表达式为:y=x2﹣4x+2或y=x2+6x+2.【点评】本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键.26.(10.00分)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.【分析】(1)连接AC,根据切线的性质和已知得:AD∥OC,得∠DAC=∠ACO,根据AAS 证明△CDA≌△CEA(AAS),可得结论;(2)介绍两种证法:证法一:根据△CDA≌△CEA,得∠DCA=∠ECA,由等腰三角形三线合一得:∠F=∠ACE=∠DCA=∠ECG,在直角三角形中得:∠F=∠DCA=∠ACE=∠ECG=22.5°,可得结论;证法二:设∠F=x,则∠AOC=2∠F=2x,根据平角的定义得:∠DAC+∠EAC+∠OAF=180°,则3x+3x+2x=180,可得结论.【解答】证明:(1)连接AC,∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴∠DCO=∠D=90°,∴AD∥OC,∴∠DAC=∠ACO,∵OC=OA,∴∠CAO=∠ACO,∴∠DAC=∠CAO,∵CE⊥AB,∴∠CEA=90°,在△CDA和△CEA中,∵,∴△CDA≌△CEA(AAS),∴CD=CE;(2)证法一:连接BC,∵△CDA≌△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠ECA=∠ECG,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠ACE=∠B,∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG,∵∠D=90°,∴∠DCF+∠F=90°,∴∠F=∠DCA=∠ACE=∠ECG=22.5°,∴∠AOC=2∠F=45°,∴△CEO是等腰直角三角形;证法二:设∠F=x,则∠AOC=2∠F=2x,∵AD∥OC,∴∠OAF=∠AOC=2x,∴∠CGA=∠OAF+∠F=3x,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x,∵∠DAC+∠EAC+∠OAF=180°,∴3x+3x+2x=180,x=22.5°,∴∠AOC=2x=45°,∴△CEO是等腰直角三角形.【点评】此题考查了切线的性质、全等三角形的判定与性质、圆周角定理、勾股定理、三角形内角和定理以及等腰三角形和等腰直角三角形的判定与性质等知识.此题难度适中,本题相等的角较多,注意各角之间的关系,注意掌握数形结合思想的应用.27.(10.00分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,= ;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.【分析】问题1:(1)先根据平行线分线段成比例定理可得:,由同高三角形面积的比等于对应底边的比,则==,根据相似三角形面积比等于相似比的平方得:==,可得结论;(2)解法一:同理根据(1)可得结论;解法二:作高线DF、BH,根据三角形面积公式可得:=,分别表示和的值,代入可得结论;问题2:解法一:如图2,作辅助线,构建△OBC,证明△OAD∽△OBC,得OB=8,由问题1的解法可知:===,根据相似三角形的性质得:=,可得结论;解法二:如图3,连接AC交EF于M,根据AD=BC,可得=,得:S△ADC =S,S△ABC=,由问题1的结论可知:=,证明△CFM∽△CDA,根据相似三角形面积比等于相似比的平方,根据面积和可得结论.【解答】解:问题1:(1)∵AB=4,AD=3,∴BD=4﹣3=1,∵DE∥BC,∴,∴==,∵DE∥BC,∴△ADE∽△ABC,∴==,∴=,即,故答案为:;(2)解法一:∵AB=4,AD=m,∴BD=4﹣m,∵DE∥BC,∴==,∴==,∵DE∥BC,∴△ADE∽△ABC,∴==,∴===,即=;解法二:如图1,过点B作BH⊥AC于H,过D作DF⊥AC于F,则DF∥BH,∴△ADF∽△ABH,∴=,∴===,即=;问题2:如图②,解法一:如图2,分别延长BD、CE交于点O,∵AD∥BC,∴△OAD ∽△OBC , ∴,∴OA=AB=4,∴OB=8,∵AE=n ,∴OE=4+n ,∵EF ∥BC ,由问题1的解法可知:===, ∵==, ∴=, ∴===,即=;解法二:如图3,连接AC 交EF 于M ,∵AD ∥BC ,且AD=BC , ∴=, ∴S △ADC =,∴S △ADC =S ,S △ABC =,由问题1的结论可知:=, ∵MF ∥AD ,∴△CFM ∽△CDA , ∴===,∴S △CFM =×S ,∴S △EFC =S △EMC +S △CFM =+×S=, ∴=.【点评】本题考查了相似三角形的性质和判定、平行线分线段成比例定理,熟练掌握相似三角形的性质:相似三角形面积比等于相似比的平方是关键,并运用了类比的思想解决问题,本题有难度.28.(10.00分)如图①,直线l 表示一条东西走向的笔直公路,四边形ABCD 是一块边长为100米的正方形草地,点A ,D 在直线l 上,小明从点A 出发,沿公路l 向西走了若干米后到达点E 处,然后转身沿射线EB 方向走到点F 处,接着又改变方向沿射线FC 方向走到公路l 上的点G 处,最后沿公路l 回到点A 处.设AE=x 米(其中x >0),GA=y 米,已知y 与x 之间的函数关系如图②所示,。
江苏省苏州市2018年中考数学试卷一、选择题<共10小题,每小题3分,共30分)1.<3分)<2018?苏州)<﹣3)×3的结果是<)A.﹣9 B.0C.9D.﹣6考点:有理数的乘法.分析:根据两数相乘,异号得负,可得答案.解答:解:原式=﹣3×3=﹣9,故选:A.点评:本题考查了有理数的乘法,先确定积的符号,再进行绝对值得运算.2.<3分)<2018?苏州)已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为<)A.30°B.60°C.70°D.150°考点:对顶角、邻补角分析:根据对顶角相等可得∠β与∠α的度数相等为30°.解答:解:∵∠α和∠β是对顶角,∠α=30°,∴根据对顶角相等可得∠β=∠α=30°.故选:A.点评:本题主要考查了对顶角相等的性质,比较简单.3.<3分)<2018?苏州)有一组数据:1,3,3,4,5,这组数据的众数为<)A.1B.3C.4D.5考点:众数分析:根据众数的概念求解.解答:解:这组数据中3出现的次数最多,故众数为3.故选 B点评:本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.4.<3分)<2018?苏州)若式子在实数范围内有意义,则x的取值范围是<)A.x≤﹣4 B.x≥﹣4 C.x≤4 D.x≥4考点:二次根式有意义的条件分析:二次根式有意义,被开方数是非负数.解答:解:依题意知,x﹣4≥0,解得x≥4.故选:D.点评:考查了二次根式的意义和性质.概念:式子<a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.<3分)<2018?苏州)如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是<)b5E2RGbCAPA.B.C.D.考点:几何概率.分析:设圆的面积为6,易得到阴影区域的面积为4,然后根据概率的概念计算即可.解答:解:设圆的面积为6,∵圆被分成6个相同扇形,∴每个扇形的面积为1,∴阴影区域的面积为4,∴指针指向阴影区域的概率==.故选D.点评:本题考查了求几何概率的方法:先利用几何性质求出整个几何图形的面积n,再计算出其中某个区域的几何图形的面积m,然后根据概率的定义计算出落在这个几何区域的事件的概率=.6.<3分)<2018?苏州)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为<)p1EanqFDPwA.30°B.40°C.45°D.60°考点:等腰三角形的性质分析:先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.解答:解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.故选B.点评:本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.7.<3分)<2018?苏州)下列关于x的方程有实数根的是<)A.x2﹣x+1=0 B.x2+x+1=0 C.<x﹣1)<x+2)=0 D.<x﹣1)2+1=0 考点:根的判别式.专计算题.题:分析:分别计算A、B中的判别式的值;根据判别式的意义进行判断;利用因式分解法对C 进行判断;根据非负数的性质对D进行判断.解答:解:A、△=<﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,所以A选项错误;B、△=12﹣4×1×1=﹣3<0,方程没有实数根,所以B选项错误;C、x﹣1=0或x+2=0,则x1=1,x2=﹣2,所以C选项正确;D、<x﹣1)2=﹣1,方程左边为非负数,方程右边为0,所以方程没有实数根,所以D选项错误.故选C.点评:本题考查了一元二次方程ax2+bx+c=0<a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.<3分)<2018?苏州)二次函数y=ax 2+bx﹣1<a≠0)的图象经过点<1,1),则代数式1﹣a﹣b的值为<)DXDiTa9E3dA.﹣3 B.﹣1 C.2D.5考点:二次函数图象上点的坐标特征.分析:把点<1,1)代入函数解读式求出a+b,然后代入代数式进行计算即可得解.解答:解:∵二次函数y=ax2+bx﹣1<a≠0)的图象经过点<1,1),∴a+b﹣1=1,∴a+b=2,∴1﹣a﹣b=1﹣<a+b)=1﹣2=﹣1.故选B.点评:本题考查了二次函数图象上点的坐标特征,整体思想的利用是解题的关键.9.<3分)<2018?苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离<即AB的长)为<)RTCrpUDGiTA.4km B.2km C.2km D.<+1)km考点:解直角三角形的应用-方向角问题.分析:过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2,再由△ABD是等腰直角三角形,得出BD=AD=2,则AB=AD=2.解答:解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离<即AB的长)为2km.故选C.点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.10.<3分)<2018?苏州)如图,△AOB为等腰三角形,顶点A的坐标<2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B′,点A的对应点A′在x轴上,则点O′的坐标为<)5PCzVD7HxAA.<,)B.<,)C.<,)D.<,4)考点:坐标与图形变化-旋转.分析:过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,根据点A的坐标求出OC、AC,再利用勾股定理列式计算求出OA,根据等腰三角形三线合一的性质求出OB,根据旋转的性质可得BO′=OB,∠A′BO′=∠ABO,然后解直角三角形求出O′D、BD,再求出OD,然后写出点O′的坐标即可.解答:解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A<2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×=,BD=4×=,∴OD=OB+BD=4+=,∴点O′的坐标为<,).故选C.点评:本题考查了坐标与图形变化﹣旋转,主要利用了勾股定理,等腰三角形的性质,解直角三角形,熟记性质并作辅助线构造出直角三角形是解题的关键.二、填空题<共8小题,每小题3分,共24分)11.<3分)<2018?苏州)的倒数是.考点:倒数.分析:根据乘积为1的两个数倒数,可得一个数的倒数.解答:解:的倒数是,故答案为:.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.12.<3分)<2018?苏州)已知地球的表面积约为510000000km 2,数510000000用科学记数法可表示为 5.1×108.jLBHrnAILg 考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于510000000有9位,所以可以确定n=9﹣1=8.解答:解:510 000 000=5.1×108.故答案为: 5.1×108.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.13.<3分)<2018?苏州)已知正方形ABCD的对角线AC=,则正方形ABCD的周长为4.考点:正方形的性质.分析:根据正方形的对角线等于边长的倍求出边长,再根据正方形的周长公式列式计算即可得解.解答:解:∵正方形ABCD的对角线AC=,∴边长AB=÷=1,∴正方形ABCD的周长=4×1=4.故答案为:4.点评:本题考查了正方形的性质,比较简单,熟记正方形的对角线等于边长的倍是解题的关键.14.<3分)<2018?苏州)某学校计划开设A、B、C、D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解个门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有240人.xHAQX74J0X考点:用样本估计总体;条形统计图.分析:根据样本的数据,可得样本C占样本的比例,根据样本的比例,可C占总体的比例,根据总人数乘以C占得比例,可得答案.解答:解:C占样本的比例,C占总体的比例是,选修C课程的学生有1200×=240<人),故答案为:240.点评:本题考查了用样本估计总体,先求出样本所占的比例,估计总体中所占的比例.15.<3分)<2018?苏州)如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=.LDAYtRyKfE考点:锐角三角函数的定义;等腰三角形的性质;勾股定理.分析:先过点A作AE⊥BC于点E,求得∠BAE=∠BAC,故∠BPC=∠BAE.再在Rt△BAE中,由勾股定理得AE的长,利用锐角三角函数的定义,求得tan∠BPC=tan∠BAE=.解答:解:过点A作AE⊥BC于点E,∵AB=AC=5,∴BE=BC=×8=4,∠BAE=∠BAC,∵∠BPC=∠BAC,∴∠BPC=∠BAE.在Rt△BAE中,由勾股定理得AE=,∴tan∠BPC=tan∠BAE=.故答案为:.点评:求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角<或余角)的三角函数关系式求三角函数值.16.<3分)<2018?苏州)某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则<x+y)的值为20.Zzz6ZB2Ltk 考点:二元一次方程组的应用.分析:设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,就有4x+9y=120,8x+3y=120,由此构成方程组求出其解即可.解答:解:设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,由题意,得,解得:.∴x+y=20.故答案为:20.点评:本题考查了列二元一次房产界实际问题的运用,二元一次方程组的解法的运用,工程问题的数量关系的运用,解答时由工程问题的数量关系建立方程组求出其解是关键.17.<3分)<2018?苏州)如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE?ED=,则矩形ABCD的面积为5.dvzfvkwMI1考点:矩形的性质;勾股定理.分析:连接BE,设AB=3x,BC=5x,根据勾股定理求出AE=4x,DE=x,求出x的值,求出AB、BC,即可求出答案.解答:解:如图,连接BE,则BE=BC.设AB=3x,BC=5x,∵四边形ABCD是矩形,∴AB=CD=3x,AD=BC=5x,∠A=90°,由勾股定理得:AE=4x,则DE=5x﹣4x=x,∵AE?ED=,∴4x?x=,解得:x=<负数舍去),则AB=3x=,BC=5x=,∴矩形ABCD的面积是AB×BC=×=5,故答案为:5.点评:本题考查了矩形的性质,勾股定理的应用,解此题的关键是求出x的值,题目比较好,难度适中.18.<3分)<2018?苏州)如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点<不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则<x﹣y)的最大值是2.rqyn14ZNXI考点:切线的性质.分析:作直径AC,连接CP,得出△APC∽△PBA,利用=,得出y=x2,所以x﹣y=x﹣x 2=﹣x2+x=﹣<x﹣4)2+2,当x=4时,x﹣y有最大值是2.解答:解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB 是切线,∴CA ⊥AB ,∵PB ⊥l ,∴AC ∥PB ,∴∠CAP=∠APB ,∴△APC ∽△PBA ,∴=,∵PA=x ,PB=y ,半径为 4 ∴=,∴y=x 2,∴x ﹣y=x ﹣x 2=﹣x 2+x=﹣<x ﹣4)2+2,当x=4时,x ﹣y 有最大值是2,故答案为:2.点评:此题考查了切线的性质,平行线的性质,相似三角形的判定与性质,以及二次函数的性质,熟练掌握性质及定理是解本题的关键.三、解答题<共11小题,共76分)19.<5分)<2018?苏州)计算:22+|﹣1|﹣.考点:实数的运算.专题:计算题.分析:原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用平方根定义化简,计算即可得到结果.解答:解:原式=4+1﹣2=3.点评:此题考查了实数的运算,熟练掌握运算法则解本题的关键.20.<5分)<2018?苏州)解不等式组:.考点:解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:,由①得:x>3;由②得:x≤4,则不等式组的解集为3<x≤4.点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.21.<5分)<2018?苏州)先化简,再求值:,其中.考点:分式的化简求值.分析:分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.解答:解:=÷<+)=÷=×=,把,代入原式====.点评:此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.22.<6分)<2018?苏州)解分式方程:+=3.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.<6分)<2018?苏州)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC 上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.EmxvxOtOco<1)求证:△BCD≌△FCE;<2)若EF∥CD,求∠BDC的度数.考点:全等三角形的判定与性质;旋转的性质.分析:<1)由旋转的性质可得:CD=CE,再根据同角的余角相等可证明∠BCD=∠FCE,再根据全等三角形的判定方法即可证明△BCD≌△FCE;<2)由<1)可知:△BCD≌△FCE,所以∠BDC=∠E,易求∠E=90°,进而可求出∠BDC的度数.解答:<1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE,在△BCD和△FCE中,,∴△BCD≌△FCE<SAS).<2)解:由<1)可知△BCD≌△FCE,∴∠BDC=∠E,∵EF∥CD,∴∠E=180°﹣∠DCE=90°,∴∠BDC=90°.点评:本题考查了全等三角形的判定和性质、同角的余角相等、旋转的性质、平行线的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.24.<7分)<2018?苏州)如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P<a,0)<其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.SixE2yXPq5<1)求点A的坐标;<2)若OB=CD,求a的值.考点:两条直线相交或平行问题.专题:计算题.分析:<1)先利用直线y=x上的点的坐标特征得到点M的坐标为<2,2),再把M<2,2)代入y=﹣x+b可计算出b=3,得到一次函数的解读式为y=﹣x+3,然后根据x轴上点的坐标特征可确定A点坐标为<6,0);<2)先确定B点坐标为<0,3),则OB=CD=3,再表示出C点坐标为<a,﹣a+3),D点坐标为<a,a),所以a﹣<﹣a+3)=3,然后解方程即可.解答:解:<1)∵点M在直线y=x的图象上,且点M的横坐标为2,∴点M的坐标为<2,2),把M<2,2)代入y=﹣x+b得﹣1+b=2,解得b=3,∴一次函数的解读式为y=﹣x+3,把y=0代入y=﹣x+3得﹣x+3=0,解得x=6,∴A点坐标为<6,0);<2)把x=0代入y=﹣x+3得y=3,∴B点坐标为<0,3),∵CD=OB,∴CD=3,∵PC⊥x轴,∴C点坐标为<a,﹣a+3),D点坐标为<a,a)∴a﹣<﹣a+3)=3,∴a=4.点评:本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.25.<7分)<2018?苏州)如图,用红、蓝两种颜色随机地对A、B、C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法<画树状图或列表)求A、C两个区域所涂颜色不相同的概率.6ewMyirQFL考点:列表法与树状图法.专题:计算题.分析:画树状图得出所有等可能的情况数,找出A与C中颜色不同的情况数,即可求出所求的概率.解解:画树状图,如图所示:答:所有等可能的情况有8种,其中A、C两个区域所涂颜色不相同的有4种,则P==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.26.<8分)<2018?苏州)如图,已知函数y=<x>0)的图象经过点A、B,点A的坐标为<1,2),过点A作AC∥y轴,AC=1<点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.kavU42VRUs<1)求△OCD的面积;<2)当BE=AC时,求CE的长.考点:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.分析:<1)根据待定系数法,可得函数解读式,根据图象上的点满足函数解读式,可得D 点坐标,根据三角形的面积公式,可得答案;<2)根据BE的长,可得B点的纵坐标,根据点在函数图象上,可得B点横坐标,根据两点间的距离公式,可得答案.解答:解;<1)y=<x>0)的图象经过点A<1,2),∴k=2.∵AC∥y轴,AC=1,∴点C的坐标为<1,1).∵CD∥x轴,点D在函数图象上,∴点D的坐标为<2,1).∴.<2)∵BE=,∴.∵BE⊥CD,∴点B的横坐标是,纵坐标是.∴CE=.点评:本题考查了反比例函数k的几何意义,利用待定系数法求解读式,图象上的点满足函数解读式.27.<8分)<2018?苏州)如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.y6v3ALoS89<1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;<2)求证:BF=BD;<3)设G是BD的中点,探索:在⊙O上是否存在点P<不同于点B),使得PG=PF?并说明PB与AE的位置关系.M2ub6vSTnP考点:圆的综合题.分析:<1)利用圆心角定理进而得出∠BOD=120°,再利用弧长公式求出劣弧的长;<2)利用三角形中位线定理得出BF=AC,再利用圆心角定理得出=,进而得出BF=BD;<3)首先过点B作AE的垂线,与⊙O的交点即为所求的点P,得出BP⊥AE,进而证明△PBG≌△PBF<SAS),求出PG=PF.解答:<1)解:连接OB,OD,∵∠DAB=120°,∴所对圆心角的度数为240°,∴∠BOD=120°,∵⊙O的半径为3,∴劣弧的长为:×π×3=2π;<2)证明:连接AC,∵AB=BE,∴点B为AE的中点,∵F是EC的中点,∴BF为△EAC的中位线,∴BF=AC,∵=,∴+=+,∴=,∴BD=AC,∴BF=BD;<3)解:过点B作AE的垂线,与⊙O的交点即为所求的点P,∵BF为△EAC的中位线,∴BF∥AC,∴∠FBE=∠CAE,∵=,∴∠CAB=∠DBA,∵由作法可知BP⊥AE,∴∠GBP=∠FBP,∵G为BD的中点,∴BG=BD,∴BG=BF,在△PBG和△PBF中,,∴△PBG≌△PBF<SAS),∴PG=PF.点评:此题主要考查了圆的综合应用以及全等三角形的判定与性质和弧长公式以及圆心角定理等知识,正确作出辅助线是解题关键.28.<9分)<2018?苏州)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD 沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t<s)0YujCfmUCw<1)如图①,连接OA、AC,则∠OAC的度数为105°;<2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离<即OO1的长);eUts8ZQVRd<3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d<cm),当d<2时,求t的取值范围<解答时可以利用备用图画出相关示意图).sQsAEJkW5T考点:圆的综合题.分析:<1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;<2)首先得出,∠C1A1D1=60°,再利用A1E=AA1﹣OO1﹣2=t﹣2,求出t的值,进而得出OO1=3t得出答案即可;<3)①当直线AC与⊙O第一次相切时,设移动时间为t1,②当直线AC与⊙O第二次相切时,设移动时间为t2,分别求出即可.解答:解:<1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm,∴tan∠DAC===,∴∠DAC=60°,∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;<2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;<3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2,由<2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣<2﹣)=t2﹣<+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.点评:此题主要考查了切线的性质以及锐角三角函数关系等知识,利用分类讨论以及数形结合t的值是解题关键.29.<10分)<2018?苏州)如图,二次函数y=a<x 2﹣2mx﹣3m2)<其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A、B<点A位于点B的左侧),与y轴交于C<0,﹣3),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.GMsIasNXkA<1)用含m的代数式表示a;<2)求证:为定值;<3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.TIrRGchYzg考点:二次函数综合题.分析:<1)由C在二次函数y=a<x2﹣2mx﹣3m2)上,则其横纵坐标必满足方程,代入即可得到a与c的关系式.<2)求证为定值,一般就是计算出AD、AE的值,然后相比.而求其长,过E、D作x轴的垂线段,进而通过设边长,利用直角三角形性质得方程求解,是求解此类问题的常规思路,如此易得定值.<3)要使线段GF、AD、AE的长度为三边长的三角形是直角三角形,且<2)中=,则可考虑若GF使得AD:GF:AE=3:4:5即可.由AD、AE、F点都易固定,且G在x轴的负半轴上,则易得G点大致位置,可连接CF并延长,证明上述比例AD:GF:AE=3:4:5即可.解答:<1)解:将C<0,﹣3)代入二次函数y=a<x2﹣2mx﹣3m2),则﹣3=a<0﹣0﹣3m2),解得 a=.<2)证明:如图1,过点D、E分别作x轴的垂线,垂足为M、N.由a<x2﹣2mx﹣3m2)=0,解得 x1=﹣m,x2=3m,则 A<﹣m,0),B<3m,0).∵CD∥AB,∴点D的坐标为<2m,﹣3).∵AB平分∠DAE,∴∠DAM=∠EAN,∵∠DMA=∠ENA=90°,∴△ADM∽△AEN.∴==.设E坐标为<x,),∴=,∴x=4m,∴E<4m,5),∵AM=AO+OM=m+2m=3m,AN=AO+ON=m+4m=5m,∴==,即为定值.<3)解:如图2,记二次函数图象顶点为F,则F的坐标为<m,﹣4),过点F作FH⊥x轴于点H.连接FC并延长,与x轴负半轴交于一点,此点即为所求的点G.∵tan∠CGO=,tan∠FGH=,∴=,∴OG=3m.∵GF===4,AD===3,∴=.∵=,∴AD:GF:AE=3:4:5,∴以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时G点的横坐标为﹣3m.点评:本题考查了二次函数性质、勾股定理及利用直角三角形性质求解边长等知识,总体来说本题虽难度稍难,但问题之间的提示性较明显,所以是一道质量较高的题目.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
2018 年江苏省苏州市中考数学试卷一、选择题(每题只有一个正确选项,本题共10 小题,每题 3 分,共 30 分)1.(3.00 分)在以下四个实数中,最大的数是()A.﹣ 3 B.0C.D.2.( 3.00 分)地球与月球之间的均匀距离大概为384000km,384000 用科学记数法可表示为()A.3.84×103B.3.84×104C. 3.84×105D.3.84× 1063.(3.00 分)以下四个图案中,不是轴对称图案的是()A.B.C.D.4.(3.00 分)若在实数范围内存心义,则x 的取值范围在数轴上表示正确的是()A.B.C.D.5.(3.00 分)计算( 1+)÷的结果是()A.x+1 B.C.D.6.( 3.00 分)如图,飞镖游戏板中每一块小正方形除颜色外都同样.若某人向游戏板扔掷飞镖一次(假定飞镖落在游戏板上),则飞镖落在暗影部分的概率是()A.B.C.D.7.( 3.00 分)如图, AB 是半圆的直径, O 为圆心, C 是半圆上的点, D 是上的点,若∠ BOC=40°,则∠ D 的度数为()A.100°B.110°C.120°D.130°8.( 3.00 分)如图,某海监船以 20 海里 / 小时的速度在某海疆履行巡航任务,当海监船由西向东航行至 A 处时,测得岛屿 P 恰幸亏其正北方向,持续向东航行 1 小时抵达 B 处,测得岛屿 P 在其北偏西 30°方向,保持航向不变又航行 2 小时到达 C 处,此时海监船与岛屿P 之间的距离(即PC的长)为()A.40 海里 B.60 海里 C.20海里D.40海里9.(3.00 分)如图,在△ ABC中,延伸 BC至 D,使得 CD= BC,过 AC中点 E 作EF∥CD(点 F 位于点 E 右边),且 EF=2CD,连结 DF.若 AB=8,则 DF 的长为()A.3B.4C.2D.310.(3.00 分)如图,矩形 ABCD的极点 A,B 在 x 轴的正半轴上,反比率函数 y=在第一象限内的图象经过点D,交 BC于点 E.若 AB=4, CE=2BE,tan∠AOD= ,则 k 的值为()A.3B.2C.6D.12二、填空题(每题只有一个正确选项,本题共8 小题,每题 3 分,共24 分)11.( 3.00 分)计算: a4÷a=.12.(3.00 分)在“献爱心”捐钱活动中,某校 7 名同学的捐钱数以下(单位:元):5,8,6,8,5,10,8,这组数据的众数是.13 .( 3.00 分)若对于x 的一元二次方程x2+mx+2n=0 有一个根是 2 ,则m+n=.2215.( 3.00 分)如图,△ ABC 是一块直角三角板,∠ BAC=90°,∠ B=30°,现将三角板叠放在一把直尺上,使得点 A 落在直尺的一边上,AB 与直尺的另一边交于E,F.若∠ CAF=20°,则∠ BED的度数为°.点 D,BC与直尺的两边分别交于点16.(3.00 分)如图, 8×8 的正方形网格纸上有扇形OAB和扇形 OCD,点 O,A,B,C,D 均在格点上.若用扇形OAB 围成一个圆锥的侧面,记这个圆锥的底面半径为 r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r 2,则的值为.17.(3.00 分)如图,在 Rt△ ABC中,∠ B=90°,AB=2,BC=.将△ ABC绕点A 按逆时针方向旋转90°获得△ AB'C′,连结 B'C,则 sin∠ACB′=.18.( 3.00 分)如图,已知 AB=8,P 为线段 AB 上的一个动点,分别以 AP,PB为边在AB的同侧作菱形 APCD和菱形 PBFE,点 P,C,E在一条直线上,∠ DAP=60°.M ,N 分别是对角线 AC, BE的中点.当点 P 在线段 AB 上挪动时,点 M , N 之间的距离最短为(结果留根号).三、解答题(每题只有一个正确选项,本题共10 小题,共 76 分)19.( 5.00分)计算: | ﹣ |+ ﹣()2.20.( 5.00分)解不等式组:21.(6.00 分)如图,点 A,F,C,D 在一条直线上, AB∥DE,AB=DE,AF=DC.求证: BC∥ EF.22.( 6.00 分)如图,在一个能够自由转动的转盘中,指针地点固定,三个扇形的面积都相等,且分别标有数字1,2,3.( 1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是 3 的倍数的概率(用画树状图或列表等方法求解).23.( 8.00 分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了预计全校学生对这四个活动项目的选择状况,体育老师从全体学生中随机抽取了部分学生进行检查(规定每人一定而且只好选择此中的一个项目),并把检查结果绘制成以下图的不完好的条形统计图和扇形统计图,请你依据图中信息解答以下问题:(1)求参加此次检查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有 600 名学生,试预计该校选择“足球”项目的学生有多少人?24.( 8.00 分)某学校准备购置若干台 A 型电脑和 B 型打印机.假如购置 1 台 A 型电脑, 2 台 B 型打印机,一共需要花销 5900 元;假如购置 2 台 A 型电脑, 2台 B 型打印机,一共需要花销9400 元.(1)求每台 A 型电脑和每台 B 型打印机的价钱分别是多少元?(2)假如学校购置 A 型电脑和 B 型打印机的估算花费不超出 20000 元,而且购买 B 型打印机的台数要比购置 A 型电脑的台数多 1 台,那么该学校至多能购置多少台 B 型打印机?25.( 8.00 分)如图,已知抛物线 y=x2﹣4 与 x 轴交于点 A,B(点 A 位于点 B 的左边),C 为极点,直线 y=x+m 经过点 A,与 y 轴交于点 D.(1)求线段 AD 的长;(2)平移该抛物线获得一条新拋物线,设新抛物线的极点为C′.若新抛物线经过点 D,而且新抛物线的极点和原抛物线的极点的连线CC′平行于直线 AD,求新抛物线对应的函数表达式.26.( 10.00 分)如图, AB 是⊙ O 的直径,点 C 在⊙ O 上, AD 垂直于过点 C 的切线,垂足为 D,CE垂直 AB,垂足为 E.延伸 DA 交⊙ O 于点 F,连结 FC, FC与AB 订交于点 G,连结 OC.(1)求证: CD=CE;(2)若 AE=GE,求证:△ CEO是等腰直角三角形.27.(10.00 分)问题 1:如图①,在△ ABC中, AB=4,D 是 AB 上一点(不与 A,B 重合),DE∥ BC,交 AC于点 E,连结 CD.设△ ABC的面积为 S,△ DEC的面积为 S′.( 1)当 AD=3时,=;( 2)设 AD=m,请你用含字母m 的代数式表示.问题 2:如图②,在四边形ABCD中, AB=4,AD∥ BC,AD= BC,E 是 AB 上一点(不与 A, B 重合),EF∥ BC,交 CD于点 F,连结 CE.设 AE=n,四边形 ABCD的面积为 S,△ EFC的面积为 S′.请你利用问题 1 的解法或结论,用含字母 n 的代数式表示.28.( 10.00 分)如图①,直线l 表示一条东西走向的笔挺公路,四边形ABCD是一块边长为 100 米的正方形草地,点A, D 在直线 l 上,小明从点 A 出发,沿公路l 向西走了若干米后抵达点E 处,而后转身沿射线EB 方向走到点F 处,接着又改变方向沿射线 FC方向走到公路 l 上的点 G 处,最后沿公路 l 回到点 A 处.设AE=x米(此中 x> 0),GA=y米,已知 y 与 x 之间的函数关系如图②所示,(1)求图②中线段 MN 所在直线的函数表达式;(2)试问小明从起点 A 出发直至最后回到点 A 处,所走过的路径(即△ EFG)能否能够是一个等腰三角形?假如能够,求出相应 x 的值;假如不能够,说明原因.2018 年江苏省苏州市中考数学试卷参照答案与试题分析一、选择题(每题只有一个正确选项,本题共10 小题,每题 3 分,共 30 分)1.(3.00 分)在以下四个实数中,最大的数是()A.﹣ 3 B.0C.D.【剖析】将各数依照从小到大次序摆列,找出最大的数即可.【解答】解:依据题意得:﹣ 3<0<<,则最大的数是:.应选: C.【评论】本题考察了有理数大小比较,将各数依照从小到大次序摆列是解本题的重点.2.( 3.00 分)地球与月球之间的均匀距离大概为法可表示为()345 A.3.84×10B.3.84×10C. 3.84×10384000km,384000 用科学记数D.3.84× 106【剖析】科学记数法的表示形式为a× 10n的形式,此中 1≤| a| < 10,n 为整数.确定 n 的值是易错点,因为 384 000 有 6 位,因此能够确立 n=6﹣1=5.【解答】解: 384 000=3.84× 105.应选: C.【评论】本题考察科学记数法表示较大的数的方法,正确确立 a 与 n 值是重点.3.(3.00 分)以下四个图案中,不是轴对称图案的是()A.B.C.D.【剖析】依据轴对称的观点对各选项剖析判断利用清除法求解.【解答】解: A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.应选: B.【评论】本题考察了轴对称图形的观点.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合.4.(3.00 分)若在实数范围内存心义,则x 的取值范围在数轴上表示正确的是()A.B.C.【剖析】依据二次根式存心义的条件列出不等式,示即可.D.解不等式,把解集在数轴上表【解答】解:由题意得 x+2≥0,解得 x≥﹣ 2.应选: D.【评论】本题考察的是二次根式存心义的条件,掌握二次根式中的被开方数是非负数是解题的重点.5.(3.00 分)计算(1+)÷的结果是()A.x+1 B.C.D.【剖析】先计算括号内分式的加法、将除式分子因式分解,再将除法转变为乘法,约分即可得.【解答】解:原式 =(+)÷=?=,应选: B.【评论】本题主要考察分式的混淆运算,解题的重点是掌握分式混淆运算次序和运算法例.6.( 3.00 分)如图,飞镖游戏板中每一块小正方形除颜色外都同样.若某人向游戏板扔掷飞镖一次(假定飞镖落在游戏板上),则飞镖落在暗影部分的概率是()A.B.C.D.【剖析】依据几何概率的求法:飞镖落在暗影部分的概率就是暗影地区的面积与总面积的比值.【解答】解:∵总面积为 3×3=9,此中暗影部分面积为4×× 1× 2=4,∴飞镖落在暗影部分的概率是,应选: C.【评论】本题考察几何概率的求法:第一依据题意将代数关系用面积表示出来,一般用暗影地区表示所求事件(A);而后计算暗影地区的面积在总面积中占的比率,这个比率即事件( A)发生的概率.7.( 3.00 分)如图, AB 是半圆的直径,O 为圆心, C 是半圆上的点,D 是上的点,若∠BOC=40°,则∠ D 的度数为()A.100°B.110°C.120°D.130°【剖析】依据互补得出∠ AOC的度数,再利用圆周角定理解答即可.【解答】解:∵∠ BOC=40°,∴∠ AOC=180°﹣ 40°=140°,∴∠D=,应选: B.【评论】本题考察圆周角定理,重点是依据互补得出∠AOC的度数.8.( 3.00 分)如图,某海监船以 20 海里 / 小时的速度在某海疆履行巡航任务,当海监船由西向东航行至 A 处时,测得岛屿 P 恰幸亏其正北方向,持续向东航行 1 小时抵达 B 处,测得岛屿 P 在其北偏西 30°方向,保持航向不变又航行 2 小时到达 C 处,此时海监船与岛屿P 之间的距离(即PC的长)为()A.40 海里 B.60 海里 C.20海里D.40海里【剖析】第一证明 PB=BC,推出∠ C=30°,可得 PC=2PA,求出 PA即可解决问题;【解答】解:在 Rt△PAB中,∵∠ APB=30°,∴PB=2AB,由题意 BC=2AB,∴PB=BC,∴∠ C=∠ CPB,∵∠ ABP=∠C+∠ CPB=60°,∴∠ C=30°,∴PC=2PA,∵PA=AB?tan60°,∴PC=2× 20× =40 (海里),应选: D.【评论】本题考察解直角三角形的应用﹣方向角问题,解题的重点是证明 PB=BC,推出∠ C=30°.9.(3.00 分)如图,在△ ABC中,延伸 BC至 D,使得 CD= BC,过 AC中点 E 作EF∥CD(点 F 位于点 E 右边),且 EF=2CD,连结 DF.若 AB=8,则 DF 的长为()A.3B.4C.2D.3【剖析】取 BC的中点 G,连结 EG,依据三角形的中位线定理得: EG=4,设 CD=x,则 EF=BC=2x,证明四边形 EGDF是平行四边形,可得 DF=EG=4.【解答】解:取BC的中点G,连结EG,∵E是 AC的中点,∴ EG是△ ABC的中位线,∴ EG= AB==4,设 CD=x,则 EF=BC=2x,∴ BG=CG=x,∴EF=2x=DG,∵ EF∥CD,∴四边形 EGDF是平行四边形,∴DF=EG=4,应选: B.【评论】本题考察了平行四边形的判断和性质、三角形中位线定理,作协助线建立三角形的中位线是本题的重点.10.(3.00 分)如图,矩形 ABCD的极点 A,B 在 x 轴的正半轴上,反比率函数 y=E.若AB=4, CE=2BE,tan∠AOD=,在第一象限内的图象经过点D,交BC于点则 k 的值为()A.3B.2C.6D.12【剖析】由 tan∠AOD= =可设AD=3a、OA=4a,在表示出点D、E的坐标,由反比率函数经过点D、E 列出对于 a 的方程,解之求得 a 的值即可得出答案.【解答】解:∵ tan∠ AOD= =,∴设 AD=3a、OA=4a,则 BC=AD=3a,点 D 坐标为( 4a,3a),∵ CE=2BE,∴ BE= BC=a,∵AB=4,∴点 E(4+4a,a),∵反比率函数 y=经过点D、E,∴k=12a2=(4+4a)a,解得: a= 或 a=0(舍),则 k=12× =3,应选: A.【评论】本题主要考察反比率函数图象上点的坐标特点,解题的重点是依据题意表示出点D、E 的坐标及反比率函数图象上点的横纵坐标乘积都等于反比率系数k.二、填空题(每题只有一个正确选项,本题共8 小题,每题 3 分,共 24 分)11.( 3.00 分)计算: a4÷a= a3.【剖析】依据同底数幂的除法解答即可.【解答】解: a4÷ a=a3,故答案为: a3【评论】本题主要考察了同底数幂的除法,对于有关的同底数幂的除法的法例要修业生很娴熟,才能正确求出结果.12.(3.00 分)在“献爱心”捐钱活动中,某校 7 名同学的捐钱数以下(单位:元):5,8,6,8,5,10,8,这组数据的众数是8.【剖析】依据众数的观点解答.【解答】解:在 5,8,6,8,5,10,8,这组数据中, 8 出现了 3 次,出现的次数最多,∴这组数据的众数是8,故答案为: 8.【评论】本题考察的是众数确实定,一组数据中出现次数最多的数据叫做众数.13.(3.00 分)若对于 x 的一元二次方程x2+mx+2n=0 有一个根是 2,则 m+n=﹣2.【剖析】依据一元二次方程的解的定义把 x=2 代入 x2+mx+2n=0 获得 4+2m+2n=0 得 n+m=﹣2,而后利用整体代入的方法进行计算.【解答】解:∵ 2(n≠0)是对于 x 的一元二次方程x2+mx+2n=0 的一个根,∴4+2m+2n=0,∴n+m=﹣2,故答案为:﹣ 2.【评论】本题考察了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,因此,一元二次方程的解也称为一元二次方程的根..(3.00分)若a+b=4,a﹣b=1,则( a+1)2﹣( b﹣1)2的值为 12 .14【剖析】对所求代数式运用平方差公式进行因式分解,而后整体代入求值.【解答】解:∵ a+b=4,a﹣b=1,∴( a+1)2﹣( b﹣1)2=(a+1+b﹣1)( a+1﹣ b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是: 12.【评论】本题考察了公式法分解因式,属于基础题,娴熟掌握平方差公式的构造即可解答.15.( 3.00 分)如图,△ ABC 是一块直角三角板,∠ BAC=90°,∠ B=30°,现将三角板叠放在一把直尺上,使得点 A 落在直尺的一边上, AB 与直尺的另一边交于点 D,BC与直尺的两边分别交于点 E,F.若∠ CAF=20°,则∠ BED的度数为 80 °.【剖析】依照 DE∥AF,可得∠ BED=∠ BFA,再依据三角形外角性质,即可获得∠ BFA=20°+60°=80°,从而得出∠ BED=80°.【解答】解:以下图,∵DE∥AF,∴∠ BED=∠BFA,又∵∠ CAF=20°,∠ C=60°,∴∠ BFA=20°+60°=80°,∴∠ BED=80°,故答案为: 80.【评论】本题主要考察了平行线的性质,解题时注意:两直线平行,同位角相等.16.(3.00 分)如图, 8×8 的正方形网格纸上有扇形OAB和扇形 OCD,点 O,A,B,C,D 均在格点上.若用扇形OAB 围成一个圆锥的侧面,记这个圆锥的底面半径为 r1;若用扇形 OCD围成另个圆锥的侧面,记这个圆锥的底面半径为 r 2,则的值为.【剖析】由 2πr、πr1 =2 2=据此可得=,利用勾股定理计算可得.【解答】解:∵ 2πr、πr1= 2 2=∴ r1=、r2=,∴= ===,故答案为:.知 r1=、r2=,,【评论】本题主要考察圆锥的计算,解题的重点是掌握圆锥体底面周长与母线长间的关系式及勾股定理.17.(3.00 分)如图,在 Rt△ ABC中,∠ B=90°,AB=2 ,BC= .将△ ABC绕点A 按逆时针方向旋转 90°获得△ AB'C′,连结 B'C,则 sin∠ACB′= .【剖析】依据勾股定理求出AC,过 C 作 CM⊥ AB′于 M,过 A 作 AN⊥CB′于 N,求出 B′M、 CM,依据勾股定理求出B′C,依据三角形面积公式求出AN,解直角三角形求出即可.【解答】解:在Rt △ ABC 中,由勾股定理得: AC==5,过 C 作 CM⊥ AB′于 M ,过 A 作 AN⊥CB′于N,∵依据旋转得出 AB′=AB=2 ,∠B′AB=90,°即∠ CMA=∠MAB=∠B=90°,∴ CM=AB=2 , AM=BC= ,∴B′M=2 ﹣ = ,在 Rt△B′MC中,由勾股定理得: B′C===5,∴S△′C=,AB =∴5×AN=2 ×2 ,解得: AN=4,∴sin∠ACB′= = ,故答案为:.【评论】本题考察认识直角三角形、勾股定理、矩形的性质和判断,能正确作出协助线是解本题的重点.18.( 3.00 分)如图,已知 AB=8,P 为线段 AB 上的一个动点,分别以 AP,PB 为边在 AB 的同侧作菱形 APCD 和菱形 PBFE,点 P, C,E 在一条直线上,∠DAP=60°.M , N 分别是对角线 AC, BE 的中点.当点 P 在线段 AB 上挪动时,点M, N 之间的距离最短为2(结果留根号).【剖析】连结 PM、PN.第一证明∠ MPN=90°设 PA=2a,则 PB=8﹣2a,PM=a,PN=(4﹣a),建立二次函数,利用二次函数的性质即可解决问题;【解答】解:连结 PM、PN.∵四边形 APCD,四边形 PBFE是菱形,∠ DAP=60°,∴∠ APC=120°,∠ EPB=60°,∵ M,N 分别是对角线 AC,BE的中点,∴∠ CPM= ∠APC=60°,∠ EPN= ∠ EPB=30°,∴∠ MPN=60°+30°=90°,设 PA=2a,则 PB=8﹣2a,PM=a,PN= (4﹣a),∴MN===,∴ a=3 时, MN 有最小值,最小值为2,故答案为 2.的重点【评论】本题考察菱形的性质、勾股定理二次函数的性质等知识,解题是学会增添常用协助线,建立二次函数解决最值问题.三、解答题(每题只有一个正确选项,本题共10 小题,共76 分)19.( 5.00 分)计算:| ﹣|+﹣() 2.【剖析】依据二次根式的运算法例即可求出答案.【解答】解:原式 = +3﹣=3【评论】本题考察实数的运算,解题的重点是娴熟运用运算法例,本题属于基础题型.20.( 5.00 分)解不等式组:【剖析】第一分别求出每一个不等式的解集,而后确立它们解集的公关部分即可.【解答】解:由 3x≥x+2,解得 x≥1,由 x+4<2(2x﹣ 1),解得 x>2,因此不等式组的解集为 x> 2.【评论】本题考察的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的重点.21.(6.00 分)如图,点 A,F,C,D 在一条直线上, AB∥DE,AB=DE,AF=DC.求证: BC∥ EF.【剖析】由全等三角形的性质 SAS判断△ ABC≌△ DEF,则对应角∠ ACB=∠DFE,故证得结论.【解答】证明:∵ AB∥ DE,∴∠ A=∠ D,∵AF=DC,∴ AC=DF.∴在△ ABC与△ DEF中,,∴△ ABC≌△ DEF(SAS),∴∠ ACB=∠DFE,∴BC∥EF.【评论】本题考察全等三角形的判断和性质、平行线的性质等知识,解题的重点是正确找寻全等三角形全等的条件,属于中考常考题型.22.( 6.00 分)如图,在一个能够自由转动的转盘中,指针地点固定,三个扇形的面积都相等,且分别标有数字1,2,3.( 1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是 3 的倍数的概率(用画树状图或列表等方法求解).【剖析】(1)由标有数字 1、2、3 的 3 个转盘中,奇数的有 1、 3 这 2 个,利用概率公式计算可得;( 2)依据题意列表得出全部等可能的状况数,得出这两个数字之和是 3 的倍数的状况数,再依据概率公式即可得出答案.【解答】解:( 1)∵在标有数字 1、2、3 的 3 个转盘中,奇数的有1、3 这 2 个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;( 2)列表以下:1231(1,1)(2,1)(3,1)2(1,2)(2,2)(3,2)3(1,3)(2,3)(3,3)由表可知,全部等可能的状况数为9 种,此中这两个数字之和是 3 的倍数的有3种,因此这两个数字之和是 3 的倍数的概率为=.【评论】本题考察了列表法或树状图法求概率.用到的知识点为:概率=所讨情况数与总状况数之比.23.( 8.00 分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了预计全校学生对这四个活动项目的选择状况,体育老师从全体学生中随机抽取了部分学生进行检查(规定每人一定而且只好选择此中的一个项目),并把检查结果绘制成以下图的不完好的条形统计图和扇形统计图,请你依据图中信息解答以下问题:(1)求参加此次检查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600 名学生,试预计该校选择“足球”项目的学生有多少人?【剖析】(1)由“乒乓球”人数及其百分比可得总人数,依据各项目人数之和等于总人数求出“羽毛球”的人数,补全图形即可;(2)用“篮球”人数占被检查人数的比率乘以 360°即可;(3)用总人数乘以样本中足球所占百分比即可得.【解答】解:(1),答:参加此次检查的学生人数是50 人;补全条形统计图以下:(2),答:扇形统计图中“篮球”项目所对应扇形的圆心角度数是72°;(3),答:预计该校选择“足球”项目的学生有 96 人.【评论】本题考察了条形统计图和扇形统计图,读懂统计图,从不一样的统计图中获得必需的信息是解决问题的重点.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反应部分占整体的百分比大小.24.( 8.00 分)某学校准备购置若干台 A 型电脑和 B 型打印机.假如购置 1 台 A 型电脑, 2 台 B 型打印机,一共需要花销5900 元;假如购置 2 台 A 型电脑, 2台 B 型打印机,一共需要花销9400 元.(1)求每台 A 型电脑和每台 B 型打印机的价钱分别是多少元?(2)假如学校购置 A 型电脑和 B 型打印机的估算花费不超出 20000 元,而且购置B 型打印机的台数要比购置 A 型电脑的台数多 1 台,那么该学校至多能购置多少台B 型打印机?【剖析】(1)设每台A 型电脑的价钱为x 元,每台B 型打印机的价钱为y 元,依据“1台 A 型电脑的钱数 +2 台 B 型打印机的钱数 =5900,2 台 A 型电脑的钱数 +2台 B 型打印机的钱数 =9400”列出二元一次方程组,解之可得;( 2)设学校购置 a 台 B 型打印机,则购置 A 型电脑为(a﹣1)台,依据“(a﹣1)台 A 型电脑的钱数 +a 台 B 型打印机的钱数≤ 20000”列出不等式,解之可得.【解答】解:(1)设每台 A 型电脑的价钱为 x 元,每台 B 型打印机的价钱为 y 元,依据题意,得:,解得:,答:每台 A 型电脑的价钱为3500 元,每台 B 型打印机的价钱为1200 元;(2)设学校购置 a 台 B 型打印机,则购置 A 型电脑为( a﹣1)台,依据题意,得: 3500(a﹣1)+1200a≤ 20000,解得: a≤5,答:该学校至多能购置 5 台 B 型打印机.【评论】本题主要考察一元一次不等式与二元一次方程组的应用,解题的重点是理解题意,找到题目包含的相等关系或不等关系,并据此列出方程组与不等式.25.( 8.00 分)如图,已知抛物线 y=x2﹣4 与 x 轴交于点 A,B(点 A 位于点 B 的左边),C 为极点,直线 y=x+m 经过点 A,与 y 轴交于点 D.(1)求线段 AD 的长;(2)平移该抛物线获得一条新拋物线,设新抛物线的极点为C′.若新抛物线经过点 D,而且新抛物线的极点和原抛物线的极点的连线CC′平行于直线 AD,求新抛物线对应的函数表达式.【剖析】(1)解方程求出点 A 的坐标,依据勾股定理计算即可;( 2)设新抛物线对应的函数表达式为: y=x2+bx+2,依据二次函数的性质求出点C′的坐标,依据题意求出直线 CC′的分析式,代入计算即可.2【解答】解:(1)由 x ﹣ 4=0 得, x1=﹣ 2, x2=2,∴ A(﹣ 2,0),∵直线 y=x+m 经过点 A,∴﹣ 2+m=0,解得, m=2,∴点 D 的坐标为( 0,2),∴AD==2;( 2)设新抛物线对应的函数表达式为: y=x2+bx+2,y=x2+bx+2=( x+ )2+2﹣,则点 C′的坐标为(﹣,2﹣),∵CC′平行于直线 AD,且经过 C(0,﹣4),∴直线 CC′的分析式为: y=x﹣4,∴2﹣ =﹣﹣4,解得, b1=﹣4,b2=6,∴新抛物线对应的函数表达式为:y=x2﹣ 4x+2 或 y=x2+6x+2.【评论】本题考察的是抛物线与 x 轴的交点、待定系数法求函数分析式,掌握二次函数的性质、抛物线与 x 轴的交点的求法是解题的重点.26.( 10.00 分)如图, AB 是⊙ O 的直径,点 C 在⊙ O 上, AD 垂直于过点 C 的切线,垂足为 D,CE垂直 AB,垂足为 E.延伸 DA 交⊙ O 于点 F,连结 FC, FC与AB 订交于点 G,连结 OC.(1)求证: CD=CE;(2)若 AE=GE,求证:△ CEO是等腰直角三角形.【剖析】(1)连结 AC,依据切线的性质和已知得: AD∥ OC,得∠ DAC=∠ACO,依据 AAS证明△ CDA≌△ CEA(AAS),可得结论;( 2)介绍两种证法:证法一:依据△ CDA≌△ CEA,得∠ DCA=∠ECA,由等腰三角形三线合一得:∠ F=∠ACE=∠ DCA=∠ECG,在直角三角形中得:∠F=∠DCA=∠ACE=∠ECG=22.5°,可得结论;证法二:设∠ F=x,则∠ AOC=2∠ F=2x,依据平角的定义得:∠ DAC+∠ EAC+∠OAF=180°,则 3x+3x+2x=180,可得结论.【解答】证明:(1)连结 AC,∵ CD是⊙ O 的切线,∴OC⊥CD,∵ AD⊥CD,∴∠ DCO=∠D=90°,∴AD∥OC,∴∠ DAC=∠ACO,∵OC=OA,∴∠ CAO=∠ACO,∴∠ DAC=∠CAO,∵CE⊥AB,∴∠ CEA=90°,在△ CDA和△ CEA中,∵,∴△ CDA≌△ CEA(AAS),∴CD=CE;(2)证法一:连结 BC,∵△ CDA≌△ CEA,∴∠ DCA=∠ECA,∵CE⊥AG,AE=EG,∴ CA=CG,∴∠ ECA=∠ECG,∵AB是⊙O 的直径,∴∠ ACB=90°,∵ CE⊥AB,∴∠ ACE=∠B,∵∠ B=∠ F,∴∠ F=∠ACE=∠ DCA=∠ ECG,∵∠ D=90°,∴∠ DCF+∠F=90°,∴∠ F=∠DCA=∠ ACE=∠ ECG=22.5°,∴∠ AOC=2∠F=45°,∴△ CEO是等腰直角三角形;证法二:设∠ F=x,则∠ AOC=2∠F=2x,∵AD∥OC,∴∠ OAF=∠AOC=2x,∴∠ CGA=∠OAF+∠F=3x,∵CE⊥AG,AE=EG,∴ CA=CG,∴∠ EAC=∠CGA,∵CE⊥AG,AE=EG,∴ CA=CG,∴∠ EAC=∠CGA,∴∠ DAC=∠EAC=∠CGA=3x,∵∠ DAC+∠EAC+∠OAF=180°,∴ 3x+3x+2x=180,x=22.5 ,°∴∠ AOC=2x=45°,∴△ CEO是等腰直角三角形.【评论】本题考察了切线的性质、全等三角形的判断与性质、圆周角定理、勾股定理、三角形内角和定理以及等腰三角形和等腰直角三角形的判断与性质等知识.本题难度适中,本题相等的角许多,注意各角之间的关系,注意掌握数形联合思想的应用.27.(10.00 分)问题 1:如图①,在△ ABC中, AB=4,D 是 AB 上一点(不与 A,B 重合),DE∥ BC,交 AC于点 E,连结 CD.设△ ABC的面积为 S,△ DEC的面积为 S′.( 1)当 AD=3时,=;( 2)设 AD=m,请你用含字母m 的代数式表示.问题 2:如图②,在四边形ABCD中, AB=4,AD∥ BC,AD= BC,E 是 AB 上一点(不与 A, B 重合),EF∥ BC,交 CD于点 F,连结 CE.设 AE=n,四边形 ABCD的面积为 S,△ EFC的面积为 S′.请你利用问题 1 的解法或结论,用含字母 n 的代数式表示.【剖析】问题 1:( 1)先依据平行线分线段成比率定理可得:,由同高三角形面积的比等于对应底边的比,则== ,依据相像三角形面积比等于相像比的平方得:==,可得结论;( 2)解法一:同理依据( 1)可得结论;解法二:作高线 DF、 BH,依据三角形面积公式可得:=,分别表示和的值,代入可得结论;问题 2:解法一:如图2,作协助线,建立△ OBC,证明△ OAD∽△ OBC,得 OB=8,由问题 1 的解法可知:===,依据相像三角形的性质得:=,可得结论;解法二:如图 3,连结 AC交 EF于 M ,依据 AD= BC,可得= ,得:S△ADC,=S S△ABC=,由问题1的结论可知:=,证明△ CFM∽△ CDA,依据相像三角形面积比等于相像比的平方,依据面积和可得结论.【解答】解:问题 1:(1)∵ AB=4,AD=3,∴BD=4﹣ 3=1,∵ DE∥BC,∴,∴== ,∵DE∥BC,∴△ ADE∽△ ABC,∴==,∴=,即,故答案为:;(2)解法一:∵ AB=4,AD=m,∴BD=4﹣ m,∵ DE∥BC,∴= =,∴= =,∵DE∥BC,∴△ ADE∽△ ABC,∴==,∴===,即=;解法二:如图 1,过点 B 作 BH⊥AC 于 H,过 D 作 DF⊥ AC于 F,则 DF∥BH,∴△ ADF∽△ ABH,∴=,∴===,即=;问题 2:如图②,解法一:如图 2,分别延伸 BD、CE交于点 O,∵AD∥BC,∴△ OAD∽△ OBC,∴,∴OA=AB=4,∴OB=8,∵ AE=n,∴OE=4+n,∵ EF∥BC,由问题 1 的解法可知:===,∵==,∴= ,∴===,即=;解法二:如图 3,连结 AC交 EF于 M,∵AD∥BC,且 AD= BC,∴= ,∴ S△ADC=,∴S△ADC= S,S△ABC= ,由问题 1 的结论可知:=,∵MF∥ AD,∴△ CFM∽△ CDA,∴===,∴ S△CFM=×S,∴ S△EFC△EMC+S△CFM+×S=,=S=∴=.【评论】本题考察了相像三角形的性质和判断、平行线分线段成比率定理,娴熟掌握相像三角形的性质:相像三角形面积比等于相像比的平方是重点,并运用了类比的思想解决问题,本题有难度.28.( 10.00 分)如图①,直线l 表示一条东西走向的笔挺公路,四边形ABCD是一块边长为 100 米的正方形草地,点A, D 在直线 l 上,小明从点 A 出发,沿公路l 向西走了若干米后抵达点E 处,而后转身沿射线EB 方向走到点F 处,接着又改变方向沿射线 FC方向走到公路 l 上的点 G 处,最后沿公路 l 回到点 A 处.设AE=x米(此中 x> 0),GA=y米,已知 y 与 x 之间的函数关系如图②所示,(1)求图②中线段 MN 所在直线的函数表达式;(2)试问小明从起点 A 出发直至最后回到点 A 处,所走过的路径(即△ EFG)能否能够是一个等腰三角形?假如能够,求出相应 x 的值;假如不能够,说明原因.。
2018年江苏省苏州市中考数学试卷4. (3.00分)若■"在实数范围内有意义,则x 的取值范围在数轴上表示正确的是() (3.00分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上) ,则飞镖落在阴影部分的概率是( )—\\、选择题(每题只有一个正确选项,本题共 10小题,每题3分,共30分) 1. (3.00分)在下列四个实数中,最大的数是(A. — 3B. 0C.D.-2 4 2. (3.00分)地球与月球之间的平均距离大约为A . 3.84X 103 B. 3.84X 104 C. 3.84X 105 384000km , 384000用科学记数D . 3.84X 106A . B.C. D. 5. (3.00分)计算(1 —)- 7 xx 的结果是 A . x+1 B.x+L D.6. 3. (3.00分)下列四个图案中,不是轴对称图案的是(0 0点,若/ BOC=40,则/ D 的度数为(8. (3.00分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当 海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1 小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到 达C处,此时海监船与岛屿P 之间的距离(即PC 的长)为( )A . 40海里B . 60海里C. 20「;海里 D . 40.海里9. (3.00分)如图,在△ ABC 中,延长BC 至D ,EF// CD (点F 位于点E 右侧),且EF=2CD 连接DF.若AB=8,则DF 的长为()10. (3.00分)如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数 在第一象限内的图象经过点 D ,交BC 于点E.若AB=4,CE=2BE tan / AOD 』,则k 的值为( )使得CD^BC,过AC 中点E 作130二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11. ___________________________ (3.00分)计算:a4-a= .12. (3.00 分)在献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元): 5, 8, 6, 8, 5,10,8,这组数据的众数是________ .13 . (3.00分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n= ______ .14. (3.00分)若a+b=4, a- b=1,贝U( a+1)2—(b—1)2的值为 __ .15. (3.00分)如图,△ ABC是一块直角三角板,/ BAC=90, / B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若/ CAF=20,则/ BED的度数为___________ °,16. (3.00分)如图,8X 8的正方形网格纸上有扇形OAB和扇形OCD点O, A, B, C, D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为门;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则一的值为________ .r217. (3.00 分)如图,在 Rt A ABC 中,/ B=90°, AB=^ , BC 无.将△ ABC 绕点A 按逆时针方向旋转90待到△ AB'C ;连接B'C ,则sin /ACB _________18. (3.00分)如图,已知AB=8, P 为线段AB 上的一个动点,分别以AP, PB 为 边在AB 的同侧作菱形APCD 和菱形PBFE 点P,C,E 在一条直线上,/ DAP=60 .M , N分别是对角线AC, BE 的中点.当点P 在线段AB 上移动时,点M , N 之间的三、解答题(每题只有一个正确选项,本题共 10小题,共76 分)19. 20. (5.00分)21. (6.00分)如图,点A , F , C, D 在一条直线上, AB// DE, AB=DE AF=DC 求证:BC// EF.解不等式组:22. (6.00分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1, 2, 3.(1) 小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 _______ ;(2) 小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字, 求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23. (8.00分)某学校计划在 阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择 情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(2)求扇形统计图中 篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择 足球”项目的学生有多少人?并补全条形统计图;24. (8.00分)某学校准备购买若干台A型电脑和B型打印机•如果购买1台A 型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2 台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?25. (8.00分)如图,已知抛物线y=f - 4与x轴交于点A,B (点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC平行于直线AD,求新抛物线对应的函数表达式.26. (10.00分)如图,AB是。
2018年苏州市中考模拟试题数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算:(﹣)2﹣1=()A.﹣B.﹣C.﹣D.02.下列图形中,既是轴对称又是中心对称图形的是()A.菱形B.等边三角形C.平行四边形D.等腰梯形3.2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×10154.计算6m6÷(﹣2m2)3的结果为()A.﹣m B.﹣1 C.D.﹣5.为了解某市初中生视力情况,有关部门进行了一次抽样调查,数据如下表,若该市共有初中生15万人,则全市视力不良的初中生的人数大约是()A.2160人B.7.2万人 C.7.8万人 D.4500人6.直线y=kx+b不经过第三象限,a>e,且A(a,m)、B(e,n)、C(﹣m,c)、D(﹣n,d)这四点都在直线上,则(m﹣n)(c﹣d)3是()A.正数B.负数C.非正数D.无法确定7.直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60°B.50°C.40°D.30°8.在平面直角坐标系中,如果横坐标与纵坐标都是整数的点称为整点,将二次函数y=﹣x2+6x﹣的图象与x轴所围成的封闭图形染成红色,则在此红色区域内部及其边界上的整点的个数是()A.5 B.6 C.7 D.89.如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()10.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1) C.(1,)D.(2,)二、填空题(每题3分,满分24分,将答案填在答题纸上)11.计算:23﹣=12.如图,依据尺规作图的痕迹,计算∠α=°.13.某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是环.14.已知a2﹣b2=5,a+b=﹣2,那么代数式a﹣b的值.15.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中剩余的编号为1﹣4的小正方形中任意一个涂黑,则所得图案是一个轴对称图形的概率是.16.用一直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽可以制成一个不倒翁玩具,不倒翁的轴剖面图如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm.若将圆锥形纸帽的表面全涂上颜色,则需要涂色部分的面积约为cm2(精确到1cm2).17.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走到B地,再沿北偏东30°方向走,恰能到达目的地C,已知B,C两地相距150km,由此可知,A,C两地相距km.18.如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是三角形.三、解答题(本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19.(5分)计算:﹣12016﹣|1﹣|+(﹣)0﹣.20.(5分)解不等式组21.(6分)先化简再求值:,其中x=2+.22.(6分)如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需绕行B地.已知B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向.若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长.(结果保留整数)(参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.73)23.(8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表根据以上信息解决下列问题:(1)m=,n=;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.24.(8分)在△ABC与△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,延长DE 交BC于点F,连接DC,BE.(1)如图1,当点B,A,E同一直线上时,且∠ABD=30°,AE=2,求BC的长.(2)如图2,当F是中点时,求证:AE⊥CE.25.(8分)已知反比例函数y=的图象与二次函数y=ax2+x﹣1的图象相交于点(2,2)(1)求a和k的值;(2)判断反比例函数的图象是否经过二次函数图象的顶点并说明理由.26.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.27.(10分)如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O 的切线,AD与BC相交于点E.(1)求证:BD=BE;(2)若DE=2,BD=,求CE的长.28.(10分在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n 关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB 为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.参考答案一、1.C2.A3.C4.D5.B6.A7.C8.C9.D10.A 二、11.612.5613.814.﹣2.515..16.17417.150.18.等腰直角.三、解答题19.(5分)解:原式=﹣1﹣+1+1﹣2=﹣1﹣.20.(5分)解:(1)解不等式①,得:x≥1;(2)解不等式②,得:x≤3;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为1≤x≤3,21.(6分)解:原式===;当时,原式=﹣=﹣4+2.22.(6分)解:过点B作BD⊥AC于点D,∵B地位于A地北偏东67°方向,距离A地520km,∴∠ABD=67°,∴AD=AB•sin67°=520×==480km,BD=AB•cos67°=520×==200km.∵C地位于B地南偏东30°方向,∴∠CBD=30°,∴CD=BD•tan30°=200×=,∴AC=AD+CD=480+≈480+115=595(km).答:A地到C地之间高铁线路的长为595km.23.(8分)解:(1)由两种统计表可知:总人数=4÷10%=40人,∵3D打印项目占30%,∴3D打印项目人数=40×30%=12人,∴m=12﹣4=8,∴n=40﹣16﹣12﹣4﹣5=3,故答案为:8,3;(2)扇形统计图中机器人项目所对应扇形的圆心角度数=×360°=144°,故答案为:144;(3)列表得:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“1名男生、1名女生”有8种可能.所以P(1名男生、1名女生)=.24.(8分)(1)解:如图1中,∵AD=AE=2,AB=AC,∠BAC=∠DAE=90°,∴∠ABC=∠AED=∠BEF=45°,∴∠BFE=90°,BF=EF,设BF=EF=x.在Rt△ADB中,BD=2AD=4,在Rt△ADE中,DE=AE=2,在Rt△BFD中,∵BD2=BF2+DF2,∴42=x2+(x+2)2,解得x=﹣或﹣﹣(舍弃),∴BF=﹣,BE=BF=2﹣2,∴AB=2,∴BC=AB=2.(2)证明:如图2中,连接AF,AB交DF于O.∵∠ADO=∠FBO,∠DOA=∠BOF,∴△AOD∽△FOB,∴=,∴=,∴△DOB∽△AOF,∴∠BDO=∠OAF=45°,∴∠BDA=∠BDO+∠ADO=90°,∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC,∵AD=AE,AB=AC,∴△ADB≌△AEC,∴∠ADB=∠AEC=90°,∴AE⊥EC.25.(8分)解:(1)因为二次函数y=ax2+x﹣1与反比例函数y=交于点(2,2),所以2=4a+2﹣1,解之得a=,2=,所以k=4;(2)反比例函数的图象经过二次函数图象的顶点;由(1)知,二次函数和反比例函数的关系式分别是y=x2+x﹣1和y=;因为y=x2+x﹣1=y=(x2+4x﹣4)=(x2+4x+4﹣8)=[(x+2)2﹣8]=(x+2)2﹣2,所以二次函数图象的顶点坐标是(﹣2,﹣2);因为x=﹣2时,y==﹣2,所以反比例函数图象经过二次函数图象的顶点.26.(10分)解:解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN=2+5=7,最大=PM2=×MN2=×(7)2=.∴S△PMN最大27.(10分)解:(1)设∠BAD=α,∵AD平分∠BAC∴∠CAD=∠BAD=α,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC=90°﹣2α,∵BD是⊙O的切线,∴BD⊥AB,∴∠DBE=2α,∠BED=∠BAD+∠ABC=90°﹣α,∴∠D=180°﹣∠DBE﹣∠BED=90°﹣α,∴∠D=∠BED,∴BD=BE(2)设AD交⊙O于点F,CE=x,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∵BD=BE,DE=2,∴FE=FD=1,∵BD=,∴tanα=,∴AC=2x∴AB==2在Rt△ABC中,由勾股定理可知:(2x)2+(x+)2=(2)2,∴解得:x=﹣或x=,∴CE=;28.(10分)解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=﹣3,∴C1的对称轴为x=1,∴C2的对称轴为x=﹣1,∴m=2,∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);(3)存在.∵AB的中点为(﹣1,0),且点P在抛物线C1上,点Q在抛物线C2上,∴AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由(2)可知AB=1﹣(﹣3)=4,∴PQ=4,设P(t,t2﹣2t﹣3),则Q(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(2,﹣3),Q(﹣2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(2,﹣3),Q(﹣2,﹣3).。
2.【答案】C【解析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.5384000=3.84100000=3.8410⨯⨯.故选C .【考点】科学记数法。
3.【答案】B【解析】判断轴对称图形的关键是寻找对称轴,图形按照某条直线折叠后直线两旁的部分能否重合即可.四个选项中,A 、C 、D 三个选项中的图形都能沿着某一条直线折叠以后,直线两旁的部分能互相重合,只有B 选项中图形无法沿着某一条直线折叠以后,直线两旁的部分互相重合.故选B . 【考点】轴对称图形的识别。
4.【答案】D【解析】根据题意,得x 20+≥,解得x 2≥-,所以x 2≥-表示在数轴上时在点2-处取向右的方向,2-处用实心点圈表示.故选D .【考点】二次根式有意义的条件和用数轴表示不等式的解集。
5.【答案】B【解析】()22121111+x 11x x x x x x x x +++⎛⎫÷=⋅= ⎪+⎝⎭+.故选B . 【考点】分式的混合运算。
6.【答案】C【解析】设每个小正方形的边长为a ,则正方形的面积29a ,∴阴影部分面积为21424,2a a a ⨯⨯⨯=∴飞镖落在阴影部分的概率2244=99a a =.故选C .【考点】几何概率的求法。
7.【答案】B【解析】()1,B BCO,BOC 4018040702OB OC B =∴∠=∠∠=︒∴∠=︒-︒=︒,,四边形ABCD 是O 的内接四边形,18018018070110B D D B ∴∠+∠=︒∴∠=︒-∠=︒-︒=︒,.故选B. 【考点】圆内接四边形的性质以及等腰三角形的性质。
8.【答案】D【解析】根据题意得,6020,tan 20tan 6020240,204060,ABP AB AP AB ABP BC AC ∠=︒=∴=⋅∠=⨯︒==⨯=∴=+=,在t R PAC △中,PC ===.故选D .【考点】解直角三角形的应用——方向角问题。
2018年江苏省苏州市中考数学试卷一、选择题:本大题共10小题,毎小题3分,共30分1,在下列四个实数中,最大的数是A .–3B .0 C. D .2.地球与月球之间的平均距离大约为384 000km,384 000用科学记数法可表示为A .3.84×103B .3.84×104C .3.84×105D .3.84×1063.下列四个图案中,不是轴对称图案的是4.若在实数范围内有意义,则x 的取值范围在数轴上表示正确的是5.计算的结果是A . x+1 B . C . D .6.如图,飞缥戏板中一块小正方除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞缥落在游戏板上),则飞缥落在阴影部分的概率是A .B .C .D .23432+x x x x x 12112-+÷⎪⎭⎫ ⎝⎛+11+x 1+x x xx 1+213194957.如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是弧AC 上的点.若∠BOC=400,则∠D 的度数为A .1000B .1100C .1200D .13008.如图,某海船以20海里/小时的速度在某海域执行航行任务.当海监船由西向东航行至A 处时,测得岛屿P 怡好在其正北方向,继续向东航行1小刚到达B 处,测得岛屿P 在其北偏西300方向,保持航向不变又航行2小时到达C 处,此吋海监船与岛屿P 之间的距离(即PC 的长)为A .40海里B .60海里C .20海里 D .40海里9.如图,在△ABC 中,延长BC 至D,得CD =BC .过AC 中点E 作EF ∥CD (点F 位于点E 右侧),且EF =2CD,连接DF .若AB=8,则DF 的长为数学试毪第2以:共8A .3B .4C .2海里D .310.如图,矩形ABCD 的顶点A 、B 在x 轴的正半轴上,反比例函数 在第一象限内的图像经过点D,交BC 于点E,若AB=4,CE=2BE,tan ∠AOD=,则k 的值为A .3 B .2 C .6 D .12二、填空题:本大题共8小题,毎小题3分,共24分.11.计算。
1.在三个数 0.5, 5 6.已知:如图, BC 与 AD 的度数之差为 20°,弦 AB 与 CD 相交于点 E, ∠CEB = 60︒ ,则 ∠CAB 等于 ( 22018 年苏州市中考数学模拟试题( 7)一、选择题1 , - 中,最大的数是( ) 3 3A. 0.5B. 5 1C. -D.不能确定 3 32.下列运算中,正确的是( )A. 7a + a = 7a 2B. a 2 ⋅ a 3 = a 6C. a 3 ÷ a = a 2D. (ab)2 = ab 23.我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近 1 100 000 000 美元税收,其中 1 100 000 000 用科学记数法表示为( )A.0.11 X 1 08B.1.1 X 109C.1.1 X 1010D.11 X 1094.由 6 个大小相同的正方体搭成的几何体如图所示,比较它的主视图、左视图和俯视图的面积,则( )A.三个视图的面积一样大B.主视图的面积最小C.左视图的面积最小D.俯视图的面积最小5.一个有进水管和出水管的容器,从某时刻开始 4min 内只进水不出水,在随后的 8min 内既进水又出水,每分钟 的进水量和出水量是两个常数 .容器内的水量 y (L)与时间 x (min)之间的关系如图所示,则每分钟的出水量为 ( )A.5LB.3.75LC.2.5LD. 1.25L» » )A.50°B.45°C. 40°D. 35°7.关于 x 的二次函数 y = ( x + 1)(x - m ) ,其图像的对称轴在 y 轴的右侧,则实数 m 的取值范围是( )A. m < -1B. -1 < m < 0C. 0 < m < 1D. m > 18.如图,边长为 a 的等边三角形,记为第 1 个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形, 记为第 1 个正六边形,取这个正六边形不相邻的三边中点顺次连接,又得到一个等边三角形,记为第 个等边 三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第 2 个正六边形……按此方式依次操作, 则第 6 个六边形的边长是( )A. 1 1 ⨯ ( )5 a 3 21 1 B. ⨯ ( )5 a23 1 1 C. ⨯ ( )6 a 3 214.若实数a满足a-116.已知关于x的不等式组⎨5-2x>1D.11⨯()6a239.一张矩形纸片ABCD,已知AB=3,AD=2,小明按所给图步骤折叠纸片,则线段D G长为()A.2B.22C.1D.210.下列关于函数y=x2-6x+10的四个命题:①当x=0时,y有最小值10;②n为任意实数,x=3+n时的函数值大于x=3-n时的函数值;③若n>3,且n是整数,当n≤x≤n+1时,y的整数值有(2n-4)个;④若函数图象过点(a,y)和(b,y+1),其中a>0,b>0,则a<b.其中真命题的序号是()00A.①二、填空题11.函数y=x-3x-4B.②C.③D.④的自变量x的取值范围是.12.如图,已知⊙O是∆ABC的外接圆,连接AO,若∠B=40︒,则∠OAC=.13.某中学共有学生720人,该校有关部门从全体学生中随机抽取了50人对其到校方式进行调查,并将调查结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有人,3=,则a对应于图中数轴上的点可以是A,B,C三点中的点.2215.已知一个圆锥的底面半径为2,母线长为4,则它的侧面展开图的面积是.(结果保留π).⎧x-a≥0⎩只有四个整数解,则实数a的取值范围是.17.在如图所示的正方形方格纸中,每个小四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于点O,则tan∠BOD值等于.18.如图,在平面直角坐标系xOy中,直线AB过点A(-4,0),B(0,4),⊙O的半径为1(O为坐标原点),点P在直线AB上,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为.⎪⎩ 2 ⎪÷ 21. 先化简,再求值: 三、解答题1 π 19.计算: ( )-1 + 16 ÷ (-2)3 + (2018 - 3 3⎧2 x + 3 > 1① ⎪ 20.解不等式组: ⎨ 1 x - 2 ≤ ( x + 2)②)0 - 3 tan 60︒⎛ x + 2 8x ⎫ x 2 - 2 x - ⎝ x - 2 x 2 - 4 ⎭ x + 2,其中 x = 3 .22.某运输公司根据实际需要计划购买大、中两型客车共 10 辆,大型客车每辆价格为 25 万 元,中型客车每辆价格为 15 万元.(1)设购买大型客车 x (辆),购车总费用为 y (万元),求 y 与 x 之间的函数关系式;(2)若购车资金为 180~200 万元(含 180 万元和 200 万元),那么有几种购车方案?在确保交 通安全的前提下,根据客流量调查,大型客车不能少于 4 辆,此时如何确定购车方案可 使该运输公司购车费用最少?23.为了弘扬祖国的优秀传统文化,某校组织了一次“诗词大会” 小明和小丽同时参加,其 中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重 水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中 一个,则小明回答正确的概率是 ;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.24.如图,在 ABCD 中,点 O 是边 BC 的中点,连接 DO 并延长,交 AB 的延长线于点 E , 连接 BD, EC .(1)求证:四边形 BECD 是平行四边形;(2)若 ∠OCD = 50︒ ,则当 ∠BOD =°时,四边形 BECD 是矩形.25.已知:如图,在平面直角坐标系 xOy 中,直线 AB 分别与 x 轴、 y 轴交于点 B, A ,与反比 例函数的图像分别交于点 C , D , C E ⊥ x 轴于点 E, tan ∠ABO =(1)求该反比例函数的解析式;(2)求直线 AB 的解析式.1 2, O B = 4, O E = 2 .︒ 2︒ , ≈ ︒ 6 ) .26.如图,已知 B 港口位于 A 、观测点北偏东 53. 2°方向,且其到 A 观测点正北方向的距离 BD 的长为 16 km ,一艘货轮从 B 港口以 40 km/h 的速度沿 BC 方向航行,15 min 后到达 C 处,现测得 C 处位于 A 观测点北偏东 79. 8°方向,求此时货轮与 A 观测点之间的距离 AC 的长.(精确到 0. 1 km ,参考数据:s i n 5 3. ≈ 0. 8 0 , c o s ≈5 3. 2 0. 6︒0≈ s i n 7 9. 8 ︒ 0. 19 8 , tc aons 27 6. ≈ 0. 5 0 , 2 ≈ 1 . 4 1 , ≈ 52 . 2 427.如图①,要设计一幅宽 20 cm 、长 30 cm 的矩形图案,其中有两横两竖的彩条,横、竖彩 条的宽度比为 2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设 计每个彩条的宽度?分析:由横、竖彩条的宽度比为 2:3,可设每个横彩条的宽为 2x ,则每个竖彩条的宽为 3x . 为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况, 得到矩形 ABCD .结合以上分析完成填空:如图②,用含 x 的代数式表示: AB = cm; AD = cm;矩形 ABCD 的面积为 cm 2;列出方程并解答.28.(1)已知:如图①, ∆ABC 的周长为 l ,面积为 S ,其内切圆圆心为 O ,半径为 r .求证: r = 2S l .(2)已知:如图②,在 ∆ABC 中, A, B, C 三点的坐标分别为 A(-3,0), B(3,0), C (0,4) .若∆ABC 的内心为 D ,求点 D 的坐标;(3)与三角形的一边和其他两边的延长线相切的圆,叫旁切圆,圆心叫旁心 请求出条件(2)中的 ∆ABC 位于第一象限的旁心的坐标.29.如图,在平面直角坐标系xOy中,抛物线y=x2-2x-3交x轴于A,B两点(点A在点B 的左侧),将该抛物线位于x轴上方曲线记作M,将该抛物线位于x轴下方部分沿x轴翻折,翻折后所得曲线记作N,曲线N交y轴于点C,连接AC,BC.(1)求曲线N所在抛物线相应的函数表达式;(2)求∆ABC外接圆的半径;(3)点P为曲线M或曲线N上的一个动点,点Q为x轴上的一个动点,若以点B,C,P,Q为顶点的四边形是平行四边形,求点Q的坐标.参考答案一、1.B2.C3.B4.C5.B6.D7.D8.A9.A10.C二、11.x≥3且x≠412.5013.21614.B15.8π16.-3<a≤-217.318.7三、19.-120.-1<x≤621.原式= 1 xx = 3 代入,得 3 3 22.(1) y = 10 x + 150(2)共有三种购车方案:大型 3 辆、中型 7 辆;大型 4 辆、中型 6 辆或大型 5 辆、中型 5 辆. 由函数 y = 10 x + 150 知 x 越小, y 越小,因为 x ≥ 4 ,所以当 x = 4 ,购车费用为 190 万元时最少.23.(1) 1 2(2) 画树状图如下: 由树状图可知有 4 种等可能的结果,其中正确的结果只有 1 种,所以小丽回答正确1 的概率是 . 424.(1) 证明 ∆BOE ≅ ∆COD(2)10025.(1) y = -26. 13.4km6 1 (2) y = - x + 2 x 2 5 5 27.每个横彩条的宽度为 cm, 每个竖彩条的宽度为 3 2 1 2S 28. (1)连接 OA, O B, O C , S = lr ,∴ r = 2 l 3 (2) D(0, ) 2(3)(5,4)29. (1) y = - x 2 + 2 x + 3cm.(2) 5(3) (4 + 7,0),(2 - 7,0),(2 + 7,0),(4 - 7,0),(5,0),(1,0)。
2018年江苏省苏州市中考数学试卷、选择题(每题只有一个正确选项,本题共 10小题,每题3分,共30分)1. (3.00分)在下列四个实数中,最大的数是()A. - 3 B . 0 C.色 D.上2 4 2.(3.00分)地球与月球之间的平均距离大约为 384000km 384000用科学记数法可表示为 ( )A. 3.84 X 103B. 3.84 X 104C. 3.84 X 105D. 3.84 X 1063. (3.00分)下列四个图案中,不是轴对称图案的是((3.00分)若 ,在实数范围内有意义,贝U x 的取值范围在数轴上表示正确的是( ( 3.00分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞 镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( )A.B.-C. D. 5. (3.00分)计算(1+丄)x 的结果是A.D.4.x+1 B .y+17. (3.00分)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是"上的点,若/BOC=40,则/D的度数为()6.C. 120°D. 130°8. (3.00分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西 向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛 屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间A. 40海里B . 60海里C . 20「海里 D. 40「海里9. (3.00分)如图,在△ ABC 中,延长BC 至 D,使得CD=-BC 过AC 中点E 作EF// CD (点F 位于点E 右侧),且EF=2CD 连接DF.若AB=8贝U DF 的长为(10. (3.00分)如图,矩形ABCD 勺顶点A ,B 在x 轴的正半轴上,反比例函数 y 丄在第一象 D,交 BC 于点 E .若 AB=4 CE=2BE tan /k 的值为(A. 100°B. 110° ,则限内的图象经过点二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11. ___________________________ (3.00 分)计算:a4- a= .12. (3.00分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5, 8, 6, 8, 5,10,8,这组数据的众数是________ .13. (3.00分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,贝U m+n= ______ .14. (3.00 分)若a+b=4, a-b=1,贝U( a+1)2—(b—1)2的值为 ___ .15. (3.00分)如图,△ ABC是一块直角三角板,/ BAC=90,/ B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D, BC与直尺的两边分别交于点E, F.若/ CAF=20,则/ BED的度数为__________ ° .16. (3.00分)如图,8X 8的正方形网格纸上有扇形OAB和扇形OCD 点O, A, B, C, D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为「1 ;若用扇形OCD 围成另个圆锥的侧面,记这个圆锥的底面半径为r 2,则一的值为____________ .r217. (3.00分)如图,在Rt△ ABC中,/ B=90°, AB=2 n, BC= ~.将厶ABC绕点A按逆时针方向旋转90°得到△ AB'C',连接B'C,贝U sin / ACB = ________ .解答题(每题只有一个正确选项,本题共10小题,共76分)22. (6.00分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相 等,且分别标有数字1, 2, 3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动 转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是 3 的倍数的概率(用画树状图或列表等方法求解).C fB'18. (3.00分)如图,已知AB=8 P 为线段AB 上的一个动点,分别以 侧作菱形APC 刑菱形PBFE 点P ,C, E 在一条直线上,/ DAP=60 .AP, PB 为边在AB 的同 M N 分别是对角线AC (结果留根号).19. (5.00分)计算:| -丄|+「」-( 20. (5.00 分) 解不等式组:3盘》时2 s+4<2(2x-l ) 如图,点 A ,F ,C, D 在一条直线上,AB// DE AB=DE AF=DC 求证:BC// EF.最短为 (6.00分)21. L )23. (8.00分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择•为了估计全校学生对这四个活动项目的选择情况,体育老师从 全体学生中随机抽取了部分学生进行调查 (规定每人必须并且只能选择其中的一个项目),并 把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3) 若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?24. (8.00分)某学校准备购买若干台 A 型电脑和B 型打印机•如果购买1台A 型电脑,2台B 型打印机,一共需要花费5900元;如果购买2台A 型电脑,2台B 型打印机,一共需要花 费9400元.(1) 求每台A 型电脑和每台B 型打印机的价格分别是多少元?(2) 如果学校购买A 型电脑和B 型打印机的预算费用不超过 20000元,并且购买B 型打印机 的台数要比购买A 型电脑的台数多1台,那么该学校至多能购买多少台 B 型打印机?25. (8.00分)如图,已知抛物线y=x 2 -4与x 轴交于点A, B (点A 位于点B 的左侧),C 为 顶点,直线y=x+m 经过点A,与y 轴交于点D.列问题:(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为 C .若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC平行于直线AD求新抛物线对应的函数表达式.26. (10.00分)如图,AB是。
2018届初三年级模拟考试试卷数 学 2018.04本试卷由填空题、选择题和解答题三大题组成,共28题,满分130分.考试用时120分钟.注意事项:1.答题前,考生务必将学校、姓名、考场号、座位号、考试号填写在答题卷相应的位置上.2.答题必须用0.5mm 黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.3.考生答题必须在答题卷上,答在试卷和草稿纸上一律无效一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有是正确的,选出正确答案,并在答题卡上将该项涂黑.1. 的相反数是A.B. 3C. 3D. 32.下列计算正确的是A. 623a a a ÷= B. 1(2)2--= C. 236(3)26x x x -⋅=- D. 0(3)1π-=3.下图是由几个相同的小正方体搭成的一个几何体,它的俯视图是4.某种微生物半径约为0.00000637米,该数字用科学记数法可表示为 A. 0.637 X 10一5B. 6.37 X 10一6C. 63.7 X 10一7D. 6.37 X 10一75.如图,PA 和PB 是⊙O 的切线,点A 和点B 是切点,AC 是⊙O 的直径,己知40P ∠=︒,则ACB ∠的大小是 A. 60° B. 65° C. 70° D. 75°6.关于x 的一元二次方程210x kx -+=有两个相等的实数根,则k 的值为 A. 2 B.―2 C.士2 D. 47.某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同.设现在每天生产x 台机器,根据题意可得方程为A.50035030x x =- B. 50035030x x =- C. 50035030x x =+ D. 50035030x x=+ 8.若函数2y x =与24y x =--的图象的交点坐标为(,)a b , 则12a b+的值是A.―4B.―2C. 1D. 29.若二次函数2y x bx c =-++与x 轴有两个交点(,0),(6,0)m m -,该函数图像向下平移n 个单位长度时与x 轴有且只有一个交点,则n 的值是A.9B. 6C. 3D. 36 10.如图,反比例函数(0)ky x x=<的图象经过点(2,2)A -,过点A作AB y ⊥轴,垂足为B ,在y 轴的正半轴上取一点(0,)P t ,过 点P 作直线OA 的垂线l ,以直线l 为对称轴,点B 经轴对称变换 得到的点B '在此反比例函数的图象上,则t 的值是 A. 1-+ B. 42+C. 4 D. 15+二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上) 11.x 的取值范围是 . 12.有一组数据:3, 5,5,6,7,这组数据的众数为 .13.已知圆弧所在圆的半径为24,所对圆心角为60°,则圆弧的长为 .14.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是 .15.已知2,3ab a b =--=,则32232a b a b ab -+的值为 .16:已知二次函数2(0)y ax bx c a =++≠中,函数值y 与自变量x 的部分对应值如下表:则关于x 的一元二次方程22ax bx c ++=-的根是 .17.如图,已知123////l l l ,相邻两条平行直线间的距离相等,若等腰直角三角形ABC 的直角顶点C 在1l 上,另两个顶点,A B 分别在32,l l 上,则sin α的值是 .18.如图,矩形ABCD 中,4,8,,AB BC P Q ==分别是,BC AB 上的两个动点,2,AE AEQ =∆沿EQ 翻折形成FEQ ∆,连接,PF PD ,则PF PD +的最小值是 .三、解答题:(本大题共10小题,共76分.把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明). 19.(本题满分4分)计算20181(1)tan 60+--︒20.(本题满分6分,每小题3分)(1)解不等式组: 2322112323x x x x >-⎧⎪-⎨≥-⎪⎩ (2)解方程: 22212x x x x +=--21.(本题满分5分)先化简,再求值: 221121()1a a a a a a-+-÷++,其中31a =.22.(本题满分7分)如图,在ABCD Y 中,E 是CD 的延长线 上一点,BE 与AD 交于点1,2F DE CD =. (1)求证: ABF CEB ∆∆:;(2)若DEF ∆的面积为2,求四边形BCDF 的面积.23.(本题满分8分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、 “打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的倍息,解答下列问题: (1)本次抽样调查中的学生人数是 ; (2 )补全条形统计图;(3)若该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数; (4)现有爱好舞蹈的两名男生两名女生想参加舞蹈社,但只能选两名学生,请你用列表或画 树状图的方法,求出正好选到一男一女的概率.24.(本题满分8分)如图,一次函数y kx b =+的图像与反比例函数 my x=的图像交于点(3,8),(,6)A m B n --两点. (1)求一次函数与反比例函数的解析式; (2)求AOB ∆的面积.25.(本题满分8分)某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y (台)与销售单价x (元)的关系为21000y x =-+.(1)该公司每月的利润为w 元,写出利润w 与销售单价x 的函数关系式; (2)若要使每月的利润为40000元,销售单价应定为多少元?(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?26.(本题满分10分)如图,AB 是⊙O 的直径,点C 是»AB 的中点,点D 是⊙O 外一点,AD AB =,AD 交⊙O 于,F BD 交⊙O 于E ,连接CE 交AB 于G .(1)证明: C D ∠=∠;(2)若140BEF ∠=︒,求C ∠的度数; (3)若2,tan 3EF B ==,求CE CG ⋅的值.27.(本题满分10分)已知,如图1,直线334y x =+与x 轴、y 轴分别交于A 、C 两点,点B 在x 轴上,点B 的横坐标为94,抛物线经过A 、B 、C 三点.点D 是直线AC 上方抛物线上任意一点. (1)求抛物线的函数关系式;(2)若P 为线段AC 上一点,且2PCD PAD S S ∆∆=,求点P 的坐标;(3)如图2,连接OD ,过点A 、C 分别作AM OD ⊥,CN OD ⊥,垂足分别为M 、N .当AM CN +的值最大时,求点D 的坐标.28.(本题满分10分)如图,在Rt ABC ∆中,90ACB ∠=︒,2AC =cm ,4AB =cm ,动点P 从点C 出发,在BC的速度向点B匀速运动,同时动点Q也从点C出发,沿C A B→→以每秒4cm的速度匀速运动,运动时间为t秒3(0)2t<<,连接PQ,以PQ为直径作⊙O.(1)当12t=时,求PCQ∆的面积;(2)设⊙O的面积为s,求s与t的函数关系式;(3)当点Q在AB上运动时,⊙O与Rt ABC∆的一边相切,求t的值.。
2018年苏州市中考数学模拟试题(7)一、选择题 1.在三个数10.5,33-中,最大的数是( ) A. 0.5B.3 C. 13- D.不能确定 2.下列运算中,正确的是( )A. 277a a a += B. 236a a a ⋅= C. 32a a a ÷= D. 22()ab ab =3.我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近1 100 000 000美元税收,其中1 100 000 000用科学记数法表示为( ) A.0.11 X 1 08 B.1.1 X 109 C.1.1 X 1010 D.11 X 109 4.由6个大小相同的正方体搭成的几何体如图所示, 比较它的主视图、左视图和俯视图的面积,则( ) A.三个视图的面积一样大 B.主视图的面积最小 C.左视图的面积最小D.俯视图的面积最小5.一个有进水管和出水管的容器,从某时刻开始4min 内只进水不出水,在随后的8min 内既进水又出水,每分钟的进水量和出水量是两个常数.容器内的水量y (L)与时间x (min)之间的关系如图所示,则每分钟的出水量为( )A.5LB.3.75LC.2.5LD. 1.25L6.已知:如图,»BC 与»AD 的度数之差为20°,弦AB 与CD 相交于点,60E CEB ∠=︒,则CAB ∠等于 ( )A.50°B.45°C. 40°D. 35°7.关于x 的二次函数(1)()y x x m =+-,其图像的对称轴在y 轴的右侧,则实数m 的取值范围是( )A. 1m <-B. 10m -<<C. 01m <<D. 1m >8.如图,边长为a 的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点顺次连接,又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形……按此方式依次操作,则第6个六边形的边长是( )A.511()32a ⨯B. 511()23a ⨯C. 611()32a ⨯D. 611()23a ⨯9.一张矩形纸片ABCD ,已知3AB =,2AD =,小明按所给图步骤折叠纸片,则线段DG 长为( )A B . C .1 D .210.下列关于函数2610y x x =-+的四个命题:①当0x =时,y 有最小值10;②n 为任意实数,3x n =+时的函数值大于3x n =-时的函数值;③若3n >,且n 是整数,当1n x n ≤≤+时,y 的整数值有(24)n -个;④若函数图象过点0(,)a y 和0(,1)b y +,其中0a >,0b >,则a b <.其中真命题的序号是( )A .①B .②C .③D .④二、填空题 11.函数y =的自变量x 的取值范围是 . 12.如图,已知⊙O 是ABC ∆的外接圆,连接AO ,若40B ∠=︒,则OAC ∠= . 13.某中学共有学生720人,该校有关部门从全体学生中随机抽取了50人对其到校方式进行调查,并将调查结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有 人, 14.若实数a 满足1322a -=,则a 对应于图中数轴上的点可以是,,A B C 三点中的点 .15.已知一个圆锥的底面半径为2,母线长为4,则它的侧面展开图的面积是.(结果保留π).16.已知关于x的不等式组521x ax-≥⎧⎨->⎩只有四个整数解,则实数a的取值范围是.17.在如图所示的正方形方格纸中,每个小四边形都是相同的正方形,,,,A B C D都在格点处,AB与CD相交于点O,则tan BOD∠值等于.18.如图,在平面直角坐标系xOy中,直线AB过点(4,0),(0,4)A B-,⊙O的半径为1(O为坐标原点),点P在直线AB上,过点P作⊙O的一条切线,PQ Q为切点,则切线长PQ 的最小值为.三、解答题19.计算:1301()16(2)(2018)6033π-+÷-+-︒20.解不等式组:23112(2)2xx x+>⎧⎪⎨-≤+⎪⎩①②21. 先化简,再求值:22282242x x x xx x x+-⎛⎫-÷⎪--+⎝⎭,其中x=22.某运输公司根据实际需要计划购买大、中两型客车共10辆,大型客车每辆价格为25万 元,中型客车每辆价格为15万元.(1)设购买大型客车x (辆),购车总费用为y (万元),求y 与x 之间的函数关系式; (2)若购车资金为180~200万元(含180万元和200万元),那么有几种购车方案?在确保交 通安全的前提下,根据客流量调查,大型客车不能少于4辆,此时如何确定购车方案可 使该运输公司购车费用最少?23.为了弘扬祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其 中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重 水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中 一个,则小明回答正确的概率是 ;(2)小丽回答该问题时,对第二个字是选“重”还是 选“穷”、第四个字是选“富”还是选“复”都难 以抉择,若分别随机选择,请用列表或画树状图 的方法求小丽回答正确的概率.24.如图,在ABCD 中,点O 是边BC 的中点,连接DO 并延长,交AB 的延长线于点E , 连接,BD EC .(1)求证:四边形BECD 是平行四边形;(2)若50OCD ∠=︒,则当BOD ∠= °时,四边形BECD 是矩形.25.已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x 轴、y 轴交于点,B A ,与反比 例函数的图像分别交于点,,C D CE x ⊥轴于点1,tan ,4,22E ABO OB OE ∠===. (1)求该反比例函数的解析式; (2)求直线AB 的解析式.26.如图,已知B 港口位于A 、观测点北偏东53. 2°方向,且其到A 观测点正北方向的距离 BD 的长为16 km ,一艘货轮从B 港口以40 km/h 的速度沿BC 方向航行,15 min 后到达 C 处,现测得C 处位于A 观测点北偏东79. 8°方向,求此时货轮与A 观测点之间的距离 AC 的长.(精确到0. 1 km ,参考数据:s i n 53.20.80,c o s 53.20.60,s i n 79c o s 79.80.18,t a n 26.60.50,︒≈︒≈︒≈︒≈︒≈1.52.24≈≈)27.如图①,要设计一幅宽20 cm 、长30 cm 的矩形图案,其中有两横两竖的彩条,横、竖彩 条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设 计每个彩条的宽度?分析:由横、竖彩条的宽度比为2:3,可设每个横彩条的宽为2x ,则每个竖彩条的宽为3x . 为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况, 得到矩形ABCD .结合以上分析完成填空:如图②,用含x 的代数式表示: AB = cm; AD = cm;矩形ABCD 的面积为 cm 2; 列出方程并解答.28.(1)已知:如图①, ABC ∆的周长为l ,面积为S ,其内切圆圆心为O ,半径为r .求证:2Sr l =.(2)已知:如图②,在ABC ∆中,,,A B C 三点的坐标分别为(3,0),(3,0),(0,4)A B C -.若ABC ∆的内心为D ,求点D 的坐标;(3)与三角形的一边和其他两边的延长线相切的圆,叫旁切圆,圆心叫旁心.请求出条件(2) 中的ABC ∆位于第一象限的旁心的坐标.29.如图,在平面直角坐标系xOy 中,抛物线223y x x =--交x 轴于,A B 两点(点A 在点B 的左侧),将该抛物线位于x 轴上方曲线记作M ,将该抛物线位于x 轴下方部分沿x 轴翻 折,翻折后所得曲线记作N ,曲线N 交y 轴于点C ,连接,AC BC . (1)求曲线N 所在抛物线相应的函数表达式; (2)求ABC ∆外接圆的半径;(3)点P 为曲线M 或曲线N 上的一个动点,点Q 为x 轴上的一个动点,若以点,,,B C P Q 为顶点的四边形是平行四边形,求点Q 的坐标.参考答案一、1.B2.C3.B4.C5.B6.D7.D8.A9.A 10.C 二、11. 3x ≥且4x ≠ 12. 50 13. 216 14.B15. 8π16. 32a -<≤- 17. 318.三、 19.-120. 16x -<≤21.原式=1x x = 22.(1)10150y x =+(2)共有三种购车方案:大型3辆、中型7辆;大型4辆、中型6辆或大型5辆、中型5辆. 由函数10150y x =+知x 越小,y 越小,因为4x ≥,所以当4x =,购车费用为190 万元时最少. 23.(1)12(2) 画树状图如下: 由树状图可知有4种等可能的结果,其中正确的结果只有1种,所以小丽回答正确的概率是14.24.(1) 证明BOE COD ∆≅∆ (2)100 25.(1) 6y x =- (2) 122y x =-+ 26. 13.4km27.每个横彩条的宽度为53cm, 每个竖彩条的宽度为52cm.28. (1)连接,,OA OB OC ,12S lr =,2S r l∴= (2)3(0,)2D (3)(5,4)29. (1) 223y x x =-++(2)(3) (4,0)。