平行线的性质与判定练习题(精选)
- 格式:docx
- 大小:73.87 KB
- 文档页数:7
平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b 平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:.(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________。
(______,________)(3)如果∠2+∠1=180°,那么_____。
(________,______)(4)如果∠5=∠3,那么_______。
(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________。
(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______。
(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______。
平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
平行线的性质判定专项练习40题1.已知BE平分∠ABC,且∠1=∠2,要证明BC∥DE。
2.在图中,AB⊥BC,BC⊥CD,BF和CE是两条射线,且∠1=∠2,需要说明XXX。
3.在图中,AB⊥BC,且∠1+∠2=90°,∠2=∠3,要证明BE∥DF。
4.在图中,OP平分∠MON,A、B分别在OP、OM上,且∠BOA=∠BAO,需要判断AB是否平行于ON。
若平行,需要给出证明过程;若不平行,需要说明理由。
5.已知在图中,B、D、A在一直线上,且∠D=∠E,∠XXX∠D+∠E,BC是∠ABE的平分线,要证明DE∥BC。
6.在图中,直线AB、CD与直线EF相交于E、F,已知∠1=105°,∠2=75°,需要证明AB∥CD。
7.已知∠D=∠A,∠B=∠FCB,需要证明ED∥CF。
8.已知∠1的度数是它补角的3倍,∠2等于45°,需要判断AB是否平行于CD。
理由需要说明。
9.在图中,已知AC∥ED,且EB平分∠AED,∠1=∠2,需要证明AE∥BD。
10.在图中,AC⊥AE,BD⊥BF,且∠1=35°,∠2=35°,需要证明AE∥BF。
11.在△ABC中,点D在AB上,且∠XXX∠A,∠BDC的平分线交BC于点E。
需要证明DE∥AC。
12.已知∠XXX∠A+∠C,需要说明AB∥CD。
13.在图中,已知BE是∠B的平分线,交AC于E,且∠1=∠2,需要判断DE是否平行于BC。
理由需要说明。
14.已知∠C=∠D,且DB∥EC。
需要判断AC是否平行于DF。
理由需要说明。
15.直线AB、CD被EF所截,且∠3=∠4,∠1=∠2,XXX。
需要证明AB∥CD。
16.已知AB∥CD,且∠1=∠2,需要证明BE∥CF。
17.已知∠BAD=∠DCB,且∠1=∠3,需要证明AD∥BC。
18.在图中,AD是三角形ABC的角平分线,DE∥CA,并且交AB于点E,且∠1=∠2.需要判断DF是否平行于AB。
平行线的判定与性质练习题平行线的判定与性质练习题平行线是几何学中的基本概念之一,它在我们的日常生活中无处不在。
从道路上的交叉口到建筑物的设计,平行线都扮演着重要的角色。
在几何学中,我们需要学会判定平行线,并掌握它们的性质。
下面,我将给大家提供一些平行线的判定与性质练习题,希望能帮助大家更好地理解和应用平行线的知识。
练习题一:判定平行线1. 在下图中,判断线段AB和线段CD是否平行。
A-----B| |C-----D2. 在下图中,判断线段AB和线段EF是否平行。
A-----B| || |E-----F3. 在下图中,判断线段AB和线段CD是否平行。
A-----B\ /\ /C-----D练习题二:平行线的性质1. 若两条平行线被一条横线所截,那么对应的内角互补。
2. 若两条平行线被一条横线所截,那么对应的外角相等。
3. 若两条直线分别与一条平行线相交,那么对应的内角相等。
4. 若两条直线分别与一条平行线相交,那么同旁内角互补。
练习题三:平行线的应用1. 若两条平行线被一条横线所截,且已知其中一个内角的度数为60°,求对应的内角和外角的度数。
2. 若两条平行线被一条横线所截,且已知其中一个外角的度数为120°,求对应的内角和另一个外角的度数。
3. 若两条直线分别与一条平行线相交,且已知其中一个内角的度数为70°,求对应的内角和同旁内角的度数。
4. 若两条直线分别与一条平行线相交,且已知其中一个同旁内角的度数为45°,求对应的内角和另一个同旁内角的度数。
通过以上练习题,我们可以加深对平行线的判定与性质的理解。
判定平行线需要观察线段的走向,若两条线段的走向相同,即不相交且不重合,则可以判定它们为平行线。
而平行线的性质则是通过观察线段之间的关系得出的。
掌握这些性质可以帮助我们解决更复杂的几何问题。
在应用平行线的过程中,我们可以根据已知条件利用平行线的性质进行推导。
平行线的判定与性质专项训练(20题)一、解答题1.已知:如图,∠1=∠C,∠2+∠3=180°.求证:AD∥EF.3.如图,△ABC中,AB=AC,D为BC边的中点,AF⊥AD,垂足为A.求证:∠1=∠24.已知AB∥DE,∠1=∠2,若∠C=54°,求∠AEC的度数.5.如图,C为∠AOB平分线上一点,CD//OB交OA于点D.求证:OD=CD.6.如图,在四边形ABCD中,AB=CD,AD=BC,点O为BD上任意一点,过点O的直线分别交AD,BC于M,N两点.求证:∠1=∠2.7.如图,AB∥CD,∠ABE=∠DCF.求证:∠E=∠F.8.如图,已知∠1+∠2=180°,∠DEF=∠A,∠BED=60°,求∠ACB的度数.9.如图,BE平分∠ABC,EB∥CD,∠ABC=2∠1.判断直线AD与BC的位置关系,并说明理由.10.已知:∠DEC+∠C=180°,DE平分∠ADF,∠F=∠1.求证:∠B=∠C.11.如图,已知∠1=∠2,AB∥EF,∠3=130°,求∠4的度数.12.如图,AB//CD,点C为直线BC,CD的交点,∠B+∠CDE=180°.求证:BC//DE.13.如图,已知AD∥BE,∠1=∠C,请判断∠A与∠E是否相等?并说明理由.14.如图,已知∠ABC=∠1,∠P=∠Q.试说明∠2=∠3.15.如图,已知∠A=∠F=40°,∠C=∠D=70°,求∠ABD,∠CED的度数.16.如图,A,C,F,D在同一直线上,AB∥DE,AB=DE,AF=DC,求证:BC∥EF.17.如图,∠1=60°,∠2=60°,∠3=100°。
要使AB∥EF,∠4应为多少度?说明理由。
18.如图,已知:AB∥CD,∠BAE=∠DCF,AC,EF相交于点M,有AM=CM.(1)求证:AE∥CF;(2)若AM平分∠FAE,求证:FE垂直平分AC.19.如图,在△ABC中,D,E,F分别是AB,AC,BC上的点,∠AED=∠C,EF//AB.求证:∠B=∠DEF.20.如图,∠1+∠2=180°,∠C=∠D.求证:AD∥BC.。
学生做题前请先回答以下问题问题1:平行线的判定有几个?分别是什么?问题2:平行线的性质有几个?分别是什么?平行线的性质及判定(人教版)一、单选题(共12道,每道8分)1.如图,若∠1=∠2,则( )A.AD∥BCB.AD=BCC.AB∥CDD.AB=CD答案:C解题思路:∠1和∠2是直线AB和直线CD被直线AC所截得到的内错角,根据内错角相等,两直线平行,可得AB∥CD.故选C.试题难度:三颗星知识点:平行线的判定2.如图,若AB∥EF,则∠ADE=_____,理由是_________.( )A.∠B;两直线平行,同位角相等B.∠DEF;内错角相等,两直线平行C.∠DEF;两直线平行,内错角相等D.∠CEF;两直线平行,同位角相等答案:C解题思路:∠ADE和∠DEF是由两条平行直线AB和EF被直线DE所截得到的内错角,若AB∥EF,则∠ADE=∠DEF,理由是两直线平行,内错角相等.试题难度:三颗星知识点:平行线的性质3.如图,两直线a,b被直线c所截,形成八个角,可以判断a∥b的是( )A.∠2+∠4=180°B.∠3+∠8=180°C.∠5+∠6=180°D.∠7+∠8=180°答案:B解题思路:选项B:∵∠2=∠8(对顶角相等)∠3+∠8=180°(已知)∴∠2+∠3=180°(等量代换)∴a∥b(同旁内角互补,两直线平行)故选B.试题难度:三颗星知识点:平行线的判定4.如图,下列推理及所注明的依据都正确的是( )A.因为∠1=∠ABC,所以DE∥BC(内错角相等,两直线平行)B.因为∠2=∠3,所以DE∥BC(两直线平行,内错角相等)C.因为DE∥BC,所以∠2=∠3(两直线平行,内错角相等)D.因为∠AEB+∠C=180°,所以DE∥BC(同旁内角互补,两直线平行)解题思路:选项A中,由条件∠1=∠ABC,∠1和∠ABC不是同位角、内错角,而且也转化不成这样的角,所以不能证明DE∥BC,故选项A错误;选项B中,条件是∠2=∠3,结论是DE∥BC,依据是内错角相等,两直线平行,故选项B 错误;选项C中,条件是DE∥BC,结论是∠2=∠3,依据是两直线平行,内错角相等,故选项C 正确;选项D中,∠AEB+∠C=180°,但∠AEB和∠C不是同旁内角,是同位角,所以不能证明DE∥BC,故选项D错误.故选C.试题难度:三颗星知识点:平行线的性质5.如图,点E在AC的延长线上,若BD∥AE,则下列结论错误的是( )A.∠3=∠4B.∠1=∠2C.∠D=∠DCED.∠D+∠ACD=180°答案:B解题思路:由BD∥AE,根据两直线平行,内错角相等得∠3=∠4,∠D=∠DCE,根据两直线平行,同旁内角互补得∠D+∠ACD=180°,但∠1与∠2的关系无法判断,因为∠1与∠2是直线AB与直线CD被直线BC所截得到的内错角,但直线AB与直线CD是否平行,不知道.故选B.试题难度:三颗星知识点:平行线的性质6.如图,下列推理及所注明的理由都正确的是( )A.若AB∥DG,则∠BAC=∠DCA,理由是内错角相等,两直线平行B.若AE∥CF,则∠3=∠4,理由是两直线平行,内错角相等C.若AE∥CF,则∠E=∠F,理由是内错角相等,两直线平行D.若AB∥DG,则∠3=∠4,理由是两直线平行,内错角相等答案:B解题思路:分析:利用平行线的判定和性质时,要分清楚条件和结论,找出截线和被截线.选项A中,AB∥DG是条件,内错角∠BAC=∠DCA是结论,因此依据是两直线平行,内错角相等,选项A错误;选项B中,AE∥CF是条件,内错角∠3=∠4是结论,因此依据是两直线平行,内错角相等,选项B正确;选项C中,AE∥CF是条件,内错角∠E=∠F是结论,因此依据是两直线平行,内错角相等,选项C错误;选项D中,∠3和∠4不是两条平行直线AB和DG被第三条直线所截得到的角,选项D错误.故选B.试题难度:三颗星知识点:平行线的性质7.下列说法:①若∠A+∠B=180°,则∠A,∠B互补;②若∠A+∠B=180°,则∠A,∠B是同旁内角;③若∠A,∠B互补,则∠A+∠B=180°;④若∠A,∠B是同旁内角,则∠A+∠B=180°.其中正确的是( )A.①②③④B.①③C.①③④D.①②③答案:B解题思路:如果两个角的和是180°,那么称这两个角互为补角,反之,当两个角互补时,这两个角的和是180°,所以①和③正确;同旁内角是位置角,与大小无关,只有两条平行直线被第三条直线所截时,才有同旁内角互补,所以②和④错误.故选B.试题难度:三颗星知识点:互补8.如图,直线a,b,c,d,已知c⊥a,c⊥b,直线b,c,d交于一点,若∠1=50°,则∠2的度数为( )A.30°B.40°C.50°D.60°答案:C解题思路:由c⊥a,c⊥b,可得a∥b,然后再由两直线平行,同位角相等得∠2=∠1,因为∠1=50°,所以∠2=50°.故选C.试题难度:三颗星知识点:平行线的性质9.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,则∠ACD的度数为( )A.35°B.40°C.45°D.50°答案:B解题思路:如图,∵AD平分∠BAC(已知)∴∠BAC=2∠BAD(角平分线的定义)∵∠BAD=70°(已知)∴∠BAC=2×70°=140°(等量代换)∵AB∥CD(已知)∴∠1+∠BAC=180°(两直线平行,同旁内角互补)∴∠1=180°-∠BAC=180°-140°=40°(等式性质)故选B.试题难度:三颗星知识点:平行线的性质10.已知:如图,AC∥ED,AB∥FD,∠A=54°,则∠EDF的度数为( )A.36°B.45°C.54°D.60°答案:C解题思路:分析:由AB∥FD,利用两直线平行,同位角相等得∠A=∠DFC;由AC∥ED,利用两直线平行,内错角相等得∠EDF=∠DFC;进而得到∠EDF=∠A=54°.解:如图,∵AB∥FD(已知)∴∠A=∠DFC(两直线平行,同位角相等)∵AC∥ED(已知)∴∠EDF=∠DFC(两直线平行,内错角相等)∴∠A=∠EDF(等量代换)∵∠A=54°(已知)∴∠EDF=54°(等量代换)故选C.试题难度:三颗星知识点:平行线的性质11.已知:如图,AB∥CD,BC∥DE.求证:∠B+∠D=180°.证明:如图,∵AB∥CD(已知)∴____________(两直线平行,内错角相等)∵BC∥DE(已知)∴____________(两直线平行,同旁内角互补)∴∠B+∠D=180°(________________________)①∠B=∠C;②∠B=∠E;③∠C=∠D;④∠C+∠D=180°;⑤∠D=∠E;⑥等量代换;⑦同角的补角相等.以上空缺处依次所填正确的是( )A.①④⑦B.②④⑥C.①④⑥D.③⑤⑦答案:C解题思路:第一个空:条件是AB∥CD,结合下面的推理过程中用到了∠B以及这一步的依据是两直线平行,内错角相等,因此应填是∠B=∠C,所以选①;第二个空:条件是BC∥DE,结合下面的推理过程中用到了∠D以及这一步的依据是两直线平行,同旁内角互补,因此应该填写的是∠C+∠D=180°,所以选④;第三个空:条件应该是上面的两步∠B=∠C,∠C+∠D=180°,结论是∠B+∠D=180°,由条件到结论的依据是等量代换,所以选⑥;故选C.试题难度:三颗星知识点:平行线的性质12.已知:如图,AC,EF相交于点O,∠E=∠F,∠1=∠2.求证:AB∥DG.证明:如图,∵∠E=∠F(已知)∴____________(内错角相等,两直线平行)∴∠3=∠4(____________________)∵∠1=∠2(已知)∴∠1+∠3=∠2+∠4(等式性质)即∠BAC=∠DCA∴____________(内错角相等,两直线平行)①AB∥DG;②AE∥CF;③两直线平行,内错角相等;④内错角相等,两直线平行;⑤两直线平行,同位角相等.以上空缺处依次所填正确的是( )A.①④①B.②③⑤C.②③①D.①③②答案:C解题思路:第一个空:条件是∠E=∠F,结合下面的推理过程以及这一步的依据是内错角相等,两直线平行,所以应填AE∥CF,所以选②;第二个空:条件是上一步得到的结论AE∥CF,结论是∠3=∠4,由平行得到内错角相等,所以应填的依据是两直线平行,内错角相等,所以选③;第三个空:条件是上一步得到的结论∠BAC=∠DCA,以及这一步的依据是内错角相等,两直线平行,所以应填AB∥DG,所以选①.故选C.试题难度:三颗星知识点:平行的判定学生做题后建议通过以下问题总结反思问题1:已知两直线平行,你能想到什么?问题2:若要证明两直线平行,需要考虑什么?。
迎平行线的判定和性质检测题姓名: _________________班: __________________一.〔共8 小,每小 3 分,分 24 分〕1.以下正确的选项是〔〕A .不相交的两条直叫做平行B.两条直被第三条直所截,同位角相等C.垂直于同一直的两条直互相平行D.平行于同一直的两条直互相平行2.如所示,点P 到直 l 的距离是〔〕A .段 PA 的度 B.段 PB 的度C.段 PC 的度D.段 PD 的度第 2第3第43.如所示,以下中正确的选项是〔〕A .∠ 1 和∠ 2 是同位角B.∠ 2 和∠ 3 是同旁内角C.∠ 1 和∠ 4 是内角D.∠ 3 和∠ 4 是角4.如,假设∠ A+∠ ABC=180°,以下正确的选项是〔〕A .∠ 1=∠2B.∠ 2=∠3C.∠ 1=∠ 3D.∠ 2=∠ 45.如,直 AB ,CD 被直 EF 所截,∠ 1=55°,以下条件中能判定AB ∥CD 的是〔〕A .∠ 2=35°B.∠ 2=45°C.∠ 2=55°D.∠ 2=125°第 5第6第76.如,将一含有 30°角的直角三角板的两个点放在方形直尺的一上,如果∠ 1=30°,那么∠ 2 的度数〔〕A .30°B.40°C.50°D.60°7.如: AB ∥DE,∠ B=30°,∠ C=110°,∠ D 的度数〔〕A.115 °B.120 °C.100 °D.80 °8. 平面内三条直的交点个数可能有〔〕A .1 个或 3 个B.2 个或 3 个C.1 个或 2 个或 3 个D.0 个或 1 个或 2 个或 3 个二.填空〔共8 小,每小 3 分,分 24 分〕9.把命“ 角相等〞改写成“如果⋯那么⋯〞的形式:.10.直 L 同有 A ,B,C 三点,假设 A ,B 的直 L1和 B,C 的直 L 2都与 L 平行, A ,-B, C 三点 ________,理论根据是.11. 如图,当剪子口∠ AOB 增大 15°时,∠ COD 增大 ________度,其根据是 ______________.12. 如图,直线 AB 、CD、EF 交于点 O,那么∠ 1+∠2+∠ 3=.13.如图, AB ∥ CD,点 E 在 AB 上,点 F 在 CD 上,如果∠ CFE:∠ EFB=3:4,∠ ABF=40°,那么∠ BEF 的度数为.第 11 题第12题第13题第14题14.如图, a∥ b,PA⊥PB,∠ 1=35°,那么∠ 2 的度数是.15.以下四个命题:①过一点有且只有一条直线与直线平行;②在同一平面内,两条不相交的线段是平行线段;③相等的角是对顶角;④在同一平面内,假设直线AB ∥CD,直线 AB 与 EF 相交,那么 CD 与 EF 相交.其中,假命题的是〔填序号〕.16.观察图形,并阅读下面的相关文字.像这样的十条直线相交最多的交点个数有.三.解答题〔共8 小题,总分值 72 分〕17.〔 6 分〕如图,∠ 1=∠ 2,∠ 3+∠ 4= 180°.求证: AB ∥ EF.18.〔 6 分〕如图,直线 AB,CD 相交于 O,OE 是∠ AOD 的平分线,∠ AOC= 28°,求∠ AOE 的度数.19.〔 8 分〕如图,现有以下 3 个论断:① AB∥CD;②∠ B=∠ C;③∠ E=∠ F.请以其中 2 个论断为条件,另一个论断为结论,构造一个真命题,并加以证明.(1〕条件: __________,结论: ________.(2〕证明:20.〔 8 分〕如图, EF∥AD ,∠ 1=∠2,∠ BAC=68°.求∠ AGD 的度数.解:因为 EF∥ AD ,所以∠ 1=.〔〕又因为∠ 1=∠2,所以∠ 2=.〔等量代换〕所以 AB ∥.〔〕所以∠ BAC+=180°.〔〕因为∠ BAC=68°,所以∠ AGD=.〔等式的性质〕21.〔 10 分〕如图,∠ AGF= ∠ABC ,∠ 1+∠2=180°.〔 1〕判断 BF 与 DE 的位置关系,并说明理由;〔2〕假设 BF⊥ AC ,∠ 2=150°,求∠ AFG 的度数.22.〔 10 分〕如图,∠ BAP+∠ APD=180°,∠ 1 =∠2.求证 :∠ E =∠ F.23.〔 12 分〕如图,直线 AB ,CD 相交于点 O,OA 平分∠ EOC.〔 1〕假设∠ EOC=70°,求∠ BOD 的度数;(2〕假设∠ EOC:∠ EOD=2:3,求∠ BOD 的度数.24.〔 12 分〕如图, AB ∥CD,C 在 D 的右侧, BE 平分∠ ABC ,DE 平分∠ ADC ,BE 、 DE 所在直线交于点 E.∠ADC =70°.(1〕求∠ EDC 的度数;(2〕假设∠ ABC =n°,求∠ BED 的度数〔用含 n 的代数式表示〕;。
平行线的性质与判定综合训练(含答案)1.如图,要判定AB∥CD,需要哪些条件?根据是什么?2.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.解:∵CD∥EF,∴∠DCB=∠2(____________________).∵∠1=∠2,∴∠DCB=∠1(____________________).∴GD∥CB(____________________).∴∠3=∠ACB(____________________).3.如图,已知AD∥BE,∠A=∠E,求证:∠1=∠2.4.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.5.已知:如图,直线EF分别交AB,CD于点E,F,且∠AEF=66°,∠BEF的平分线与∠DFE的平分线相交于点P.(1)求∠PEF的度数;(2)若已知直线AB∥CD,求∠P的度数.6.如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F.求证:EC∥DF.7.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上,若∠EFG=55°,求∠1,∠2的度数.8.如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,AB和CD是否平行?为什么?9.如图,已知AB∥CD,∠1∶∠2∶∠3=1∶2∶3,那么BA是否平分∠EBF,试说明理由.10.如图所示,已知∠ABC=80°,∠BCD=40°,∠CDE=140°,试确定AB与DE的位置关系,并说明理由.11.如图,直线l1、l2均被直线l3、l4所截,且l3与l4相交,给定以下三个条件:①l1⊥l3;②∠1=∠2;③∠2+∠3=90°.请从这三个条件中选择两个作为条件,另一个作为结论组成一个真命题,并进行证明.12.如图1,CE∥AB,所以∠ACE=∠A,∠DCE=∠B,所以∠ACD=∠ACE+∠DCE=∠A+∠B.这是一个有用的结论,借用这个结论,在图2所示的四边形ABCD内,引一条和边平行的直线,求∠A+∠B+∠C+∠D的度数.参考答案1.略2.两直线平行,同位角相等等量代换内错角相等,两直线平行两直线平行,同位角相等3.证明:∵AD∥BE,∴∠A=∠3.∵∠A=∠E,∴∠3=∠E.∴DE∥AB.∴∠1=∠2.4.证明:∵AD∥EF,∴∠1=∠BAD.∵∠1=∠2,∴∠BAD=∠2.∴AB∥DG.5.(1)∵∠AEF=66°,∴∠BEF=180°-∠AEF=114°.又PE平分∠BEF,∴∠PEB=12∠BEF=57°.(2)∵AB∥CD,∴∠EFD=∠AEF=66°. ∵PF平分∠EFD,∴∠PFD=12∠EFD=33°.过点P作PQ∥AB,∵∠EPQ=∠PEB=57°,又AB∥CD,∴PQ∥CD.∴∠FPQ=∠PFD=33°.∴∠EPF=∠EPQ+∠FPQ=57°+33°=90°.6.证明:∵BD平分∠ABC,CE平分∠ACB,∴∠DBF=12∠ABC,∠ECB=12∠ACB.∵∠ABC=∠ACB,∴∠DBF=∠ECB.∵∠DBF=∠F,∴∠ECB=∠F.∴EC∥DF.7.∵AD∥BC,∠EFG=55°,∴∠2=∠GED,∠DEF=∠EFG=55°.由折叠知∠GEF=∠DEF=55°.∴∠GED=110°.∴∠1=180°-∠GED=70°.∴∠2=110°.8.平行.理由:∵CE平分∠BCD,∴∠1=∠4.∵∠1=∠2=70°,∴∠1=∠2=∠4=70°.∴AD∥BC.∴∠D=180°-∠BCD=180°-∠1-∠4=40°.∵∠3=40°,∴∠D=∠3.∴AB∥CD.9.BA平分∠EBF.理由如下:∵AB∥CD,∴∠2+∠3=180°.∵∠2∶∠3=2∶3,∴∠2=180°×25=72°.∵∠1∶∠2=1∶2,∴∠1=36°.∴∠EBA=72°=∠2,即BA平分∠EBF.10.AB∥DE.理由:图略,过点C作FG∥AB,∴∠BCG=∠ABC=80°.又∠BCD=40°,∴∠DCG=∠BCG-∠BCD=40°.∵∠CDE=140°,∴∠CDE+∠DCG=180°.∴DE∥FG.∴AB∥DE.11.已知:l1⊥l3,∠1=∠2.求证:∠2+∠3=90°.证明:∵∠1=∠2,∴l1∥l2.∵l1⊥l3,∴l2⊥l3.∴∠3+∠4=90°.∵∠4=∠2,∴∠2+∠3=90°.12.过D作DE∥AB.则由阅读得到的结论,有∠BED=∠C+∠CDE.又∠ABE+∠BED=180°,∠A+∠ADE=180°(两直线平行,同旁内角互补).两式相加,得∠ABE+∠BED+∠A+∠ADE=360°,即∠A+∠B+∠C+∠ADC=360°.。
完整版)平行线的判定和性质经典题平行线的判定和性质经典题一、选择题(共18小题)1.同位角共有()。
A。
6对B。
8对C。
1对D。
12对2.将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()。
A。
平行B。
垂直C。
平行或垂直D。
无法确定3.下列说法中正确的个数为()。
①不相交的两条直线叫做平行线②平面内,过一点有且只有一条直线与已知直线垂直③平行于同一条直线的两条直线互相平行④在同一平面内,两条直线不是平行就是相交A。
1个B。
2个C。
3个D。
4个4.在同一平面内,有8条互不重合的直线,l1,l2,l3 (8)若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()。
A。
平行B。
垂直C。
平行或垂直D。
无法确定5.若两个角的两边分别平行,且这两个角的差为40°,则这两角的度数分别是()。
A。
150°和110°B。
140°和100°C。
110°和70°D。
7°和30°6.XXX所示,AC⊥BC,DE⊥BC,CD⊥AB,∠ACD=40°,则∠XXX等于()。
A。
4°B。
5°C。
6°D。
不能确定7.如图,AB∥CD,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=()。
A。
1°B。
2°C。
3°D。
15°8.下列所示的四个图形中,∠1和∠2是同位角的是()。
①②③④A。
②③B。
①②C。
①④D。
②④9.已知∠AOB=40°,∠XXX的边CD⊥OA于点C,边DE∥OB,那么∠CDE等于()。
A。
5°B。
130°C。
5°或130°D。
100°10.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有()。
2022-2023学年七年级数学下学期复习备考高分秘籍【苏科版】专题2.1平行线的性质与判定综合大题专练(分层培优30题)A卷基础过关卷(限时50分钟,每题10分,满分100分)1.(2022春•江都区月考)如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG平分∠AGC,请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°( ),∠AGC+∠AGD=180°( ),所以∠BAG=∠AGC( ).因为EA平分∠BAG,所以∠1= ( ).因为FG平分∠AGC,所以∠2= ,得∠1=∠2( ),所以AE∥GF( ).2.(2022春•溧阳市期末)填写下列空格:已知:如图,点E在AB上,且CE平分∠ACD,∠1=∠2.求证:AB∥CD.证明:∵CE平分∠ACD(已知),∴ ( ).∵∠1=∠2(已知),∴∠1= ( ).∴AB∥CD( ).3.(2022春•泗洪县期中)如图,已知AB⊥BC,∠1+∠2=90°,∠2=∠3.求证:BE∥DF.证明:∵AB⊥BC,∴∠ABC= °,即∠3+∠4= °.∵∠1+∠2=90°,且∠2=∠3,∴∠1+∠ =90°.∴∠1=∠ ,∴BE∥DF.理由是: .4.(2022春•泰州月考)如图,∠EAD=130°,∠B=50°,试说明EF∥BC.5.(2022春•泰州月考)如图,在△ABC中,∠B=∠C,点D、E分别在AB、AC上,且∠ADE=∠AED.DE与BC平行吗?为什么?6.(2022春•江阴市校级月考)如图,E.F分别是直线BA,DC上的点,∠E=∠F,∠B=∠D.求证:AD∥BC.7.(2019春•邗江区期中)如图,已知AD⊥BC,EF⊥BC,∠1=∠2.求证:DG∥BA.8.(2021春•东台市月考)如图,∠CDA=∠CBA,DE平分∠CDA,BF平分∠CBA,且∠1=∠2,试说明DE∥FB.9.(2022春•宿豫区期中)如图,点B、C在直线AD上,∠DCG=70°,BF平分∠DBE,CG∥BF,求∠ABE的度数.10.(2022春•宿豫区期中)如图,AD既是△ABC的高也是它的角平分线,点G在线段BD上,过点G作EG⊥BC,交CA的延长线于点E,∠E与∠AFE相等吗?为什么?B卷能力提升卷(限时60分钟,每题10分,满分100分)11.(2022春•金湖县期末)已知:如图,EF∥AC,∠C+∠F=180°.求证:GF∥CD.12.(2022春•梁溪区校级期中)已知:如图,点D、E、F、G都在△ABC的边上,EF∥AC,且∠1+∠2=180°.(1)求证:AE∥DG;(2)若EF平分∠AEB,∠C=40°,求∠BDG的度数.13.(2022春•崇川区期末)如图,直线AB∥CD,点E,G在直线AB上,点F,H在直线CD上,∠1+∠2=180°.(1)如图1,求证EF∥GH;(2)如图2,若∠1=120°,GM平分∠BGH,FM平分∠EFH,设FM与GH相交于点O.求∠FOH 的度数.14.(2022春•宿城区期末)如图,GF∥CD,∠1=∠2.求证:∠CED+∠ACB=180°.15.(2021春•惠山区期中)如图,∠1=50°,∠2=130°,∠C=∠D.(1)试说明:BD∥CE.(2)探索∠A与∠F的数量关系,并说明理由.16.(2021春•江都区期中)如图,已知∠2=∠4,∠3=∠B.(1)试判断∠AED与∠C的关系,并说明理由;(2)若∠1=130°,∠5=65°,求∠DGB的度数.17.(2022春•江都区校级月考)如图,在四边形ABCD中,∠A=∠C=90°,点E、F分别在DC、AB上,且BE、DF分别平分∠ABC、∠ADC.判断BE、DF是否平行,并说明理由.18.(2021春•金坛区期末)已知:如图,∠1=∠C,∠2+∠3=180°.求证:AD∥EF.19.(2022秋•金湖县期中)如图,在△ABC中,DE∥AB,交AC,BC分别于点D、E,已知∠1=∠2.(1)求证:AE平分∠BAC;(2)当AC=BC时,请判断DE与BE的大小关系,并说明理由.20.(2022春•宝应县期末)下面是某同学的一次作业,请仔细阅读并完成后面的问题:如图,AB∥CD,∠A=∠D.求证:AF∥ED.证明:①∵AB∥CD(已知),∴∠A=∠AFC,∠D=∠BED( ).②∵∠A=∠D(已知),∴∠AFC=∠BED(等量代换).③∴AF∥ED(内错角相等,两直线平行).(1)请将推理①的数学理论依据补充完整, ;(2)该同学的推理过程有没有错误?如有错误,请指出是推理几,并写出完整的证明过程.C卷培优压轴卷(限时70分钟,每题10分,满分100分)21.(2022春•惠山区校级期中)如图1,已知∠MON=72°,OE平分∠MON,点A,B,C分别是射线OM,OE,ON上异于点O的动点.(1)在图1中连接AB,若AB∥OC,则∠ABE的度数为 °;(2)如图2,连接AC,若射线AB平分∠MAC,则∠ABO与∠ACO的数量关系式是 ;(3)如图3,连接AC交射线OE于点D(不与点B重合),当AB⊥OM且△ADB中有两个角相等时,求∠OAC的度数.则称∠N为∠M的k系补周角.若∠M=90°,∠N=45°,则∠N为∠M的6系补周角.(1)若∠H=80°,则∠H的4系补周角的度数为 °.(2)在平面内AB∥CD,点E是平面内一点,连接BE、DE.①如图1,∠D=60°,若∠B是∠E的3系补周角,求∠B的度数.②如图2,∠ABE和∠CDE均为钝角,点F在点E的右侧,且满足∠ABF=n∠ABE,∠CDF=n∠CDE(其中n为常数且n>1),点P是∠ABE角平分线BG上的一个动点,在P点运动过程中,请你确定一个点P的位置,使得∠BPD是∠F的k系补周角,写出你的解题思路并求出此时的k值(用含n的式子表示).23.(2022春•吴江区校级期中)如图,直线AB∥CD,MN⊥AB分别交AB,CD于点M、N,射线MP、MQ分别从MA、MN同时开始绕点M顺时针旋转,分别与直线CD交于点E、F,射线MP每秒转10°,射线MQ每秒转5°,ER,FR分别平分∠PED,∠QFC,设旋转时间为t秒(0<t<18).(1)①用含t的代数式表示:∠AMP= °,∠QMB= °;②当t=4时,∠REF= °.(2)当∠MEN+∠MFN=130°时,求出t的值;(3)试探索∠EFR与∠ERF之间的数量关系,并说明理由;(4)若∠PMN的角平分线与直线ER交于点K,∠EKM的度数是 .24.(2022春•如皋市期中)已知,直线AB∥CD,AD与BC交于点E.(1)如图1,∠AEC=100°,则∠ABC+∠ADC= °;(2)如图2,∠ABC,∠ADC的平分线交于点F,则∠F与∠AEC有怎样的数量关系,请说明理由;(3)如图3,∠AEC=α,∠ABC=β(α>3β),在∠ADC的平分线上任取一点P,连接PB,当∠ABP=∠PBC时,请直接写出∠BPD的度数(用含有α、β的式子表示).25.(2022春•海安市期末)如图,AB∥CD,∠A=40°,点P是射线AB上的一个动点(不与A点重合),CM平分∠ACP.(1)若∠MCD=115°,求证:CP⊥AB;(2)若CN⊥CM,∠AMC=∠ACN,求∠DCN的度数.26.(2020春•高港区期中)问题情境:如图1,AB∥CD,∠PAB=135°,∠PCD=125°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可求得∠APC的度数.请写出具体求解过程.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP =∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.27.(2022春•兴化市月考)如图,直线AB∥CD,MN⊥AB分别交AB,CD于M,N两点,射线MP,MQ 分别从MA,MN同时开始绕点M顺时针旋转,分别与直线CD交于E,F两点,射线MP每秒转10°,射线MQ每秒转5°,ER,FR分别平分∠PED,∠QFC,设旋转的时间为t秒(O<t<18)(I)①∠AMP= °,∠QMB= °(用含t的代数式表示),②当=4时,∠REF= ;(2)当∠MEN+∠MFN=120°时,求t的值;(3)试探索∠EFR与∠ERF之间的数量关系,并说明理由;(4)∠PMN的平分线与直线ER交于点K,求∠EKM的度数.28.(2022春•沭阳县月考)已知AB∥CD,点E是平面内一点,∠CDE的角平分线与∠ABE的角平分线交于点F.(1)若点E的位置如图1所示.①若∠ABE=58°,∠CDE=82°,则∠F= °;②探究∠F与∠BED的数量关系,并说明理由;(2)若点E的位置如图2所示,∠F与∠BED满足的数量关系式是 .为 .29.(2022春•江都区月考)已知:AB∥CD,点E为射线FG上一点.(1)如图1,写出∠A、∠AED、∠D之间的数量关系并说明理由;(2)如图2,写出∠A、∠AED、∠D之间的数量关系并说明理由;(3)如图3,AH平分∠BAE,DH交AH于点H,交AE于点K,且∠EDH:∠CDH=2:1,∠AED=20°,∠H=30°,求∠EKD的度数.30.(2022春•崇川区期中)已知AB∥CD,连接A,C两点.(1)如图1,∠CAB与∠ACD的平分线交于点E,则∠AEC等于 度;(2)如图2,点M在射线AB反向延长线上,点N在射线CD上.∠AMN与∠ACN的平分线交于点E.若∠AMN=45°,∠ACN=70°,求∠MEC的度数;(3)如图3,图4,M,N分别为射线AB,射线CD上的点,∠AMN与∠ACN的平分线交于点E.设∠AMN=α,∠ACN=β(α≠β),请直接写出图中∠MEC的度数(用含α,β的式子表示).。
--
平行线的判定与性质练习题精选
一、填空
1.如图1,若∠A=∠3,则 ∥ ; 若∠2=∠E,则 ∥ ; 若∠ +∠ = 180°,则 ∥ .
2.如图3,若∠1 +∠2 = 180°,则 ∥ 。
3.如图4,∠1、∠2、∠3、∠4、∠5中, 同位角有 ;
内错角有 ;同旁内角有 . 4.如图5,填空并在括号中填理由:
(1)由∠ABD =∠CDB得 ∥ ( ); (2)由∠CAD =∠ACB 得 ∥ ( ); (3)由∠CBA +∠BAD = 180°得 ∥ ( )
A
C
B
4
1 2
3 5
图4
a b
c d 1
2
3 图3
A B C
E D
1 2 3 图1
A
D
C
B
O
图5 图6
5 1 2
4
3 l 1
l 2
图7
5 4 3
2 1 A D
C B
--
5.如图6,尽可能多地写出直线l 1∥l 2的条
件: . 6.如图7,尽可能地写出能判定AB∥CD 的条件来: . 7.如图8,推理填空:
(1)∵∠A =∠ (已知),
∴AC∥ED( ); (2)∵∠2 =∠ (已知),
∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知),
∴AB∥FD( ); (4)∵∠2 +∠ = 180°(已知),
∴AC∥ED( );
8.如图,已知AB ⊥BC,BC ⊥CD,∠1=∠2.试判断BE 与CF 的关系,并说明你的理由. 解:BE ∥CF.
理由:∵AB ⊥BC ,BC⊥CD(已知)
∴ _________ = _________ =90° _________ ∵∠1=∠2 _________
1 2 3
A
F
C
D B
E 图8
--
D
C
B
A 1
2
∴∠ABC ﹣∠1=∠BCD ﹣∠2,即∠EBC=∠B CF ∴ _________ ∥ _________ . 9.填空,完成下列说理过程
如图,AB 、CD 被CE 所截,点A在CE 上,如果AF 平分∠CAB 交C D于F ,并且∠1=∠3,那么AB 与CD 平行吗?请说明理由. 解:因为AF 平分∠CAB(已知),
所以∠1=∠ _________ ( _________ ). 又因为∠1=∠3(已知), 所以 _________ (等量代换). 所以AB ∥CD ( _________ ).
10、如图9所示,AD ∥BC,∠1=78°,∠2=40°,求∠AD C的度数.
11.已知:如图⑿,C E平分∠ACD ,∠1=∠B,
求证:AB ∥CE
--
12、如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF.
[二]、平行线的性质1: 2、 3、 一、填空
1.如图1,已知∠1 = 100°,AB∥CD,则∠2 = ,∠3 = ,∠4 = .
2.如图2,直线AB 、CD 被EF 所截,若∠1 =∠2,则∠AEF +∠CFE = .
E
B
A
F
D
C
图8
图1
2
4 3
1
A
B
C
D E
1 2 A B D
C
E
F
图2 1 2 3 4 5
A B C D F
E 图
3
1
2 A
B
C
D
E F 图4
3.如图3所示
(1)若EF∥AC,则∠A +∠=180°,∠F + ∠=180°( ).
(2)若∠2 =∠ ,则AE∥BF.
(3)若∠A +∠= 180°,则AE∥BF.
4.如图4,AB∥CD,∠2=2∠1,则∠2=.
5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是( )
A、第一次左拐30°,第二次右拐30°
B、第一次右拐50°,第二次
左拐130°
C、第一次右拐50°,第二次右拐130°ﻩ
D、第一次向左拐50°,第二次
向左拐120°
6、如图,下列能判定AB∥CD的条件有()个.
(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.
错误!未定义书签。
A、1ﻩﻩB、2 C、3ﻩD、4
7、如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是( )
A、错误!未定义书签。
∠1=∠2ﻩﻩ
B、∠3=∠4
C、∠5=∠BﻩD、∠B+∠BDC=18
0°
--
--
8、如图,已知BC DE //, 80=∠B , 56=∠C ,
1. 求ADE ∠和DEC ∠的度数。
(7分)
9.如图,已知:21∠∠=, 50=D ∠,求B ∠的度数。
(8分)
H
G 2
1
E
D
C B
A
E
D
C
B
A
--
10.如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.
b
a
341
2
11.如图,直线l n l m ⊥⊥,,∠1=∠2,求证∠3=∠4.(10分)
12.如图,已知CD AB //,
40=∠B ,CN 是BCE ∠的平分线,CN CM ⊥, 求BCM ∠的度数。
N
M
E
D
C
B
A。