初一数学试卷难题+好题
- 格式:docx
- 大小:88.78 KB
- 文档页数:4
初一不等式难题,经典题训练(附答案)1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0521x a x ->⎧⎨-≥-⎩无解,则a 的取值范围是_________3. 若关于x 的不等式(a-1)x-2a +2>0的解集为x<2,则a 的值为( )A 0B 2C 0或2D -1 4. 若不等式组220x a b x ->⎧⎨->⎩的解集为11x -<<,则2006()a b +=_________5. 已知关于x 的不等式组的解集41320x xx a +⎧>+⎪⎨⎪+<⎩为x<2,那么a 的取值范围是_________6. 若方程组的解满足4143x y k x y +=+⎧⎨+=⎩条件01x y <+<,则k 的取值范围是( )A. 41k -<<B. 40k -<<C. 09k <<D. 4k >- 7. 不等式组9511x x x m +<+⎧⎨>+⎩的解集是2x >,则m 的取值范围是( )A. 2m ≤B. 2m ≥C. 1m ≤D. 1m f 8.不等式()()20x xx +-<的解集是_________9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______10.已知a,b 为常数,若ax+b>0的解集是13x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x <11.如果关于x 的不等式组的整7060x m x n -≥⎧⎨-⎩p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对共有( )对A 49B 42C 36D 13 12.已知非负数x,y,z 满足123234x y z ---==,设345x y z ω=++,求的ω最大值与最小值12.不等式A 卷1.不等式2(x + 1) -12732-≤-xx 的解集为_____________。
一、选择题1. 题目:下列各数中,有理数是()A. √3B. πC. 0.1010010001…(循环小数)D. √-1答案:C解析:有理数是可以表示为两个整数之比的数,包括整数、分数和小数(有限小数和循环小数)。
选项A、B是无理数,选项D是虚数,选项C是循环小数,属于有理数。
2. 题目:下列各数中,绝对值最大的是()A. -3B. -2C. -1D. 0答案:A解析:绝对值表示一个数到数轴原点的距离,不考虑方向。
因此,绝对值最大的数是距离原点最远的数。
选项A的绝对值是3,而其他选项的绝对值都是1,所以选项A的绝对值最大。
3. 题目:若a=2,b=-1,则下列各式中,正确的是()A. a+b=3B. a-b=1C. ab=-2D. a÷b=-2答案:C解析:代入a和b的值,得到:A. a+b=2+(-1)=1B. a-b=2-(-1)=3C. ab=2×(-1)=-2D. a÷b=2÷(-1)=-2只有选项C正确。
二、填空题4. 题目:若a=-3,b=2,则|a-b|的值是()答案:5解析:|a-b|=|-3-2|=|-5|=55. 题目:若x²=25,则x的值是()答案:±5解析:x²=25,可以得出x=±√25,即x=±5。
三、解答题6. 题目:已知a、b是方程x²-4x+3=0的两个根,求a+b和ab的值。
答案:a+b=4,ab=3解析:根据韦达定理,方程x²-4x+3=0的两个根a和b满足:a+b=4(系数为-4的一次项的相反数)ab=3(系数为1的常数项)7. 题目:若x=2是方程ax²+bx+c=0的一个根,且a+b+c=0,求方程的另一个根。
答案:x=-1解析:根据题意,x=2是方程ax²+bx+c=0的一个根,代入得到:4a+2b+c=0又因为a+b+c=0,所以:2a+b=0解得b=-2a将b代入原方程,得到:ax²-2ax+c=0因为x=2是方程的一个根,所以:4a-4a+c=0c=0代入b=-2a,得到:b=-2a将b和c代入原方程,得到:ax²-2ax=0因为a≠0,所以:x(x-2)=0解得x=0或x=2由于x=2是方程的一个根,所以另一个根是x=-1。
一、 初一数学上册精选难题二、 选择题1.以下各组数据为长度的三条线段,能组成三角形的是A .1,2,3B .1,4,3C .5,9,5D .2,7,3 2.下列事件中,是确定的事件为( )A 、掷一枚骰子6点朝上B 、买一张电影票,座位号是偶数C 、黑龙江冬天会下雪D 、从装有3个红球和2个白球的口袋中,摸出一个球是红球 3.为了了解某地区初一年级4500名学生的体重情况,从中抽取了500名学生的体重,就这个问题来说,下面说法中正确的是A .样本容量是500B .每个学生是个体C .500名学生是所抽取的一个样本D .4500名学生是总体 4.下列条件中,不能判定△ABC ≌△A ′B ′C ′,的是( )A .∠A=∠A ,∠C=∠C ,AC=A ′C ′B .∠B=∠B ,BC=B ′C ′,AB=A ′B ′C .∠A=∠A ′=80°,∠B=60°,∠C ′=40°,AB=A ′B ′D .∠A=∠A ,BC=B ′C ′,AB=A ′B ′ 5.如图,若AD ∥B C ,则A .∠DAC=∠BCAB .∠BAC=∠DCAC .∠DAC=∠BACD .∠B+∠BCD=180° 6.下列计算正确的是( )A 、x 2+x 3=x 5B 、x 2•x 3=x 6C 、(-x 3)2= -x 6D 、x 6÷x 3=x 37.如图,在5×5方格纸中,将图①中的三角形乙平移到图②中所示位置,与三角形拼成一个长方形,那么,下面的平移方法中,正确的是( )A .先向上平移3格,再向左平移l 格B .先向上平移2格,再向左平移1格C .先向上平移3格,再向左平移2格D .先向上平移2格,再向左平移2格8. 下列条件中,不能判定三角形全等的是( )A .三条边对应相等B .两边和一角对应相等C .两角的其中一角的对边对应相等D .两角和它们的夹边对应相等 9.下列乘法中,不能运用平方差公式进行运算的是( )A 、(x +a )(x -a )B 、(b +m )(m -b )C 、(-x -b )(x -b )D 、(a+b )(-a -b )10.如图,在△ABC 中,AD ⊥BC 于点D ,BD=CD ,若BC=6,AD=5,则图中阴影部分的面积为A .30B .15C .7.5D .611. 从数字2,3,4中任取两个不同的数字,其积不小于8,发生的概率是( ) A31 B 32 C 61 D 21 12.火车站和汽车站都为旅客提供打包服务,如果长、宽、高分别为x 、y 、z 的箱子按如图所示的方式打包,则打包带的长至少为( ) A 、z y x 1044++ B 、z y x 32++C 、z y x 642++D 、z y x 686++13. .如图,下列条件中,不能判断直线l1∥l2的是()A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180°(第13图) 14.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯角度可能是()A、第一次向右拐50°,第二次向左拐130°B、第一次向左拐30°,第二次向右拐30°C、第一次向右拐50°,第二次向右拐130°D、第一次向左拐50°,第二次向左拐130°15. 将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()16.下列图象中,哪个图象能大致刻画在太阳光的照射下,太阳能热水器里面的水的温度与时间的关系.( )0 时间0 时间0 时间0A B C D17.给出下列图形名称:(1)线段(2)梯形(3)等腰三角形(4)平行四边形(5)长方形,在这五种图形中是轴对称图形的有()(A)1个(B)2个(C)3个(D)4个二、填空题1.多项式x2y-2xy+3的是次项式,二次项的系数是.2.近似数0.055万精确到位,有个有效数字,用科学记数法表示记作。
人教版七年级上册数学难题一、有理数运算相关难题。
1. 计算:(-2)^2020+(-2)^2021- 解析:- 根据幂运算法则a^m× a^n = a^m + n。
- 对于(-2)^2020,它是一个正数,因为负数的偶次幂是正数。
- 对于(-2)^2021,它可以写成(-2)^2020×(-2)。
- 那么(-2)^2020+(-2)^2021=(-2)^2020+(-2)^2020×(-2)。
- 提取公因式(-2)^2020得(-2)^2020×(1 - 2)。
- 因为(-2)^2020=2^2020,所以2^2020×(-1)= - 2^2020。
2. 若| a|=3,| b| = 5,且a与b异号,求a + b的值。
- 解析:- 因为| a| = 3,所以a=±3;因为| b| = 5,所以b=±5。
- 又因为a与b异号,当a = 3时,b=-5,则a + b=3+( - 5)=-2;当a=-3时,b = 5,则a + b=-3 + 5 = 2。
3. 计算:(-1)+2+(-3)+4+·s+(-99)+100- 解析:- 可以将相邻的两项看作一组,如(-1)+2 = 1,(-3)+4 = 1,以此类推。
- 从1到100共有100个数,两两一组,共有50组。
- 所以原式的值为50×1 = 50。
4. 已知a,b互为相反数,c,d互为倒数,m的绝对值是2,求(a + b)/(m)+m - cd 的值。
- 解析:- 因为a,b互为相反数,所以a + b = 0。
- 因为c,d互为倒数,所以cd = 1。
- 因为m的绝对值是2,所以m=±2。
- 当m = 2时,(a + b)/(m)+m - cd=(0)/(2)+2 - 1 = 1;当m=-2时,(a +b)/(m)+m - cd=(0)/(-2)-2 - 1=-3。
呼和浩特市初一下学期数学期末压轴难题试卷带答案一、选择题1.16的算术平方根是()A .4B .4-C .2D .2-2.在以下现象中,属于平移的是( )①在荡秋千的小朋友的运动;②坐观光电梯上升的过程;③钟面上秒针的运动;④生产过程中传送带上的电视机的移动过程.A .①②B .②④C .②③D .③④ 3.点A (-2,-4)所在象限为( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.下列命题中属假命题的是( )A .两直线平行,内错角相等B .a ,b ,c 是直线,若a ⊥b ,b ⊥c ,则a ⊥cC .a ,b ,c 是直线,若a //b ,b //c ,则a //cD .无限不循环小数是无理数,每一个无理数都可以用数轴上的一个点表示5.如图,直线////AB CD EF ,点O 在直线AB 上,下列结论正确的是( )A .12390∠+∠-∠=︒B .12390∠+∠+∠=︒C .321180∠+∠-∠=︒D .132180∠+∠-∠=︒6.下列运算中:①2551114412=;②22222-=-=-;③33(3)3-=;④3648=,错误的个数有( )A .1个B .2个C .3个D .4个7.如图,AB ∥CD ,将一块三角板(∠E =30°)按如图所示方式摆放,若∠EFH =25°,求∠HGD 的度数( )A .25°B .30°C .55°D .60°8.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (4,0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以6个单位秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是( )A .(0,2)B .(﹣4,0)C .(0,﹣2)D .(4,0)二、填空题9.已知实数x,y 满足2x -+(y+1)2=0,则x-y 的立方根是_____.10.若点()3,P m 与(),6Q n -关于x 轴对称,则2m n -=____________________________. 11.如图,在△ABC 中,∠A=50°,∠C=72°,BD 是△ABC 的一条角平分线,求∠ADB=__度.12.如图,AD//BC ,24,:1:2C ADB BDC ∠=∠∠=,则DBC ∠=____度.13.如图,折叠三角形纸片ABC ,使点B 与点C 重合,折痕为DE ;展平纸片,连接AD .若AB =6cm ,AC =4cm ,则△ABD 与△ACD 的周长之差为____________.14.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的是________.15.点P (2a ,2﹣3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为12,则点P 的坐标是__.16.如图,在平面直角坐标系中,三角形123A A A ,三角形345A A A ,三角形567A A A 都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形.若三角形123A A A 的顶点坐标分别为()12,0A ,()21,1A ,()30,0A ,则按图中规律,点9A 的坐标为______.三、解答题17.计算:(1)3(2)1627(1)--+--⨯-(2)223(5)3-+--18.求下列各式中的x :(1)3641250x -=; (2)3(1)8x +=; (3)3(21)270x -+=.19.完成下面的证明:如图,点D 、E 、F 分别是三角形ABC 的边BC 、CA 、AB 上的点,连接DE ,DF ,//DE AB ,BFD CED ∠=∠,连接BE 交DF 于点G ,求证:180EGF AEG ∠+∠=︒.证明:∵//DE AB (已知)∴A CED ∠=∠(_______________)又∵BFD CED ∠=∠(已知)∴A BFD ∠=∠(______________)∴//DF AC (_____________)∴180EGF AEG ∠+∠=︒(______________)20.如图,在正方形网格中,三角形ABC 的三个顶点和点D 都在格点上(正方形网格的交点称为格点).点A ,B ,C 的坐标分别为()2,4-,()4,0-,()0,1.平移三角形ABC ,使点A 平移到点D ,点E ,F 分别是B ,C 的对应点.(1)请画出平移后的三角形DEF ,并分别写出点E 、F 的坐标;(2)求ABC 的面积;(3)在x 轴上是否存在一点M ,使得BCM ABC S S =△△,若存在,请求出M 的坐标,若不存在,请说明理由.21.阅读下面的文字,解答问题. 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用21-来表示2的小数部分,你同意小明的表示方法吗? 事实上,小明的表示方法是有道理,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:(1)若13的整数部分为a ,小数部分为b ,求213a b +-的值. (2)已知:103x y +=+,其中x 是整数,且01y <<,求x y -的值.二十二、解答题22.(1)如图,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_______cm ;(2)若一个圆的面积与一个正方形的面积都是22cm π,设圆的周长为C 圆,正方形的周长为C 正,则C 圆_____C 正(填“=”或“<”或“>”号);(3)如图,若正方形的面积为2400cm ,李明同学想沿这块正方形边的方向裁出一块面积为2300cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?二十三、解答题23.已知,//AE BD ,A D ∠=∠.(1)如图1,求证://AB CD ;(2)如图2,作BAE ∠的平分线交CD 于点F ,点G 为AB 上一点,连接FG ,若CFG ∠的平分线交线段AG 于点H ,连接AC ,若ACE BAC BGM ∠=∠+∠,过点H 作HM FH ⊥交FG 的延长线于点M ,且3518E AFH ∠-∠=︒,求EAF GMH ∠+∠的度数.24.已知:ABC 和同一平面内的点D .(1)如图1,点D 在BC 边上,过D 作//DE BA 交AC 于E ,//DF CA 交AB 于F .根据题意,在图1中补全图形,请写出EDF ∠与BAC ∠的数量关系,并说明理由;(2)如图2,点D 在BC 的延长线上,//DF CA ,EDF BAC ∠=∠.请判断DE 与BA 的位置关系,并说明理由.(3)如图3,点D 是ABC 外部的一个动点.过D 作//DE BA 交直线AC 于E ,//DF CA 交直线AB 于F ,直接写出EDF ∠与BAC ∠的数量关系,并在图3中补全图形.25.直线MN 与直线PQ 垂直相交于O ,点A 在射线OP 上运动,点B 在射线OM 上运动,A 、B 不与点O 重合,如图1,已知AC 、BC 分别是∠BAP 和∠ABM 角的平分线,(1)点A 、B 在运动的过程中,∠ACB 的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB 的大小.(2)如图2,将△ABC 沿直线AB 折叠,若点C 落在直线PQ 上,则∠ABO =________, 如图3,将△ABC 沿直线AB 折叠,若点C 落在直线MN 上,则∠ABO =________(3)如图4,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及其反向延长线交于E 、F ,则∠EAF = ;在△AEF 中,如果有一个角是另一个角的32倍,求∠ABO 的度数.26.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC 中,若100A ∠=︒,70B ∠=︒,10C ∠=︒,则ABC 是“准互余三角形”; ②若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则20B ∠=︒;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=︒.若P 是直线l 上一点,且ABP △是“准互余三角形”,请直接写出APB ∠的度数.【参考答案】一、选择题1.A解析:A【分析】根据算术平方根的意义求解即可.【详解】解:16的算术平方根为4,【点睛】本题考查了算术平方根,理解算术平方根的意义是解决问题的关键.2.B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.【详解】解析:B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.【详解】①在荡秋千的小朋友的运动,不是平移;②坐观光电梯上升的过程,是平移;③钟面上秒针的运动,不是平移;④生产过程中传送带上的电视机的移动过程.是平移;故选:B.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.C【分析】先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【详解】A(-2,-4)的横坐标是负数,纵坐标是负数,符合点在第三象限的条件,所以点A在第三象限.故选C.【点睛】本题主要考查点的坐标所在的象限,解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据平行线的性质对A、C进行判断;根据平行线的性质对B进行判断;根据无理数的定义和数轴上的点与实数一一对应对D进行判断.解:A 、两直线平行,内错角相等,所以A 选项为真命题;B 、a ,b ,c 是直线,若a ⊥b ,b ⊥c ,则a ∥c ,所以B 选项为假命题;C 、a ,b ,c 是直线,若a ∥b ,b ∥c ,则a ∥b ,所以C 选项为真命题;D 、无限不循环小数是无理数,每一个无理数都可以用数轴上的一个点表示,所以D 选项为真命题.故选:B .【点睛】此题考查了平行线的性质和无理数及数轴表示实数,难度一般,认真理解判断即可. 5.D【分析】根据两直线平行,同旁内角互补可得∠1+∠AOF =180°,再根据两直线平行,内错角相等可得∠3=∠AOC ,而通过∠AOF =∠AOC-∠2,整理可得∠1+∠3-∠2=180°.【详解】解:∵AB ∥EF ,∴∠1+∠AOF =180°,∵CD ∥AB ,∴∠3=∠AOC ,又∵∠AOF =∠AOC −∠2=∠3-∠2,∴∠1+∠3-∠2=180°.故选:D .【点睛】本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键. 6.D【分析】对每个选项依次计算判断即可.【详解】2131=,故该项错误;3-,故该项错误;4=,故该项错误.共4个错误的,故选:D.【点睛】此题考查平方根、立方根的化简,熟记平方根、立方根的性质即可正确化简.7.C【分析】先根据三角形外角可求∠EHB =∠EFH +∠E =55°,根据平行线性质可得∠HGD =∠EHB =55°即可.【详解】解:∵∠EHB为△EFH的外角,∠EFH=25°,∠E=30°,∴∠EHB=∠EFH+∠E=25°+30°=55°,∵AB∥CD,∴∠HGD=∠EHB=55°.故选C.【点睛】本题考查三角形外角性质,平行线性质,掌握三角形外角性质,平行线性质是解题关键.8.A【分析】利用行程问题中的相遇问题,由于矩形的边长为8和4,物体乙是物体甲的速度的3倍,求得每一次相遇的地点,找出规律即可解答.【详解】解:矩形的边长为8和4,因为物体乙是物体甲的速度的3倍解析:A【分析】利用行程问题中的相遇问题,由于矩形的边长为8和4,物体乙是物体甲的速度的3倍,求得每一次相遇的地点,找出规律即可解答.【详解】解:矩形的边长为8和4,因为物体乙是物体甲的速度的3倍,时间相同,物体甲与物体乙的路程比为1:3,由题意知:①第一次相遇物体甲与物体乙行的路程和为24×1,物体甲行的路程为24×14=6,物体乙行的路程为24×34=18,在DE边相遇;②第二次相遇物体甲与物体乙行的路程和为24×2,物体甲行的路程为24×2×14=12,物体乙行的路程为24×2×34=36,在DC边相遇;③第三次相遇物体甲与物体乙行的路程和为24×3,物体甲行的路程为24×3×14=18,物体乙行的路程为24×3×34=54,在BC边相遇;④第四次相遇物体甲与物体乙行的路程和为24×4,物体甲行的路程为24×4×14=24,物体乙行的路程为24×4×34=72,在A点相遇;此时甲乙回到原出发点,则每相遇四次,两点回到出发点,2021÷4=505…1,故两个物体运动后的第2020次相遇地点的是点A,即物体甲行的路程为24×1×14=6,物体乙行的路程为24×1×34=18时,达到第2021次相遇,此时相遇点的坐标为:(0,2),故选:A.【点睛】本题主要考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题.二、填空题9.【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3的立方根是.【点睛】本题考查的是【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3【点睛】本题考查的是非负数的性质和立方根的概念,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.10.0【分析】根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.【详解】∵点与关于轴对称∴∴,故答案为:0.【点睛】本题主要考查了平面直角坐标系内点解析:0【分析】根据平面直角坐标系中关于x 轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.【详解】∵点(3,)P m 与(,6)Q n -关于x 轴对称∴36n m =-=-,∴262(3)0m n -=--⨯-=,故答案为:0.【点睛】本题主要考查了平面直角坐标系内点的轴对称,熟练掌握相关点的轴对称特征是解决本题的关键.11.101【分析】直接利用三角形内角和定理得出∠ABC 的度数,再利用角平分线的性质结合三角形内角和定理得出答案.【详解】∵在△ABC 中,∠A=50°,∠C=72°,∴∠ABC=180°−50°解析:101【分析】直接利用三角形内角和定理得出∠ABC 的度数,再利用角平分线的性质结合三角形内角和定理得出答案.【详解】∵在△ABC 中,∠A=50°,∠C=72°,∴∠ABC=180°−50°−72°=58°,∵BD 是△ABC 的一条角平分线,∴∠ABD=29°,∴∠ADB=180°−50°−29°=101°.故答案为:101.【点睛】此题考查三角形内角和定理,解题关键在于掌握其定理.12.52【分析】根据AD//BC ,可知,根据三角形内角和定理以及求得,结合题意,即可求得.【详解】,,,,,.故答案为:52.【点睛】本题考查了平行线的性质,三角形内角和定理,解析:52【分析】根据AD//BC ,可知ADB DBC ∠=∠,根据三角形内角和定理以及24,C ∠=求得CBD BDC ∠+∠,结合题意:1:2ADB BDC ∠∠=,即可求得DBC ∠.【详解】//AD BC ,∴ADB DBC ∠=∠,:1:2ADB BDC ∠∠=,:1:2DBC BDC ∴∠∠=,24,C ∠=180********CBD BDC C ∴∠+∠=︒-∠=︒-︒=︒,1()523DBC CBD BDC ∴∠=∠+∠=︒. 故答案为:52.【点睛】本题考查了平行线的性质,三角形内角和定理,角度的计算,掌握以上知识是解题的关键.13.2cm【分析】由折叠的性质可得BD=CD ,即可求解.【详解】解:∵折叠三角形纸片ABC ,使点B 与点C 重合,∴BD=CD ,∵△ABD 的周长=AB+BD+AD=6+BD+AD ,△ACD 的周长解析:2cm【分析】由折叠的性质可得BD =CD ,即可求解.【详解】解:∵折叠三角形纸片ABC ,使点B 与点C 重合,∴BD =CD ,∵△ABD 的周长=AB +BD +AD =6+BD +AD ,△ACD 的周长=AC +AD +CD =4+CD +AD ,∴△ABD 与△ACD 的周长之差=6-4=2cm ,故答案为:2cm .【点睛】本题考查了翻折变换,掌握折叠的性质是本题关键.14.【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵,∴n 和q 互为相反数,O 在线段NQ 的中点处,∴绝对值最大的是点P 表示的数.故解析:p【分析】根据0n q +=可以得到n q 、的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵0n q +=,∴n 和q 互为相反数,O 在线段NQ 的中点处,∴绝对值最大的是点P 表示的数p .故答案为:p .【点睛】本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答. 15.(-4,8)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a ,即可得解.【详解】解:∵点P (2a ,2-3a )是第二象限内的一个点,且P 到两坐标轴的距离之和为12,∴-2a解析:(-4,8)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a ,即可得解.【详解】解:∵点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12,∴-2a+2-3a=12,解得a=-2,∴2a=-4,2-3a=8,∴点P的坐标为(-4,8).故答案为:(-4,8).【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.【分析】根据题意可以知道A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6,进行计算求解即可.【详解】解:由题意得 A7A8A9的斜边长为8 ,A3A4A5的斜边6,0解析:()【分析】根据题意可以知道A7A8A9的斜边长为8,A3A4A5的斜边长为4,A5A6A7的斜边长为6,进行计算求解即可.【详解】解:由题意得A7A8A9的斜边长为8,A3A4A5的斜边长为4,A5A6A7的斜边长为6∴A7A9=8,A5A7=6,A3A5=4∴A3A7= A5A7- A3A5=2∴A3A7= A7A9- A3A7=6又∵A3与原点重合∴A9的坐标为(6,0)故答案为:(6,0).【点睛】本题主要考查了坐标与图形的变化,解题的关键在于能够准确从图形中获取信息求解.三、解答题17.(1);(2)【分析】(1)根据算术平方根,立方根的求法结合实数混合运算法则计算即可;(2)先根据绝对值的意义化简绝对值,然后根据算术平方根的求法以及实数混合运算法则计算即可.【详解】解:解析:(1)3;(2)5【分析】(1)根据算术平方根,立方根的求法结合实数混合运算法则计算即可;(2)先根据绝对值的意义化简绝对值,然后根据算术平方根的求法以及实数混合运算法则计算即可.【详解】解:(1)原式=24(3)(1)+--⨯-=633-=;(255【点睛】本题考查了实数的混合运算,算术平方根以及立方根的求法,绝对值等知识点,题目比较基础,熟练掌握基础知识点是关键.18.(1);(2)1;(3)-1.【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可.【详解】解:(1),∴ ,∴,∴;(2解析:(1)54;(2)1;(3)-1. 【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可.【详解】解:(1)3641250x -=,∴ ()334=5x , ∴4=5x , ∴5=4x ; (2)3(1)8x +=∴33(1)2x +=∴12x +=∴1x =;(3)3(21)270x -+=,∴()33(21)3x -=-, ∴213x -=-,∴1x =-.【点睛】本题考查了利用立方根的含义解方程,熟知立方根的定义是解决问题的关键.19.两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的性质与判定进行证明即可得到答案.【详解】证明:∵(已知)∴(两直线平行,同位角相等)解析:两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的性质与判定进行证明即可得到答案.【详解】证明:∵//DE AB (已知)∴A CED ∠=∠(两直线平行,同位角相等)又∵BFD CED ∠=∠(已知)∴A BFD ∠=∠(等量代换)∴//DF AC (同位角相等,两直线平行)∴180EGF AEG ∠+∠=.(两直线平行,同旁内角互补)【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 20.(1)画图见解析,E (2,-2),F (6,-1);(2)7;(3)(10,0)或(-18,0)【分析】(1)根据平移的性质即可画出平移后的三角形DEF ,并写出点E ,F 的坐标; (2)利用割补法计解析:(1)画图见解析,E (2,-2),F (6,-1);(2)7;(3)(10,0)或(-18,0)【分析】(1)根据平移的性质即可画出平移后的三角形DEF ,并写出点E ,F 的坐标; (2)利用割补法计算即可;(3)根据△ABC 的面积得到△BCM 的面积,从而计算出BM ,可得点M 的坐标;【详解】解:(1)如图,三角形DEF 即为所求,点E (2,-2),F (6,-1);(2)S △ABC =11144423241222⨯-⨯⨯-⨯⨯-⨯⨯=7;(3)∵7BCM ABC S S ==△△,点C 的坐标为(0,1),∴BM =72114⨯÷=,∵B (-4,0),∴点M 的坐标为(10,0)或(-18,0).【点睛】本题考查了作图-平移变换,三角形的面积,解决本题的关键是掌握平移的性质. 21.(1)6;(2)12−【分析】(1)先求出的取值范围即可求出a 和b 的值,然后代入求值即可;(2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x 和y ,从而求出结论.【详解】解析:(1)6;(2)3【分析】(113a 和b 的值,然后代入求值即可;(233x 和y ,从而求出结论.【详解】解:(1)∵ 34,∴∴2a b +=23=6(2) ∵.又∵x +y ,其中x 是整数,且0<y <1,∴x =11, y 1.∴x −y【点睛】此题考查的是求无理数的整数部分、小数部分和实数的运算,掌握求无理数的取值范围是解决此题的关键.二十二、解答题22.(1);(2);(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形解析:(12)<;(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,∴,(2)∵22r ππ=, ∴r = ∴2=2C r π=圆设正方形的边长为a∵22a π=, ∴a∴=4C a =正∴1C C =<圆正故答案为:<;(3)解:不能裁剪出,理由如下:∵长方形纸片的长和宽之比为3:2,∴设长方形纸片的长为3x ,宽为2x ,则32300x x ⋅=,整理得:250x =,∴22(3)9950450x x ==⨯=,∵450>400,∴22(3)20x >,∴320x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.二十三、解答题23.(1)见解析;(2)【分析】(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;(2)过点E 作,延长DC 至Q ,过点M 作,根据平行线的性质及等量代换可得出,再根据平角的解析:(1)见解析;(2)72︒【分析】(1)根据平行线的性质得出180A B ∠+∠=︒,再根据等量代换可得180B D ∠+∠=︒,最后根据平行线的判定即可得证;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB ,根据平行线的性质及等量代换可得出ECQ BGM DFG ∠=∠=∠,再根据平角的含义得出ECF CFG ∠=∠,然后根据平行线的性质及角平分线的定义可推出,BHF CFH CFA FAB ∠=∠∠=∠;设,FAB CFH αβ∠=∠=,根据角的和差可得出2AEC AFH ∠=∠,结合已知条件35180AEC AFH ∠-∠=︒可求得18AFH ∠=︒,最后根据垂线的含义及平行线的性质,即可得出答案.【详解】(1)证明://AE BD180A B ∴∠+∠=︒A D ∠=∠180B D ∴∠+∠=︒//AB CD ∴;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB//AB CDQCA CAB ∴∠=∠,BGM DFG ∠=∠,CFH BHF ∠=∠,CFA FAG ∠= ACE BAC BGM ∠=∠+∠ECQ QCA BAC BGM ∴∠+∠=∠+∠ECQ BGM DFG ∴∠=∠=∠180,180ECQ ECD DFG CFG ∠+=︒∠+=︒ ECF CFG ∴∠=∠//AB CD//AB EP ∴,PEA EAB PEC ECF ∴∠=∠∠=∠AEC PEC PEA ∠=∠-∠AEC ECF EAB ∴∠=∠-∠ECF AEC EAB ∴∠=∠+∠AF 平分BAE ∠12EAF FAB EAB ∴∠=∠=∠ FH 平分CFG ∠12CFH HFG CFG ∴∠=∠=∠ //CD AB,BHF CFH CFA FAB ∴∠=∠∠=∠设,FAB CFH αβ∠=∠=AFH CFH CFA CFH FAB ∠=∠-∠=∠-∠AFH βα∴∠=-,BHF CFH β∠=∠=222ECF AFH AEC EAB AFH AEC β∴∠+∠=∠+∠+∠=∠+22ECF AFH E BHF ∴∠+∠=∠+∠2AEC AFH ∴∠=∠35180AEC AFH ∠-∠=︒18AFH ∴∠=︒FH HM ⊥90FHM ∴∠=︒90GHM β∴∠=︒-180CFM NMF ∠+∠=︒90HMB HMN β∴∠=∠=︒-EAF FAB ∠=∠18EAF CFA CFH AFH β∴∠=∠=∠-∠=-︒189072EAF GMH ββ∴∠+∠=-︒+︒-=︒72EAF GMH ∴∠+∠=︒.【点睛】本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键.24.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;(2)如图(见解析),先根据平行线的性质可解析:(1)图见解析,EDF BAC ∠=∠,理由见解析;(2)//DE BA ,理由见解析;(3)图见解析,EDF BAC ∠=∠或180EDF BAC ∠+∠=︒.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,EDF BFD B B D AC F ∠=∠∠∠=,由此即可得;(2)如图(见解析),先根据平行线的性质可得BAC BOD ∠=∠,再根据等量代换可得EDF BOD ∠=∠,然后根据平行线的判定即可得;(3)先根据点D 的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得.【详解】(1)由题意,补全图形如下:EDF BAC∠=∠,理由如下:DE BA,//∴∠=∠,EDF BFDDF CA,//∴∠=∠,BABFD C∴∠=∠;EDF BACDE BA,理由如下:(2)//如图,延长BA交DF于点O,DF CA,//∴∠=∠,BAC BOD∠=∠,EDF BAC∴∠=∠,EDF BOD//∴;DE BA(3)由题意,有以下两种情况:∠=∠,理由如下:①如图3-1,EDF BAC//DE BA,E EAF∴∠+∠=︒,180DF CA,//E EDF∴∠+∠=︒,180∴∠=∠,EAF EDF由对顶角相等得:BAC EAF∠=∠,∴∠=∠;EDF BAC②如图3-2,180EDF BAC ∠+∠=︒,理由如下://DE BA ,180EDF F ∴∠+∠=︒,//DF CA ,BAC F ∴∠=∠,180EDF BAC ∴∠+∠=︒.【点睛】本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键.25.(1)∠AEB 的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN 与直线PQ 垂直相交于O ,得到∠AOB =90°,根据三角形的外角的性质得到∠解析:(1)∠AEB 的大小不会发生变化,∠ACB =45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN 与直线PQ 垂直相交于O ,得到∠AOB =90°,根据三角形的外角的性质得到∠PAB +∠ABM =270°,根据角平分线的定义得到∠BAC =12∠PAB ,∠ABC =12∠ABM ,于是得到结论;(2)由于将△ABC 沿直线AB 折叠,若点C 落在直线PQ 上,得到∠CAB =∠BAQ ,由角平分线的定义得到∠PAC =∠CAB ,即可得到结论;根据将△ABC 沿直线AB 折叠,若点C 落在直线MN 上,得到∠ABC =∠ABN ,由于BC 平分∠ABM ,得到∠ABC =∠MBC ,于是得到结论;(3)由∠BAO 与∠BOQ 的角平分线相交于E 可得出∠E 与∠ABO 的关系,由AE 、AF 分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的32倍分情况进行分类讨论即可.【详解】解:(1)∠ACB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分别是∠BAP和∠ABM角的平分线,∴∠BAC=12∠PAB,∠ABC=12∠ABM,∴∠BAC+∠ABC=12(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵将△ABC沿直线AB折叠,若点C落在直线MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案为:30°,60°;(3)∵AE、AF分别是∠BAO与∠GAO的平分线,∴∠EAO=12∠BAO,∠FAO=12∠GAO,∴∠E=∠EOQ﹣∠EAO=12(∠BOQ﹣∠BAO)=12∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=∠EAO+∠FAO=12(∠BAO+∠GAO)=90°.在△AEF中,∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO= 12∠BAO,∠EOQ=12∠BOQ,∴∠E=∠EOQ-∠EAO=12(∠BOQ-∠BAO)=12∠ABO,∵有一个角是另一个角的32倍,故有:①∠EAF =32∠F ,∠E =30°,∠ABO =60°; ②∠F =32∠E ,∠E =36°,∠ABO =72°; ③∠EAF =32∠E ,∠E =60°,∠ABO =120°(舍去); ④∠E =32∠F ,∠E =54°,∠ABO =108°(舍去); ∴∠ABO 为60°或72°.【点睛】本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想.26.(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由90ABC A ∠+∠=︒和BD 是ABC 的角平分线,证明290ABD A ∠+∠=︒即可; (2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A +∠ABC =90°;②∠A +2∠APB =90°;③2∠APB +∠ABC =90°;④2∠A +∠APB =90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在Rt ABC 中,90ACB ∠=︒,∴90ABC A ∠+∠=︒,∵BD 是ABC ∠的角平分线,∴2ABC ABD ∠=∠,∴290ABD A ∠+∠=︒,∴ABD △是“准互余三角形”;(2)①∵70,10B C ∠=︒∠=︒,∴290B C ∠+∠=︒,∴ABC 是“准互余三角形”,故①正确;②∵60A ∠=︒, 20B ∠=︒,∴210090A B ∠+∠=︒≠︒,∴ABC 不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,,αβγ,且αβγ<<,∵三角形是“准互余三角形”,∴290αβ+=︒或290αβ+=︒,∴90αβ+<︒,∴180()90γαβ=︒-+>︒,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB 的度数是10°或20°或40°或110°;如图①,当2∠A +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A =20°,∴∠APB =110°;如图②,当∠A +2∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A +∠APB =50°,∴∠APB =40°;如图③,当2∠APB +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠APB =20°;如图④,当2∠A +∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,ABP△是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.。
一、选择题(每题5分,共50分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 若m=2,n=-3,则下列式子中值为0的是()A. m+nB. m-nC. mnD. m/n3. 在直角坐标系中,点P(-2,3)关于x轴的对称点是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)4. 下列分式中最简的是()A. 3/9B. 5/10C. 7/14D. 2/45. 若a=5,b=2,则下列代数式中值为负数的是()A. a-bB. a+bC. abD. a/b6. 下列图形中,是轴对称图形的是()A. 正方形B. 长方形C. 三角形D. 梯形7. 若等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长为()A. 18cmB. 20cmC. 22cmD. 24cm8. 下列函数中,图象是一条直线的是()A. y=x^2B. y=2x+1C. y=3x-2D. y=5x^2-2x+19. 下列方程中,无解的是()A. 2x+3=7B. 3x-5=1C. 4x+2=8D. 5x-6=010. 下列数列中,第10项是100的是()A. 1, 3, 5, 7, ...B. 2, 4, 6, 8, ...C. 3, 6, 9, 12, ...D. 4, 8, 12, 16, ...二、填空题(每题5分,共50分)11. 已知x+y=10,xy=15,则x^2+y^2的值为______。
12. 若一个数是3的倍数,同时又是5的倍数,那么这个数一定是______的倍数。
13. 在直角坐标系中,点A(-4,5)与点B(2,-3)之间的距离是______。
14. 若一个数的平方根是2,那么这个数是______。
15. 在等腰三角形ABC中,AB=AC,若BC=8cm,则AB和AC的长度之和是______cm。
16. 已知一次函数y=kx+b的图象经过点(1,3),且斜率k>0,则该函数图象与x 轴的交点坐标是______。
七年级数学难题一、有理数运算相关难题题目:计算:(-2)^3 [(-3)^2 2^2×(-8.5)]÷(-0.5)^2解析:1. 先计算幂运算:(-2)^3=-8,因为负数的奇次幂是负数,(-2)×(-2)×(-2)= 8。
(-3)^2 = 9,2^2=4,(-0.5)^2 = 0.25=(1)/(4)。
2. 再计算括号内的式子:先算乘法:2^2×(-8.5)=4×(-8.5)= 34。
然后计算中括号内的式子:(-3)^2 2^2×(-8.5)=9-(-34)=9 + 34=43。
3. 接着计算除法:43÷(-0.5)^2=43÷(1)/(4)=43×4 = 172。
4. 最后计算原式:(-2)^3-[(-3)^2 2^2×(-8.5)]÷(-0.5)^2=-8-172=-180。
二、一元一次方程相关难题题目:某班有学生45人,会下象棋的人数是会下围棋人数的3.5倍,两种棋都会及两种棋都不会的人数都是5人,求只会下围棋的人数。
解析:1. 设会下围棋的有x人,则会下象棋的有3.5x人。
2. 全班人数可以表示为:只会下围棋的人数+只会下象棋的人数+两种棋都会的人数+两种棋都不会的人数。
只会下围棋的人数为x 5,只会下象棋的人数为3.5x-5。
可列方程:(x 5)+(3.5x-5)+5 + 5=45。
3. 化简方程:x-5+3.5x 5+5+5 = 45。
合并同类项得:4.5x=45。
4. 解得:x = 10。
5. 所以只会下围棋的人数为x-5=10 5=5人。
三、几何图形初步相关难题题目:一个角的补角比它的余角的3倍少20°,求这个角的度数。
解析:1. 设这个角的度数为x。
2. 它的补角为(180 x)^∘,余角为(90 x)^∘。
3. 根据题意可列方程:180 x=3(90 x)-20。
人教版(七年级)初一下册数学期末压轴难题测试题及答案一、选择题1.9的算术平方根是()A .3±B .9±C .3D .-32.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D .3.平面直角坐标系中,点()2,3P -所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列四个命题:①5是25的算术平方根;②()24-的平方根是-4;③经过直线外一点,有且只有一条直线与这条直线平行;④同旁内角互补.其中真命题的个数是( ). A .0个B .1个C .2个D .3个5.如图,//AB CD ,AC 平分BAD ∠,B CDA ∠=∠,点E 在AD 的延长线上,连接EC ,2B CED ∠=∠,下列结论:①//BC AD ;②CA 平分BCD ∠;③AC EC ⊥;④ECD CED ∠=∠.其中正确的个数为( )A .1个B .2个C .3个D .4个6.下列说法正确的是( )A .一个数的立方根有两个,它们互为相反数B .负数没有立方根C .任何一个数都有平方根和立方根D .任何数的立方根都只有一个7.在同一平面内,若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠A 的度数为( ) A .20°B .55°C .20°或125°D .20°或55°8.已知点0(E x ,)o y ,点2(F x ,2)y ,点1(M x ,1)y 是线段EF 的中点,则0212x x x +=,0212y y y +=.在平面直角坐标系中有三个点A (1,1-),B (1-,1-),C (0,1),点P (0,2)关于点A 的对称点1P (即P ,A ,1P 三点共线,且1)PA P A =,1P 关于点B 的对称点2P ,2P 关于点C 的对称点3P ,⋯按此规律继续以A ,B ,C 三点为对称点重复前面的操作.依次得到点4P ,5P ,6P ⋯,则点2015P 的坐标是( ) A .(0,0)B .(0,2)C .(2,4-)D .(4-,2)二、填空题9.计算:36的结果为_____.10.点(,1)a 关于x 轴的对称点的坐标为(5,)b ,则+a b 的值是______.11.如图,在ABC ∆中A α∠=,作ABC ∠的角平分线与ACB ∠的外角的角平分线交于点1A ;1A BC ∠的角平分线与1A CB ∠角平分线交于2A ,如此下去,则2021A ∠=__________.12.如图,AD//BC ,24,:1:2C ADB BDC ∠=∠∠=,则DBC ∠=____度.13.如图,将一张长方形纸条折成如图的形状,若170∠=︒,则2∠的度数为____.14.已知,a b 为两个连续的整数,且 15a b <<,则 a b +=_______ 15.若点P (2m+4,3m+3)在x 轴上,则点P 的坐标为________.16.如图,在平面直角坐标系中,点P 由原点O 出发,第一次跳动至点()11,1P ,第二次向左跳动3个单位至点()22,1P -,第三次跳动至点()32,2P ,第四次向左跳动5个单位至点()43,2P -,第五次跳动至点()53,3P ,…,依此规律跳动下去,点P 的第2020次跳动至点2020P 的坐标是_______.三、解答题17.计算:(1);(2)18.求下列各式中x 的值. (1)4x 2=64; (2)3(x ﹣1)3+24=0.19.如图,已知EF ∥AD ,1 2.∠=∠试说明180.DGA BAC ∠+∠=︒请将下面的说明过程填写完整.解:EF ∥AD ,(已知) 2∴∠=______.(______).又12∠=∠,(已知)13∴∠=∠,(______).AB ∴∥______,(______) 180.(DGA BAC ∴∠+∠=︒______)20.如图,ABC 的三个顶点坐标分别为()2,3A -,()0,1B ,()2,2C .(1)在平面直角坐标系中,画出ABC;(2)将ABC向下平移4个单位长度,得到111A B C△,并写出点1A的坐△,并画出111A B C标.21.阅读下面的文字,解答问题:大家知道,2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用21-来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差是小数部分.又例如,因为479<<,所以7的整数部分为2,小数部分为<<,即273-.请解答:72(1)83的整数部分为;小数部分为;(2)如果35的整数部分为a,35的小数部分为b,求2235-+的值.a b二十二、解答题22.如图,8块相同的小长方形地砖拼成一个大长方形,(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?二十三、解答题23.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN.(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,①试判断PM与MN的位置关系,并说明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线)(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理)24.已知,如图①,∠BAD=50°,点C为射线AD上一点(不与A重合),连接BC.(1)[问题提出]如图②,AB∥CE,∠BCD=73 °,则:∠B= .(2)[类比探究]在图①中,探究∠BAD、∠B和∠BCD之间有怎样的数量关系?并用平行....线的性质....说明理由.(3)[拓展延伸]如图③,在射线BC上取一点O,过O点作直线MN使MN∥AD,BE平分OG BE交AD于G点,当C点沿着射∠ABC交AD于E点,OF平分∠BON交AD于F点,//线AD方向运动时,∠FOG的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值.25.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E.(1)如图1,点D 在线段CG 上运动时,DF 平分∠EDB①若∠BAC =100°,∠C =30°,则∠AFD = ;若∠B =40°,则∠AFD = ; ②试探究∠AFD 与∠B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,∠BDE 的角平分线所在直线与射线AG 交于点F 试探究∠AFD 与∠B 之间的数量关系,并说明理由26.已知AB //CD ,点E 是平面内一点,∠CDE 的角平分线与∠ABE 的角平分线交于点F . (1)若点E 的位置如图1所示.①若∠ABE =60°,∠CDE =80°,则∠F = °; ②探究∠F 与∠BED 的数量关系并证明你的结论;(2)若点E 的位置如图2所示,∠F 与∠BED 满足的数量关系式是 .(3)若点E 的位置如图3所示,∠CDE 为锐角,且1452E F ∠≥∠+︒,设∠F =α,则α的取值范围为 .【参考答案】一、选择题 1.C 解析:C 【分析】根据一个非负数的正的平方根,即为这个数的算术平方根解答即可. 【详解】解:9的算术平方根是3, 故选C . 【点睛】本题考查的是算术平方根的性质,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.2.D 【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等. 【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的. 故选:D . 【点睛】解析:D 【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等. 【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的. 故选:D . 【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等. 3.D 【分析】根据点在各象限的坐标特点即可得答案. 【详解】∵点的横坐标2>0,纵坐标-3<0, ∴点()2,3P -所在的象限是第四象限, 故选:D . 【点睛】本题考查直角坐标系,解决本题的关键是记住平面直角坐标系中各个象限内点的坐标的符号:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.C 【分析】根据相关概念逐项分析即可. 【详解】①5是25的算术平方根,故原命题是真命题; ②()24-的平方根是4±,故原命题是假命题;③经过直线外一点,有且只有一条直线与这条直线平行,故原命题是真命题; ④两直线平行,同旁内角互补,故原命题是假命题; 故选:C .【点睛】本题考查命题真假的判断,涉及到平方根,平行公理,以及平行线的性质,熟练掌握基本定理和性质是解题关键.5.D【分析】结合平行线性质和平分线判断出①②正确,再结合平行线和平分线根据等量代换判断出③④正确即可.【详解】解:∵AB//CD,∴∠1=∠2,∵AC平分∠BAD,∴∠2=∠3,∴∠1=∠3,∵∠B=∠CDA,∴∠1=∠4,∴∠3=∠4,∴BC//AD,∴①正确;∴CA平分∠BCD,∴②正确;∵∠B=2∠CED,∴∠CDA=2∠CED,∵∠CDA=∠DCE+∠CED,∴∠ECD=∠CED,∴④正确;∵BC//AD,∴∠BCE+∠AEC= 180°,∴∠1+∠4+∠DCE+∠CED= 180°,∴∠1+∠DCE = 90°,∴∠ACE= 90°,∴AC⊥EC,∴③正确故其中正确的有①②③④,4个,故选:D.【点睛】此题考查平行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键.6.D【分析】根据负数没有平方根,一个正数的平方根有两个且互为相反数,一个数的立方根只有一个,结合选项即可作出判断. 【详解】A 、一个数的立方根只有1个,故本选项错误;B 、负数有立方根,故本选项错误;C 、负数只有立方根,没有平方根,故本选项错误;D 、任何数的立方根都只有一个,故本选项正确. 故选:D . 【点睛】本题考查了平方根、算术平方根、立方根的概念,解决本题的关键是熟记平方根、算术平方根、立方根的概念. 7.C 【分析】根据∠A 与∠B 的两边分别平行,可得两个角大小相等或互补,因此分两种情况,分别求∠A 得度数. 【详解】解:∵两个角的两边分别平行, ∴这两个角大小相等或互补, ①这两个角大小相等,如下图所示:由题意得,∠A =∠B ,∠A =3∠B -40°, ∴∠A =∠B =20°,②这两个角互补,如下图所示:由题意得,180A B ∠+∠=︒,340A B ∠=∠-︒, ∴55B ∠=︒,125A ∠=︒,综上所述,∠A 的度数为20°或125°, 故选:C . 【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.8.A【分析】首先利用题目所给公式求出的坐标,然后利用公式求出对称点的坐标,依此类推即可求出的坐标;由的坐标和的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点的坐标 【详解】 解:设, ∵,解析:A 【分析】首先利用题目所给公式求出1P 的坐标,然后利用公式求出对称点2P 的坐标,依此类推即可求出7P 的坐标;由7P 的坐标和1P 的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点2015P 的坐标 【详解】解:设()1P xy ,, ∵()1,1A -,()0,2P ,且A 是1PP 的中点, ∴021122x y ++==-,,解得:2y 4x ==-,, ∴()124P -, 同理可得:()()()()()()234567424022000224P P P P P P ----,,,,,,,,,,,, ∴每6个点一个循环, ∵201533656=∴点2015P 的坐标是()500P , 故选A 【点睛】此题考查了平面直角坐标系中坐标规律的探索,读懂题目,利用题目所给公式是解题的关键,利用公式求出几个点的坐标,找到循环规律,利用这个规律即可求出.二、填空题 9.6 【分析】根据算术平方根的定义即可求解. 【详解】 解:的结果为6. 故答案为6 【点睛】考查了算术平方根,非负数a 的算术平方根a 有双重非负性:①被开方数a 是非负数;②算术平方根a本身是非负数解析:6【分析】根据算术平方根的定义即可求解.【详解】6.故答案为6【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数.10.4【分析】根据横坐标不变,纵坐标相反,确定a,b的值,计算即可.【详解】∵点关于轴的对称点的坐标为,∴a=5,b= -1,∴a+b= 5-1=4,故答案为:4.【点睛】本题考查了坐解析:4【分析】根据横坐标不变,纵坐标相反,确定a,b的值,计算即可.【详解】∵点(,1)a关于x轴的对称点的坐标为(5,)b,∴a=5,b= -1,∴a+b= 5-1=4,故答案为:4.【点睛】本题考查了坐标系中轴对称问题,熟练掌握轴对称的坐标变化特点是解题的关键.11.【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即可.【详解】解:设BC延长与点D,∵,的角平分线与的外角的角平分线交于点,∴,同 解析:202112α【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出A ∠与1A ∠,A ∠与2A ∠的关系,找出规律即可.【详解】解:设BC 延长与点D ,∵180ACD ACB ∠=︒-∠, ABC ∠的角平分线与ACD ∠的外角的角平分线交于点1A ,∴111180()A A BC ACB ACA ∠=︒-∠+∠+∠11180(180)22ABC ACB ACB =︒-∠-∠-︒-∠ 190()2ABC ACB =︒-∠+∠ 190(180)2A =︒-︒-∠ 12A =∠, 同理可得1221122A A A ∠=∠=∠, 2331122A A A ∠=∠=∠, ∴2021202112A A ∠=∠,∵A α∠=,∴2021202112A α∠=,故答案为:202112α.【点睛】 本题主要考查三角形外角的性质,角平分线的定义,三角形内角和等知识点,熟知以上知识点,找出角度之间的规律是解题的关键.12.52根据AD//BC ,可知,根据三角形内角和定理以及求得,结合题意,即可求得.【详解】,,,,,.故答案为:52.【点睛】本题考查了平行线的性质,三角形内角和定理,解析:52【分析】根据AD//BC ,可知ADB DBC ∠=∠,根据三角形内角和定理以及24,C ∠=求得CBD BDC ∠+∠,结合题意:1:2ADB BDC ∠∠=,即可求得DBC ∠.【详解】//AD BC ,∴ADB DBC ∠=∠,:1:2ADB BDC ∠∠=,:1:2DBC BDC ∴∠∠=,24,C ∠=180********CBD BDC C ∴∠+∠=︒-∠=︒-︒=︒,1()523DBC CBD BDC ∴∠=∠+∠=︒. 故答案为:52.【点睛】本题考查了平行线的性质,三角形内角和定理,角度的计算,掌握以上知识是解题的关键.13.55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,∴∠3=∠4=55°,解析:55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,∵AB//DE,∴∠2=∠3=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.14.7【分析】由无理数的估算,先求出a、b的值,再进行计算即可.【详解】解:∵,∴,∵、为两个连续的整数,,∴,,∴;故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确解析:7【分析】由无理数的估算,先求出a、b的值,再进行计算即可.【详解】解:∵∴34<,∵a、b为两个连续的整数,a b<,b=,∴3a=,4a b+=+=;∴347故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确求出a、b的值,从而进行解题.15.(2,0)【分析】根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.【详解】解:∵点P(2m+4,3m+3)在x轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P解析:(2,0)【分析】根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.【详解】解:∵点P(2m+4,3m+3)在x轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P的坐标为(2,0),故答案为(2,0).16.【分析】根据点的坐标、坐标的平移寻找规律即可求解.【详解】解:因为P1(1,1),P2(-2,1),P3(2,2),P4(-3,2),P5(3,3),P6(-4,3),P7(4,解析:()1011,1010-【分析】根据点的坐标、坐标的平移寻找规律即可求解.【详解】解:因为P 1(1,1),P 2(-2,1),P 3(2,2),P 4(-3,2),P 5(3,3),P 6(-4,3),P 7(4,4),P 8(-5,4), …P 2n-1(n ,n ),P 2n (-n -1,n )(n 为正整数),所以2n =2020, ∴n =1010, 所以P 2020(-1011,1010),故答案为(-1011,1010).【点睛】本题考查了点的坐标、坐标的平移,解决本题的关键是寻找点的变化规律.三、解答题17.(1)0 ;(2)2【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可; 试题解析:①原式=2+2-4=0解析:(1)0 ;(2)【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可;试题解析:①原式=2+2-4=0②原式==18.(1)x=±4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可.【详解】解:(1)4x2=64,∴x2=16,∴x=±4;(2)3(x-1)解析:(1)x =±4;(2)x =-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可.【详解】解:(1)4x 2=64,∴x 2=16,∴x =±4;(2)3(x -1)3+24=0,∴3(x -1)3=-24,∴(x -1)3=-8,∴x -1=-2,∴x =-1.【点睛】本题主要考查了平方根和立方根,解题时注意一个正数的平方根有两个,不要漏解. 19.;两直线平行,同位角相等 ;等量代换;;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的判定和性质解答即可.【详解】解:EF ∥AD ,(已知)(两直线平行,同位角相等)解析:3∠ ;两直线平行,同位角相等 ;等量代换;DG ;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的判定和性质解答即可.【详解】 解:EF ∥AD ,(已知)23∴∠=∠(两直线平行,同位角相等)又12∠=∠,(已知)13∠∠∴=,(等量代换)AB DG ∴∥,(内错角相等,两直线平行)180DGA BAC ∴∠+∠=︒(两直线平行,同旁内角互补)故答案为:3∠ ;两直线平行,同位角相等 ;等量代换;DG ;内错角相等,两直线平行;两直线平行,同旁内角互补【点睛】本题考查平行线的判定与性质,熟记判定定理和性质定理是解题的关键.20.(1)见解析;(2)见解析,A1(-2,-1).【分析】(1)先根据坐标描出A 、B 、C 三点,然后顺次连接即可;(2)先根据平行描出A1、B1、C1三点,然后顺次连接即可得到,最后直接读出A点坐解析:(1)见解析;(2)见解析,A1(-2,-1).【分析】(1)先根据坐标描出A、B、C三点,然后顺次连接即可;(2)先根据平行描出A1、B1、C1三点,然后顺次连接即可得到111△,最后直接读出AA B C点坐标即可.【详解】解:(1)如图:△ABC即为所求;(2)如图:111△即为所求,点A1的坐标为(-2,-1).A B C【点睛】本题主要考查了坐标与图形、图形的平移等知识点,根据坐标描出图形是解答本题的关键.21.(1)9,;(2)15【分析】(1)根据题意求出所在整数范围,即可求解;(2)求出a,b然后代入代数式即可.【详解】解:(1)∵,即∴的整数部分为9,小数部分为(2)∵,即∴的整数部解析:(1)9839;(2)15【分析】(183(2)求出a,b然后代入代数式即可.【详解】解:(1)∵910<< ∴99(2)∵56<< ∴55∴5a =,5b =255)15a b -+=-+=【点睛】此题主要考查了二次根式的大小,熟练掌握二次根式的有关性质是解题的关键. 二十二、解答题22.(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可.【详解】解:解析:(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:32x y x y =⎧⎨+=⎩, 解得: 1.50.5x y =⎧⎨=⎩, ∴长是1.5m,宽是0.5m.(2)∵正方形的面积为7平方米,∴米,∵∴他不能剪出符合要求的桌布.【点睛】本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.二十三、解答题23.(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条解析:(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM+∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN;②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决.【详解】解:(1)①PM⊥MN,理由见解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ +∠QMN=90°,∴PM⊥MN;②过点N作NH∥CD,∵AB//CD,∴AB// NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,∴∠MNQ +∠MNH +∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度数为125°;(2)当点M,N分别在射线QC,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,∴∠APM +∠QMN=90°;当点M,N分别在射线QC,线段PQ上时,如图:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ -∠QMN=90°,∴∠APM -∠QMN=90°;当点M,N分别在射线QD,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM -∠QMN=90°;综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.24.(1);(2),见解析;(3)不变,【分析】(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用解析:(1)23︒;(2)BCD A B ∠=∠+∠,见解析;(3)不变, 25FOG ∠=︒【分析】(1)根据平行线的性质求出50A DCE ∠=∠=︒,再求出BCE ∠的度数,利用内错角相等可求出角的度数;(2)过点C 作CE ∥AB ,类似(1)利用平行线的性质,得出三个角的关系;(3)运用(2)的结论和平行线的性质、角平分线的性质,可求出FOG ∠的度数,可得结论.【详解】(1)因为CE ∥AB ,所以50A DCE ∠=∠=︒,B BCE ∠=∠因为∠BCD =73 °,所以23BCE BCD DCE ∠=∠-∠=︒,故答案为:23︒(2)BCD A B ∠=∠+∠,如图②,过点C 作CE ∥AB ,则A DCE ∠=∠,B BCE ∠=∠.因为BCD DCE BCE ∠=∠+∠,所以BCD BAD B ∠=∠+∠,(3)不变,设ABE x ∠=,因为BE 平分ABC ∠,所以CBE ABE x ∠=∠=.由(2)的结论可知BCD BAD ABC ∠=∠+∠,且50BAD ︒∠=,则:502BCD x ∠=︒+.因为MN ∥AD ,所以502BON BCD x ∠=∠=︒+,因为OF 平分BON ∠, 所以1252COF NOF BON x ∠=∠=∠=︒+. 因为OG ∥BE ,所以COG CBE x ∠=∠=,所以2525FOG COF COG x x ∠=∠-∠=+-=︒︒.【点睛】本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系.25.(1)①115°;110°;②;理由见解析;(2);理由见解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②1902AFD B ∠=︒+∠;理由见解析;(2)1902AFD B ∠=︒-∠;理由见解析 【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出12BAG BAC ∠=∠,12FDG EDB ∠=∠,由三角形的外角性质即可得出结果;②由①得:∠EDB=∠C ,1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=∠B+∠BAG ,再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,由三角形的外角性质和三角形内角和定理即可得出结论.【详解】(1)①若∠BAC=100°,∠C=30°,则∠B=180°-100°-30°=50°,∵DE ∥AC ,∴∠EDB=∠C=30°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,则∠BAC+∠C=180°-40°=140°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠1401402=︒+⨯︒ 4070110=︒+︒=︒故答案为:115°;110°; ②1902AFD B ∠=︒+∠; 理由如下:由①得:∠EDB=∠C ,12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ ()11802B B =∠+︒-∠ 1902B =︒+∠; (2)如图2所示:1902AFD B ∠=︒-∠;理由如下: 由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠, ∵∠AHF=∠B+∠BDH ,∴∠AFD=180°-∠BAG-∠AHF11802BAC B BDH =︒-∠-∠-∠1118022BAC B C =︒-∠-∠-∠ ()11802B BAC C =︒-∠-∠+∠ ()11801802B B =︒-∠-︒-∠ 1180902B B =︒-∠-︒+∠ 1902B =︒-∠. 【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.26.(1)①70;②∠F=∠BED ,证明见解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F =12∠BED ,证明见解析;(2)2∠F+∠BED =360°;(3)3045α︒≤<︒ 【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF ),求得∠ABF+∠CDF=70︒,即可求解; ②分别过E 、F 作EN//AB ,FM//AB ,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE ,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF ),同理得到∠F=∠ABF+∠CDF ,即可求解;(2)根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,过点E 作EG ∥AB ,则∠BEG+∠ABE=180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED 与∠BFD 之间的数量关系;(3)通过对1452E F ∠≥∠+︒的计算求得30α≥︒,利用角平分线的定义以及三角形外角的性质求得45α<︒,即可求得3045α︒≤<︒.【详解】(1)①过F 作FG//AB ,如图:∵AB ∥CD ,FG ∥AB ,∴CD ∥FG ,∴∠ABF=∠BFG ,∠CDF=∠DFG ,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,∵BF 平分∠ABE ,∴∠ABE=2∠ABF ,∵DF 平分∠CDE ,∴∠CDE=2∠CDF ,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF )=60︒+80︒=140︒,∴∠ABF+∠CDF=70︒,∴∠DFB=∠ABF+∠CDF=70︒,故答案为:70;②∠F=12∠BED ,理由是:分别过E 、F 作EN//AB ,FM//AB ,∵EN//AB ,∴∠BEN=∠ABE ,∠DEN=∠CDE ,∴∠BED=∠ABE+∠CDE ,∵DF 、BF 分别是∠CDE 的角平分线与∠ABE 的角平分线,∴∠ABE=2∠ABF ,∠CDE=2∠CDF ,即∠BED=2(∠ABF+∠CDF );同理,由FM//AB ,可得∠F=∠ABF+∠CDF ,∴∠F=12∠BED ;(3)2∠F+∠BED=360°.如图,过点E 作EG ∥AB ,则∠BEG+∠ABE=180°,∵AB ∥CD ,EG ∥AB ,∴CD ∥EG ,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE ),即∠BED=360°-(∠ABE+∠CDE ),∵BF 平分∠ABE ,∴∠ABE=2∠ABF ,∵DF 平分∠CDE ,∴∠CDE=2∠CDF ,∠BED=360°-2(∠ABF+∠CDF ),由①得:∠BFD=∠ABF+∠CDF ,∴∠BED=360°-2∠BFD ,即2∠F+∠BED=360°;(3)∵1452E F ∠≥∠+︒,∠F =α,∴2452αα≥+︒, 解得:30α≥︒,如图,∵∠CDE 为锐角,DF 是∠CDE 的角平分线,∴∠CDH=∠DHB 190452<⨯︒=︒, ∴∠F <∠DHB 45<︒,即45α<︒,∴3045α︒≤<︒,故答案为:3045α︒≤<︒.【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.。
一、选择题(每题5分,共50分)1. 下列各数中,是正数的是()A. -2.5B. 0C. -√9D. 32. 已知a > b,下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 < b - 1C. a - 1 > b + 1D. a + 1 < b - 13. 一个长方形的长是5cm,宽是3cm,它的周长是()A. 10cmB. 15cmC. 16cmD. 20cm4. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 圆D. 梯形5. 一个数的平方根是±3,这个数是()A. 9B. 81C. 9或81D. 无法确定6. 已知一个数的绝对值是6,这个数可能是()A. 6B. -6C. 6或-6D. 无法确定7. 在下列各式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^28. 已知x^2 = 25,则x的值为()A. 5B. -5C. 5或-5D. 无法确定9. 一个等腰三角形的底边长是6cm,腰长是8cm,它的周长是()A. 14cmB. 16cmC. 18cmD. 20cm10. 下列各数中,是无理数的是()A. √4B. √9C. √16D. √25二、填空题(每题5分,共50分)11. 3的平方根是______,9的平方根是______。
12. 已知x + y = 10,x - y = 2,则x = ______,y = ______。
13. 一个长方形的长是a cm,宽是b cm,它的面积是______cm²。
14. 已知一个数的绝对值是5,这个数可能是______。
15. 一个等边三角形的边长是a cm,它的周长是______cm。
数学题
一选择题:
1 过点P(-1,3)作直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作()
(A) 4条(B) 3条(C) 2条(D) 1条
2 如果,,那么的值为()
A.-2 B.-1 C.0 D.2
3 当-1≤≤2时,满足,则常数的取值范围是()
A、B、
C、且
D、
4 若表示一个整数,则整数m可取值的个数是()。
A、6个
B、7个
C、8个
D、9个
5 如图所示的4个的半径均为1,那么图中的阴影部分的面积为(? )
(A) (B) (C) 4 (D)6
(第5题) (第6题)
6 关于x的不等式2x-a≤-1的解集如图2所示,则a的取值是(?? )。
A、0
B、-3
C、-2
D、-1
7 已知:
的顶点坐标分别为,,,如将点向右平移2个单位后再向上平
移4个单位到达
点,若设
的面积为
,
的面积为
,则
的大小关系为(?? ?)
A .
B .
C .
D .不能确定
8 某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能正确计算出x 、y 的是( )
A .?
B .??
C .??
D .
9 下列说法正确个数有 ( )
①0是绝对值最小的有理数 ②相反数大于本身的数是负数 ③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小
A? 1? ? B?2?? C? 3?? D?4 10如图2所示,在矩形ABCD 中,AE=B=BF=
21AD=3
1
AB=2, E 、H 、G 在同一条直线上,则阴影部分的面积等于( )
(A)8. (B)12. (C)16. (D)20.
二 填空题:
1 有理数在数轴上的位置如图1所示,化简
2已知与是同类项,则=__。
3下列说法:①三角形的高、中线、角平分线都是线段;②内错角相等;③坐标平面内的点与有序数对是一一对应;④因为∠1=∠2,∠2=∠3,所以∠1=∠3。
其中正确的个数为 。
4 若方程组的解x 、y 都是正数,则m 的取值范围是_______________
5 已知2
(2)|2|0a b a +++=,则2a b -的值等于 .
6若代数式1-x-22 的值不大于1+3x3 的值,那么x 的取值范围是_____________。
7在 ABC 中,AB=14,BC=2x ,AC=3x ,则x 的取值范围是 。
8若x +2y+3z =10,4x +3y +2z =15,则x +y +z 的值是__________
9在∆ABC 中,如果∠B -∠A -∠C=50°,∠B=____________。
10如果三角形的一个外角等于和它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形各内角的度数是_________________________。
三 解答题: 1 解方程组:(每小题5分,本题共10分) (1)⎩⎨
⎧=+-=300342150y x y x (2)⎩⎨⎧⨯=+=+300
%25%53%5300
y x y x
2已知关于x 、y 的方程组⎩⎨
⎧=+=+73ay bx by ax 的解是⎩⎨⎧==1
2
y x ,求a b +的值
3 (1)计算(-10)3
+[]
2)31()4(2
2
⨯--- ; (2)解方程:
6
7
51413-=
--y y 。
4求不等式组()⎪⎩⎪
⎨⎧-<--≤-x x x x 32133
4
1312的整数解的和。
四 综合题:
1 利用二元一次方程组解决问题.
截至2009年4月30日,全国共接收国内外社会各界捐赠汶川地震抗震救灾款物合计767.12亿元人民币。
为纪念四川汶川5.12大地震一周年,我校积极组织捐款支援灾区重建,初一(2)班64名同学共捐款683元,捐款情况如下表所示.表中捐款5元和10元的人数不小心被墨水污染已 看不清楚,请你帮助确定表中看不清楚的数据,并说明理由.
捐款(元) 2 5 10 20 人数(人)
4
▓▓▓
▓▓▓
20
2 某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品50件.生产一件A 产品需要甲种原料9千克,乙种原料3千克,可获利润700元;生产一件B 产品,需要甲种原料4千克,乙种原料10千克,可获利润1200元.
(1)设生产x 件A 种产品,写出其题意x 应满足的不等式组;(2)由题意有哪几种按要求安排A 、B 两种产品的生产件数的生产方案?请您帮助设计出来。
3 在图所示的平面直角坐标系中表示下面各点:A (0,3);B (1,-3);C (3,-5); D (-3,-5);E (3,5);F (5,7);G (5,0) (1)A 点到原点O 的距离是 。
(2)将点C 向x 轴的负方向平移6个单位,它与点 重合。
(3)连接CE ,则直线CE 与y 轴是什么关系? (4)点F 分别到x 、y 轴的距离是多少?
4 在△ABC 中,∠A=
2
1
(∠B +∠C )、∠B -∠C=20°,求∠A 、∠B 、∠C 的度数。
5 我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?
6如图,CB ⊥AB ,垂足为A ,DA ⊥AB ,垂足为B .E 为AB 的中点,AB=BC ,CE ⊥BD . (1)请证明BE 与AD 相等
(2)线段AC 和线段DE 不存在有关系,你认为对吗?说说你的理由。
(3)有(2)结论得出一个新的结论并证明。
C
A
B
D E。