【物理试题】浙江专用2019版高考物理大二轮复习优选习题20题专练小卷.doc
- 格式:doc
- 大小:295.00 KB
- 文档页数:4
专题综合训练(三)1.如图所示,某区域电场线左右对称分布,M、N为对称线上两点。
下列说法正确的是()A.M点电势一定高于N点电势B.M点电场强度一定大于N点电场强度C.正电荷在M点的电势能小于在N点的电势能D.将电子从M点移动到N点,静电力做正功2.如图所示,菱形ABCD的对角线相交于O点,两个等量异种点电荷分别固定在AC连线上的M点与N 点,且OM=ON,则()A.A、C两处电势、电场强度均相同B.A、C两处电势、电场强度均不相同C.B、D两处电势、电场强度均相同D.B、D两处电势、电场强度均不相同3.如图所示,正方形线框由边长为L的粗细均匀的绝缘棒组成,O是线框的中心,线框上均匀地分布着正电荷,现在线框上边框中点A处取下足够短的带电量为q的一小段,将其沿OA连线延长线向上移动的距离到B点处,若线框的其他部分的带电量与电荷分布保持不变,则此时O点的电场强度大小为()A.kB.kC.kD.k4.如图,在竖直方向的匀强电场中有一带负电荷的小球(初速度不为零),其运动轨迹在竖直平面(纸面)内,截取一段轨迹发现其相对于过轨迹最高点O的竖直虚线对称,A、B为运动轨迹上的点,忽略空气阻力,下列说法不正确的是()A.B点的电势比A点高B.小球在A点的动能比它在B点的大C.小球在最高点的加速度不可能为零D.小球在B点的电势能可能比它在A点的大5.如图所示,真空中同一平面内MN直线上固定电荷量分别为-9Q和+Q的两个点电荷,两者相距为L,以+Q点电荷为圆心,半径为画圆,a、b、c、d是圆周上四点,其中a、b在MN直线上,c、d两点连线垂直于MN,一电荷量为q的负点电荷在圆周上运动,比较a、b、c、d四点,则下列说法错误的是()A.a点电场强度最大B.负点电荷q在b点的电势能最大C.c、d两点的电势相等D.移动负点电荷q从a点到c点过程中静电力做正功6.真空中,两个固定点电荷A、B所带电荷量分别为Q1和Q2,在它们共同形成的电场中,有一条电场线如图实线所示,实线上的箭头表示电场线的方向,电场线上标出了C、D两点,其中D点的切线与AB 连线平行,O点为AB连线的中点,则()A.B带正电,A带负电,且|Q1|>|Q2|B.O点电势比D点电势高C.负检验电荷在C点的电势能大于在D点的电势能D.在C点静止释放一带正电的检验电荷,只在电场力作用下将沿电场线运动到D点7.如图所示,矩形虚线框的真空区域内存在着沿纸面方向的匀强电场(具体方向未画出),一粒子从bc 边上的M点以速度v0垂直于bc边射入电场,从cd边上的Q点飞出电场,不计粒子重力。
20题专练小卷1.如图甲所示为一景区游乐滑道,游客坐在坐垫上沿着花岗岩滑道下滑,他可依靠手、脚与侧壁间的摩擦来控制下滑速度。
滑道简化图如乙所示,滑道由AB、BC、CD三段组成,各段之间平滑连接。
AB段和CD段与水平面夹角为θ1,竖直距离均为h0,BC段与水平面夹角为θ2,竖直距离为h0。
一质量为m的游客从A点由静止开始下滑,到达底端D点时的安全速度不得大于,已知sinθ1=、sinθ2=,坐垫与滑道底面间摩擦及空气阻力均不计,若未使用坐垫,游客与滑道底面间的摩擦力大小F f恒为重力的,运动过程中游客始终不离开滑道,问:(1)游客使用坐垫自由下滑(即与侧壁间无摩擦),则游客在BC段增加的动能ΔE k多大?(2)若游客未使用坐垫且与侧壁间无摩擦下滑,则游客到达D点时是否安全?(3)若游客使用坐垫下滑,则克服侧壁摩擦力做功的最小值是多少?2.如图所示,在水平轨道右侧安放半径为R=0.2 m的竖直圆形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为L=1 m,水平轨道左侧有一轻质弹簧,弹簧左端固定,弹簧处于自然状态。
质量为m=1 kg的小物块A(可视为质点)从轨道右侧以初速度v0=2 m/s冲上轨道,通过圆形轨道、水平轨道后压缩弹簧并被弹簧以原速率弹回,经水平轨道返回圆形轨道。
物块A与PQ段间的动摩擦因数μ=0.2,轨道其他部分摩擦不计,重力加速度g取10 m/s2。
求:(1)物块A与弹簧刚接触时的速度大小v1;(2)物块A被弹簧以原速率弹回返回到圆形轨道的高度h1;(3)调节PQ段的长度L,A仍以v0从轨道右侧冲上轨道,当L满足什么条件时,物块A能第一次返回圆形轨道且能沿轨道运动而不脱离轨道。
20题专练小卷1.答案 (1)mgh0(2)不安全(3)mgh0解析 (1)重力在BC段做的功即为增加的动能ΔE k可得ΔE k=W G=mgh0(2)在AD段,由动能定理,得mg-12F f h0=v D=到达D点时不安全(3)到达D点的速度为,对应的功最小。
加试选择题小卷(十)1.做“单缝衍射”实验和“双缝干涉”实验时,用激光比普通光源效果更好,图像更清晰。
如图甲所示,如果将感光元件置于光屏上,则不仅能在光屏上看到彩色条纹,还能通过感光元件中的信号转换,在电脑上看到光强的分布情况。
下列说法正确的是()A.做“单缝衍射”实验时,光强分布如图乙所示B.做“单缝衍射”实验时,光强分布如图丙所示C.做“双缝干涉”实验时,光强分布如图乙所示D.做“双缝干涉”实验时,光强分布如图丙所示2.美国物理学家密立根利用图甲所示的电路研究金属的遏止电压U c与入射光频率的关系,描绘出图乙中的图象,由此算出普朗克常量h。
电子电荷量用e表示,下列说法正确的是()A.入射光的频率增大,为了测遏止电压,则滑动变阻器的滑片P应向M端移动B.增大入射光的强度,光电子的最大初动能也增大C.由U c-ν图象可知,这种金属的截止频率为νcD.由U c-ν图象可求普朗克常量表达式为h=-3.电磁波已广泛运用于很多领域,下列关于电磁波的说法符合实际的是()A.电磁波不能产生衍射现象B.常用的遥控器通过发出紫外线脉冲信号来遥控电视机C.根据多普勒效应可以判断遥远天体相对于地球的运动速度D.光在真空中的传播速度在不同惯性系中测得的数值可能不同4.如图所示,简谐横波a沿x轴正方向传播,简谐横波b沿x轴负方向传播,波速都是10 m/s,振动方向都平行于y轴。
t=0时刻,这两列波的波形如图所示。
下列选项是平衡位置在x=2 m处的质点从t=0开始在一个周期内的振动图象,其中正确的是()5.在飞机的发展史中有一个阶段,飞机上天后不久,机翼很快就抖动起来,而且越抖越厉害,后来人们经过了艰苦的探索,利用在飞机机翼前缘处装置一个配重杆的方法,解决了这一问题,在飞机机翼前装置配重杆的主要目的是()A.加大飞机的惯性B.使机体更加平衡C.使机翼更加牢固D.改变机翼的固有频率6.如图所示,有一束平行于等边三棱镜截面ABC的单色光从空气射向E点,并偏折到F点,已知入射方向与边AB的夹角为θ=30°,E、F分别为边AB、BC的中点,则()A.该棱镜的折射率为B.光在F点发生全反射C.光从空气进入棱镜,波长变小D.从F点出射的光束与入射到E点的光束平行加试选择题小卷(十)1.AD解析双缝干涉条纹等间距,单缝衍射条纹一定不等间距,是中央宽、两边窄的明暗相间的条纹。
加试选择题小卷(六)1.根据图象,下列叙述正确的是()A.图甲所示的远距离输电通常通过提高电压以减少电能损耗B.图乙所示的行李安检仪采用γ射线来透视安检物品C.图丙所示的照相机镜头上呈现的淡绿色是由光的偏振引起的D.图丁所示的核反应堆可以通过调整插入镉棒的深度来控制核反应速度2.将一根较长的弹性细绳沿x轴放置,左端记为坐标原点,将绳子拉平后,手握左端,以固定的频率和振幅上下抖动(简谐运动),如图甲所示。
从抖动开始计时,在t=0.3 s时的波形如图乙所示,下列说法正确的是()A.手抖动绳的频率为2.5 HzB.在t=0.75 s时,A点的速度方向向上C.在0~0.3 s的时间内,质点B经过的路程为6 cmD.该列波遇到宽度为6 m的障碍物时不能发生衍射3.如图是氢原子能级图,大量处在激发态n=5能级的氢原子向低能级跃迁,a是从n=4能级跃迁到n=2能级产生的光,b是从n=5能级跃迁到n=3能级产生的光。
已知某金属的极限频率ν=5.53×1014 Hz,普朗克常量h=6.6×10-34J·s,电子电荷量e=1.6×10-19 C,则()A.在相同的双缝干涉实验装置中,a光产生的干涉条纹比b光更宽B.a光和b光的光子动量之比为255∶97C.用a光照射该金属时,能产生最大初动能为0.27 eV的光电子D.在同样的玻璃中,a光的传播速度大于b光的传播速度4.如图所示,沿x轴正方向传播的一列横波在某时刻的波形图为一正弦曲线,其波速为200 m/s,则下列说法正确的是()A.图中质点b的加速度在增大B.从图示时刻开始,经0.01 s质点a通过的路程为40 cm,此时相对平衡位置的位移为零C.从图示时刻开始,经0.01 s质点b位于平衡位置上方,并向上做减速运动D.若产生明显的衍射现象,该波所遇到障碍物的尺寸一般不小于200 m5.在磁感应强度为B的匀强磁场中,一个静止的放射性原子核发生了一次α衰变。
23题专练小卷1.如图所示,在空间xOy的第一象限内存在一沿x轴负方向,大小为E的匀强电场。
现有一质量为m,电量为+q的带电微粒(重力不计),在A(L,L)点无初速度释放,通过y轴上的P点进入第二象限,在第二象限内存在沿y轴负方向匀强电场,带电微粒最终从C(0,-2L)点离开第二象限。
(1)则第二象限内电场强度大小?带电微粒从C点离开的速度是多少?(2)若第二象限内仅存在沿垂直纸面的匀强磁场,使带电微粒仍从C(0,-2L)点离开,则磁感应强度大小?(3)若改变带电微粒释放点的位置从P点进入磁场,在第二象限有垂直纸面的圆形匀强磁场,使得粒子从C点离开的速度与只在电场时完全相同,则第二象限内圆形匀强磁场的磁感应强度是多少?圆形匀强磁场的面积是多少?2.如图所示,在无限长的竖直边界NS和MT间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM平面向外和向内的匀强磁场,磁感应强度大小分别为B和2B,KL为上下磁场的水平分界线。
在NS和MT边界上,距KL高h处分别有P、Q两点,NS和MT间距为1.8h,质量为m、电荷量为+q的粒子从P点垂直于NS边界射入该区域,在两边界之间做圆周运动,重力加速度为g。
(1)求电场强度的大小和方向。
(2)要使粒子不从NS边界飞出,求粒子入射速度的最小值。
(3)若粒子能经过Q点从MT边界飞出,求粒子入射速度的所有可能值。
23题专练小卷1.答案 (1)(2)(3)πL2解析 (1)粒子运动轨迹如图所示:在第一象限内:根据动能定理得:qEL=进入第二象限,在水平方向:2L=v P t在竖直方向:L=at2加速度为:a=联立可得:E'=在C点的竖直速度为:v Cy=at水平速度为:v Cx=v P联立可得:v C=方向与x轴负方向夹角45°(2)做圆周运动到达C点,如图所示:半径满足:R2=4L2+(R-L)2解得:R=2.5L洛伦兹力提供向心力:qv P B=可得:B=(3)因在磁场中速度大小不变,故改变带电微粒释放点的位置到P点时速度已经达到:v P=v C=要使磁感应强度B最小,则半径最大,如图所示:粒子进入第二象限时就进入磁场,从D点离开,过C点速度的反向延长线过水平位移的中点,由几何关系有,=L,所以轨迹半径:R=(+1)L根据洛伦兹力提供向心力:qBv P=m所以可得:B=圆形磁场的半径为r=,所以r=L所以面积为:S=πL22.答案 (1),方向竖直向上(2)(9-6(3)解析 (1)设电场强度大小为E。
提升训练8机械能守恒和能量守恒定律1.海洋能是一种蕴藏量极大的可再生能源,具有广阔的应用前景。
下列能源不属于海洋能的是()A.潮汐能B.波浪能C.太阳能D.海流能2.如图所示,具有一定初速度的物块,沿倾角为30°的粗糙斜面向上运动的过程中,受一个恒定的沿斜面向上的拉力F作用,这时物块的加速度大小为4 m/s2,方向沿斜面向下,那么,在物块向上运动的过程中,下列说法正确的是()A.物块的机械能一定增加B.物块的机械能一定减小C.物块的机械能可能不变D.无法确定3.市面上出售一种装有太阳能电扇的帽子(如图所示)。
在阳光的照射下,小电扇快速转动,能给炎热的夏季带来一丝凉爽。
该装置的能量转化情况是()A.太阳能→电能→机械能B.太阳能→机械能→电能C.电能→太阳能→机械能D.机械能→太阳能→电能4.物体做自由落体运动,E k表示动能,E p表示势能,h表示下落的距离,以水平地面为零势能面,下列所示图象中,能正确反映各物理量之间的关系的是()5.如图所示,竖直放置的等螺距螺线管高为h,该螺线管是用长为l的硬质直管(内径远小于h)弯制而成。
一光滑小球从上端管口由静止释放,关于小球的运动,下列说法正确的是()A.小球到达下端管口时的速度大小与l有关B.小球到达下端管口时重力的功率为mgC.小球到达下端的时间为D.小球在运动过程中受管道的作用力大小不变6.如图所示,一个人把质量为m的石块,从距地面高为h处,以初速度v0斜向上抛出。
以水平地面为参考平面,不计空气阻力,重力加速度为g,则()A.石块离开手的时刻机械能为B.石块刚落地的时刻动能为mghC.人对石块做的功是+mghD.人对石块做的功是7.如图所示,质量为m的物体(可视为质点)以某一速度从A点冲上倾角为30°的固定斜面,其运动的加速度为g,此物体在斜面上上升的最大高度为h,则在这个过程中物体()A.重力势能增加了mghB.动能损失了mghC.克服摩擦力做功mghD.机械能损失mgh8.2016年巴西里约奥运会上,中国选手邓薇以262 kg(抓举115 kg,挺举147 kg)的总成绩打破奥运会纪录、世界纪录。
(浙江专用)2019版高考物理大二轮复习优选习题仿真模拟卷3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专用)2019版高考物理大二轮复习优选习题仿真模拟卷3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专用)2019版高考物理大二轮复习优选习题仿真模拟卷3的全部内容。
仿真模拟卷(三)一、选择题Ⅰ(本题共13小题,每小题3分,共39分.每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.下列各选项中的负号表示方向的是()A.“—5 J”的功B.“-5 m/s"的速度C.“-5 ℃”的温度D。
“—5 V”的电势2。
如图,一物块在水平拉力F的作用下沿水平桌面做匀速直线运动。
若保持F的大小不变,而方向与水平面成60°角,物块也恰好做匀速直线运动。
物块与桌面间的动摩擦因数为()A.2—B.C。
D。
3.现在有一种观点,认为物理学是一门测量的科学。
那么在高中物理中的自由落体运动规律、万有引力常量、电流的热效应、元电荷的数值分别是由不同的科学家测量或发现的,他们依次是()A。
伽利略、牛顿、安培、密立根B。
牛顿、卡文迪许、奥斯特、库仑C.伽利略、卡文迪许、焦耳、密立根D.牛顿、开普勒、奥斯特、密立根4.鱼在水中沿直线水平向左减速游动过程中,水对鱼的作用力方向合理的是()5.质量分别为m1、m2的甲、乙两球,在离地相同高度处,同时由静止开始下落,由于空气阻力的作用,两球到达地面前经t0时间分别到达稳定速度v1、v2,已知空气阻力大小F f与小球的下落速率v成正比,即F f=kv(k>0),且两球的比例常数k完全相同,两球下落的v-t关系如图所示,下列说法正确的是()A.m1〈m2B.C.释放瞬间甲球的加速度较大D.t0时间内两球下落的高度相等6。
加试选择题小卷(八)1.如图所示,S1和S2是两个相干波源,其振幅均为A,周期均为T。
实线与虚线分别表示两列波的波峰和波谷。
此刻,c是波谷与波谷的相遇点,下列说法中正确的是()A.a处质点始终处于离平衡位置2A处B.随着时间的推移,c处的质点将向右移动C.从该时刻起,经过T,c处的质点将通过平衡位置D.若S2不动,S1沿S1b连线向b运动,则b处质点仍然始终处于平衡位置2.对下列现象解释正确的是()A.图甲和泊松亮斑的原理一样B.图乙和三棱镜色散的原理一样C.图丙和利用光学技术检查镜面的平整程度的原理一样D.图丁和偏振太阳镜的原理一样3.云室能显示射线的径迹,把云室放在磁场中,从带电粒子运动轨迹的弯曲方向和半径大小就能判断粒子的属性,放射性元素A的原子核静止放在磁感应强度B=2.5 T的匀强磁场中发生衰变,放射出粒子并变成新原子核B,放射出的粒子与新核运动轨迹如图所示,测得两圆的半径之比R1∶R2=42∶1,且R1=0.2 m,已知α粒子质量6.64×10-27 kg,β粒子质量mβ=9.1×10-31 kg,普朗克常量取h=6.6×10-34J·s,下列说法正确的是()A.新原子核B的核电荷数为84B.放射性元素A原子核发生的是β衰变C.衰变放射出的粒子的速度大小为2.4×107 m/sD.如果A原子核衰变时释放出一种频率为1.2×1015 Hz的光子,那么这种光子能使逸出功为4.54 eV的金属钨发生光电效应4.下列说法中正确的是()A.发生β衰变时,原子核发出电子,说明电子是原子核的组成部分B.α粒子的散射实验表明原子具有核式结构模型,还可确定各种元素原子核的电荷数C.铀核裂变的核反应方程可能是Xe+ Sr+nD.组成原子核的核子越多,它的结合能越大,比结合能越大,原子核越稳定5.图甲所示为一列沿x轴正方向传播的横波在t=0时刻的波动图象。
加试选择题小卷(九)1.下列说法正确的是()A.组成原子核的核子越多,原子核越稳定B U衰变为Rn经过4次α衰变、2次β衰变C.在LC振荡电路中,当电流最大时,线圈两端电势差也最大D.在电子的单缝衍射实验中,狭缝变窄,电子动量的不确定量变大2.氢原子的能级图如图所示,关于大量氢原子的能级跃迁,下列说法正确的是(可见光的波长范围为4.0×10-7~7.6×10-7 m,普朗克常量h=6.6×10-34 J·s,真空中的光速c=3.0×108 m/s)()A.氢原子从高能级跃迁到基态时,会辐射γ射线B.氢原子处在n=4能级,会辐射可见光C.氢原子从高能级向n=3能级跃迁时,辐射的光具有显著的热效应D.氢原子从高能级向n=2能级跃迁时,辐射的光在同一介质中传播速度最小的光子能量为1.89 eV3.两列频率相同、振幅均为A的简谐横波P、Q分别沿+x和-x轴方向在同一介质中传播,两列波的振动方向均沿y轴。
某时刻两波的波面如图所示,实线表示P波的波峰、Q波的波谷;虚线表示P波的波谷、Q波的波峰。
a、b、c为三个等间距的质点,d为b、c中间的质点。
下列判断正确的是()A.质点a的振幅为2AB.质点b始终静止不动C.图示时刻质点c的位移为0D.图示时刻质点d的振动方向沿y轴负方向4.一束白光经过三棱镜两次偏折后形成光谱,如图所示,其中a、b光位于谱线最外边。
下列说法中正确的是()A.在棱镜中a光的速度大于b光的速度B.从同种介质射入真空发生全反射时,a光临界角大于b光临界角C.a、b两光照射在同一双缝干涉实验装置上,a光对应的条纹间距小D.如果a、b两光照射在同一金属板上均能发生光电效应,a光对应的光电子最大初动能小5.如图所示,实线为空气和水的分界面,一束红光从空气中的A点沿AO1方向(O1点在分界面上,图中O1点和入射光线都未画出)射向水中,折射后通过水中的B点。
提升训练7 动能定理的应用1.图中给出一段“S”形单行盘山公路的示意图,弯道1、弯道2可看作两个不同水平面上的圆弧,圆心分别为O1,O2,弯道中心线半径分别为r1=10 m,r2=20 m,弯道2比弯道1高h=12 m,有一直道与两弯道圆弧相切。
质量m=1 200 kg的汽车通过弯道时做匀速圆周运动,路面对轮胎的最大径向静摩擦力是车重的1.25倍,行驶时要求汽车不打滑。
(sin 37°=0.6,sin 53°=0.8)(1)求汽车沿弯道1中心线行驶时的最大速度v1;(2)汽车以v1进入直道,以P=30 kW的恒定功率直线行驶了t=8.0 s,进入弯道2,此时速度恰为通过弯道2中心线的最大速度,求直道上除重力以外的阻力对汽车做的功;(3)汽车从弯道1的A点进入,从同一直径上的B点驶离,有经验的司机会利用路面宽度,用最短时间匀速安全通过弯道,设路宽d=10 m,求此最短时间(A、B两点都在轨道的中心线上,计算时视汽车为质点)。
2.(2017浙江金华十校期末)金华某商场门口根据金华“双龙”元素设计了一个精美的喷泉雕塑,两条龙喷出的水恰好相互衔接(不碰撞)形成一个“∞”字形。
某学习小组为了研究喷泉的运行原理,将喷泉简化成如图所示的模型,两个龙可以看成两个相同对称圆的一部分(近似看成在同一平面内),E、B两点为圆的最高点。
抽水机M使水获得一定的初速度后沿ABCDEFG运动,水在C、F两处恰好沿切线进入管道,最后回到池中。
圆半径为R=1 m,角度θ=53°,忽略一切摩擦。
(g取10 m/s2,sin 53°=0.8,cos 53°=0.6)求:(1)水从B点喷出的速度多大?(2)取B处一质量为m=0.1 kg的一小段水,管道对这一小段水的作用力多大?方向如何?(3)若管道B处横截面积为S=4 cm2,则抽水机M的输出功率是多少?(水密度ρ=1×103kg/m3)3.如图甲所示为一景区游乐滑道,游客坐在坐垫上沿着花岗岩滑道下滑,他可依靠手、脚与侧壁间的摩擦来控制下滑速度。
20题专练小卷
1.如图甲所示为一景区游乐滑道,游客坐在坐垫上沿着花岗岩滑道下滑,他可依靠手、脚与侧壁间的摩擦来控制下滑速度。
滑道简化图如乙所示,滑道由AB、BC、CD三段组成,各段之间平滑连接。
AB段和CD段与水平面夹角为θ1,竖直距离均为h0,BC段与水平面夹角为θ2,竖直距离为h0。
一质量为m的游客从A点由静止开始下滑,到达底端D点时的安全速度不得大于,已知sinθ1=、sinθ2=,坐垫与滑道底面间摩擦及空气阻力均不计,若未使用坐垫,游客与滑道底面间的摩擦力大小F f恒为重力的,运动过程中游客始终不离开滑道,问:
(1)游客使用坐垫自由下滑(即与侧壁间无摩擦),则游客在BC段增加的动能ΔE k多大?
(2)若游客未使用坐垫且与侧壁间无摩擦下滑,则游客到达D点时是否安全?
(3)若游客使用坐垫下滑,则克服侧壁摩擦力做功的最小值是多少?
2.如图所示,在水平轨道右侧安放半径为R=0.2 m的竖直圆形光滑轨道,水平轨道的PQ 段铺设特殊材料,调节其初始长度为L=1 m,水平轨道左侧有一轻质弹簧,弹簧左端固定,
弹簧处于自然状态。
质量为m=1 kg的小物块A(可视为质点)从轨道右侧以初速度
v
=2 m/s冲上轨道,通过圆形轨道、水平轨道后压缩弹簧并被弹簧以原速率弹回,经水0
平轨道返回圆形轨道。
物块A与PQ段间的动摩擦因数μ=0.2,轨道其他部分摩擦不计,
重力加速度g取10 m/s2。
求:
(1)物块A与弹簧刚接触时的速度大小v1;
(2)物块A被弹簧以原速率弹回返回到圆形轨道的高度h1;
(3)调节PQ段的长度L,A仍以v0从轨道右侧冲上轨道,当L满足什么条件时,物块A能
第一次返回圆形轨道且能沿轨道运动而不脱离轨道。
20题专练小卷1.答案 (1)mgh0(2)不安全(3)mgh0解析 (1)重力在BC段做的功即为增加的动能ΔE k 可得ΔE k=W G=mgh0
(2)在AD段,由动能定理,得
mg-12F
f h 0 =
v
D
=到达D点时不安全
(3)到达D点的速度为,对应的功最小。
在AD段,由动能定理,得
mg(h
0+h
+h
)-W=,
解得W=mgh0
2.答案 (1)v1=2 m/s(2)h1=0.2 m=R
(3)1 m≤L<1.5 m或L≤0.25 m
解析 (1)设物块A与弹簧刚接触时的速度大小为v1,物块从开始运动到P的过程,由动能定理,可得:
-μmgL=
代入数据解得:v1=2 m/s
(2)物块A被弹簧以原速率弹回返回到圆形轨道的高度为h1,由动能定理得:
-μmgL-mgh
1
=0-
代入数据解得:h1=0.2 m=R,符合实际
(3)①若A沿轨道上滑至最大高度h2时,速度减为0,则h2满足:0<h2≤R
由动能定理得:-2μmgL1-mgh2=0-
联立解得:1 m≤L1<1.5 m
②若A能沿轨道上滑至最高点,则满足:
m≥mg
由动能定理得:
-mg2R=
-2μmgL
2
联立解得:L2≤0.25 m
综上所述,要使物块A能第一次返回圆形轨道并沿轨道运动而不脱离轨道,L满足的条件是:1 m≤L<1.5 m或L≤0.25 m。