北师版七年级上数学第三章整式及其加减知识点及练习题
- 格式:docx
- 大小:332.73 KB
- 文档页数:8
一、选择题1. 下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有 5 个实心圆点,第②个图形一共有 8 个实心圆点,第③个图形一共有 11 个实心圆点,⋯,按此规律排列下去,第⑥个图形中实心圆点的个数为 ( )A . 18B . 19C . 20D . 212. 我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式 (a +b )n 的展开式的各项系数,此三角形称为“杨辉三角”(a +b )0⋯⋯⋯⋯⋯⋯1(a +b )1⋯⋯⋯⋯⋯11(a +b )2⋯⋯⋯⋯121(a +b )3⋯⋯⋯1331(a +b )4⋯⋯14641(a +b )5⋯15101051⋯根据”杨辉三角”请计算 (a +b )8 的展开式中从左起第四项的系数为 ( ) A . 84B . 56C . 35D . 283. 将正方体骰子(相对面上的点数分别为 1 和 6,2 和 5,3 和 4)放置于水平桌面上,如图 1.在图 2 中,将骰子向右翻滚 90∘,然后在桌面上按逆时针方向旋转 90∘,则完成一次变换.若骰子的初始位置为图 1 所示的状态,那么按上述规则连续完成 10 次变换后,骰子朝上一面的点数是 ( )A . 6B . 5C . 3D . 24. 如图是一回形图,其回形通道的宽和 OB 的长均为 1,回形线与射线 OA 交于 A 1,A 2,A 3,⋯,若从 O 点到 A 1 点的回形线为第 1 圈(长为 7 ),从 A 点到 A 2 点的回形线为第 2 圈,⋯,依此类推,则第 11 圈的长为 ( )A.72B.79C.87D.945.已知:2+23=22×23、3+38=32×38、4+415=42×415、5+524=52×524,……,若10+b a =102×ba(a、b为正整数)符合前面式子的规律,则a+b的值不可能是A.109B.218C.326D.4366.【测试4】在多项式−3x3−5x2y2+xy中,次数最高的项的系数为( )A.3B.5C.−5D.17.小军从一列火车的第m节车厢数起,一直数到第n节车厢(n>m),他数过的车厢节数是( )A.(m+n)节B.(n−m−1)节C.(n−m)节D.(n−m+1)节8.1883年,康托尔构造的这个分形,称做康托尔集.从长度为1的线段开始,康托尔取走其中间三分之一而达到第一阶段:然后从每一个余下的三分之一线段中取走其中间三分之一而达到第二阶段.无限地重复这一过程,余下的无穷点集就称做康托尔集.下图是康托尔集的最初几个阶段,当达到第5个阶段时,取走的所有线段的长度之和为( )A.13B.242243C.211243D.322439.若a,b互为相反数,c,d互为倒数,m的绝对值为2,则代数式m2−cd+a+bm的值为A.−3B.3C.−5D.3或−510.已知a,b,c在数轴上的位置如图所示,则∣a−b∣−∣c−b∣+∣c−a∣的值是( )A.2a−2b+2c B.2a−2b C.2b−2c D.2a+2b−2c二、填空题11. 归纳“T ”字形,用棋子摆成的“T ”字形如图所示,按照图①,图②,图③ 的规律摆下去,摆成第n 个“T ”字形需要的棋子个数为 .12. 符号“f ”表示一种运算,它对一些数的运算结果如下:(1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,⋯ (2)f (12)=2,f (13)=3,f (14)=4,f (15)=5,⋯利用以上规律计算:f (12008)−f (2008)= .13. 研究下列算式,你能发现什么规律?试用公式表示这些规律.(1)1×3+1=4=22. (2)2×4+1=9=32. (3)3×5+1=16=42. (4)4×6+1=25=52. 第 n 个式子可以表示为 .14. 用代数式表示“x 的 2 倍与 y 的和的平方”是 .15. 古希腊数学家把下列一组数:1,3,6,10,15,21,⋯ 叫做三角形数,这组数有一定的规律性,如果把第一个三角形数记为 x 1,第二个三角形数记为 x 2,⋯,第 n 个三角形数记为 x n ,那么 x n−1+x n 的值是 (用含 n 的式子表示).16. 已知 −2x m−1y 3 与 12x n y m+n 是同类项,那么 (n −m )2019= .17. 若 ∣x −y ∣+(y +2)2=0,则代数式 x +y 的值 = .三、解答题18. 用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加 1 的规律拼成一系列图案,请仔细观察,并回答下列问题:(1) 第4个图案中有白色纸片多少张?(2) 第n个图案中有白色纸片多少张?(3) 第几个图案有白色纸片有2011张?(写出必要的步骤)19.计算:(3x2−xy−2y2)−2(x2+xy−2y2).20.某服装厂生产一种西装和领带,西装每套定价为200元,领带每条定价30元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(x>20)(1) 两种方案分别需要付款多少元?(用含x的代数式表示)方案① ,方案② .(2) 若x=30,通过计算说明此时哪种方案购买较为合算?21.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26; ⋯⋯①然后在①式的两边都乘以2,得:2S=1+2+22+23+24+25+26+27; ⋯⋯②根据等式的性质用② −①得:2S−S=27−1,则S=27,即1+2+22+23+24+25+26=27−1.(1) 请你用上面的方法求1+3+32+33+34+35+36+37的值;(2) 通过归纳概括请你能直接写出1+3+32+33+34+35+36+⋯+3m的值.22.已知2x m y2与−3xy n是同类项,计算m−(m2n+3m−4n)+(2nm2−3n)的值.23.阅读下列材料:将一个多位自然数分解为个位与个位之前的数,让个位之前的数减去个位数的两倍,若所得之差能被7整除,则原多位自然数一定能被7整除.也称这个数为“要塞数”.例如:将数1078分解为8和107,107−8×2=91,因为91能被7整除,所以1078能被7整除,就称1078为“要塞数”.完成下列问题:(1) 若一个三位自然数是“要塞数”,且个位数字和百位数字都是7,则这个三位自然数为;(2) 若一个四位自然数M是“要塞数”,设M的个位数字为x,十位数字为y,且个位数字与百位数字的和为13,十位数字与千位数字的和也为13,记F(M)=∣x−y∣,求F(M)的最大值.24.化简求值.(1) 化简(2a2−1+2a)−2(a−1+a2).(2) 先化简,再求值.3y2+2x2+(2x−y)−(x2+3y2)−2x,其中x=1,y=−2.25.某服装厂生产一种夹克和T恤,夹克每件定价120元,T恤每件定价60元.厂方在开展促销活动间,向客户提供两种优惠方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x>30).(1) 若该客户按方案①购买,需付款元(用含x的代数式表示);若该客户按方案②购买,需付款元(用含x的代数式表示);(2) 若x=40,通过计算说明按方案①,方案②哪种方案购买较为合算?答案一、选择题1. 【答案】C【解析】提示:横排规律2n+1,除去横排后,竖排规律n+1,总规律3n+2.答案C.【知识点】用代数式表示规律2. 【答案】B【解析】找规律发现(a+b)4的第四项系数为4=3+1.(a+b)5的第四项系数为10=6+4.(a+b)6的第四项系数为20=10+10.(a+b)7的第四项系数为35=15+20.∴(a+b)8第四项系数为21+35=56.【知识点】用代数式表示规律3. 【答案】B【解析】根据变换,规律是原来朝右的对面会变成朝上的,正对的数字会变成朝右的本来是3朝上,2朝右,正对1,第一次:如图,5朝上(1朝右,正对4),第二次:1对面是6,6朝上(朝右4,正对2),第三次:4对面是3,3朝上(2朝右,正对1),可以发现这样就完成循环,10次就是3个循环加1次,也就是第一次的结果,5朝上.【知识点】用代数式表示规律4. 【答案】C【解析】设第n圈的长为a n( n为正整数).观察图形,可知:a1=7=2×4−1,a2=15=4×4−1,a3=23=6×4−1,⋯,∴a n=2n×4−1=8n−1(n为正整数),∴a11=8×11−1=87.故选:C.【知识点】用代数式表示规律5. 【答案】C【解析】根据前面式子的规律,可知ba =1099,所以a+b的值为109的倍数.【知识点】列代数式6. 【答案】C【解析】在多项式−3x3−5x2y2+xy中,次数最高的项的系数为:−5.故选:C.【知识点】多项式的次数7. 【答案】D【知识点】简单列代数式8. 【答案】D【解析】根据分析可知:当达到第五阶段时,余下的线段之和为(23)5.【知识点】用代数式表示规律9. 【答案】B【解析】由题意得a+b=0,cd=1,m=±2,代数式可化为m2−cd=4−1=3.【知识点】简单的代数式求值10. 【答案】B【解析】由题意得:c<b<0<a,∴a−b>0,c−b<0,c−a<0,∴ ∣a−b∣−∣c−b∣+∣c−a∣=a−b−b+c−c+a=2a−2b.【知识点】整式的加减运算二、填空题11. 【答案】3n+2【解析】由图可得,图①中棋子的个数为:3+2=5,图②中棋子的个数为:5+3=8,图③中棋子的个数为:7+4=11,⋯⋯则第n个“T”字形需要的棋子个数为:(2n+1)+(n+1)=3n+2,故答案为:3n+2.【知识点】用代数式表示规律12. 【答案】1【解析】试题观察(1)中的各数,我们可以得出f(2008)=2007,观察(2)中的各数,我们可以得出f(12008)=2008.则:f(12008)−f(2008)=2008−2007=1.【知识点】用代数式表示规律13. 【答案】n×(n+2)+1=(n+1)2【知识点】用代数式表示规律14. 【答案】(2x+y)2【知识点】简单列代数式15. 【答案】n2【解析】将条件数据1,3,6,10,15,21,⋯,依次扩大2倍得到:2,6,12,20,30,42,⋯,这组新数据中的每一个数据可以改写成两个相邻正整数的乘积,即2=1×2,6=2×3,12=3×4,20=4×5,⋯,∴x n=n(n+1)2,(n≥1)∴x n−1+x n=n(n−1)+n(n+1)2=n2.【知识点】用代数式表示规律16. 【答案】−1【解析】因为−2x m−1y3与12x n y m+n是同类项,所以{m−1=n, m+n=3,解得{m=2, n=1,则(n−m)2019=−1.【知识点】同类项17. 【答案】−4【知识点】简单的代数式求值三、解答题18. 【答案】(1) 观察图形的变化可知:第1个图案中有白色纸片张数为:3×1+1=4;第2个图案中有白色纸片张数为:3×2+1=7;第3个图案中有白色纸片张数为:3×3+1=10;第4个图案中有白色纸片张数为:3×4+1=13.(2) 根据(1)发现规律:第n个图案中有白色纸片张数为:(3n+1)张.(3) 根据(2)可知:3n+1=2011,解得n=670.答:第670个图案有白色纸片有2011张.【知识点】有理数的乘法、解常规一元一次方程、用代数式表示规律19. 【答案】原式=3x2−xy−2y2−2x2−2xy+4y2 =x2−3xy+2y2.【知识点】整式的加减运算20. 【答案】(1) 30x+3400;27x+3600(2) x=30时,方案①:30×30+3400=4300元,方案②:27×30+3600=4410元.∵4300<4410,∴选择方案①购买较为合算.【解析】(1) 方案①:200×20+30(x−20)=30x+3400;方案②:200×20×90%+30x−90%=27x+3600.【知识点】简单列代数式、简单的代数式求值21. 【答案】(1) S=1+3+32+33+34+35+36+37,两边同时乘以3,得3S=3+32+33+34+35+36+37+38,∴2S=38−1,∴S=12(38−1),∴1+3+32+33+34+35+36+37的值为12(38−1).(2) 12(3m+1−1).【解析】(2) S=1+3+32+33+34+35+36+⋯+3m,3S=3+32+33+34+35+36+⋯+3m+3m+1,∴2S=3m+1−1,∴S=12(3m+1−1),(3m+1−1).∴1+3+32+33+34+35+36+⋯+3m的值12【知识点】用代数式表示规律、有理数的乘方22. 【答案】∵2x m y2与−3xy n是同类项,∴m=1,n=2,∴ m−(m2n+3m−4n)+(2nm2−3n)=m−m2n−3m+4n+2nm2−3n=nm2−2m+n.当m=1,n=2时,原式=2−2+2=2.【知识点】整式的加减运算23. 【答案】(1) 727或797(2) 由已知这个四位数的千位数字是13−y,百位数字是13−x,且4≤x≤9,4≤y≤9,∵四位数是“要塞数”,∴100(13−y)+10(13−x)+y−2x=1430−99y−12x能被7整除,∴x=5,y=5;x=6,y=7;x=7,y=9;x=9,y=6;∴F(M)=∣x−y∣的最大值是3.【解析】(1) 设三位数的十位数是a(0≤a≤9),∵个位数字和百位数字都是7,∴这个三位数是7a7,∵这个三位数是“要塞数”,∴70+a−2×7=54+a能被7整除,∴a=2或a=9,∴这个三位数是727或797.【知识点】简单的代数式求值、用代数式表示规律24. 【答案】(1) 2a2−1+2a−2a+2−2a2=1.(2) 3y2+2x2+2x−y−x2−3y2−2x=x2−y.当x=1,y=−2时,原式=1+2=3.【知识点】整式的加减运算25. 【答案】(1) 1800+60x;2880+48x(2) 方案① 4200元,方案② 4800元,∵4200<4800,所以选方案①.【知识点】简单列代数式、简单的代数式求值11。
北师大版数学七年级上册第三章第四节整式的加减课时练习一、单选题(共15题)1.化简m-n-(m+n)的结果是()A.0 B.2m C.-2n D.2m-2n答案:C解析:解答:原式=m-n-m-n=-2n.故选C分析: 根据整式的加减运算法则,先去括号,再合并同类项.注意去括号时,括号前是负号,去括号时,括号里各项都要变号;合并同类项时,只把系数相加减,字母和字母的指数不变2.计算:a-2(1-3a)的结果为()A.7a-2 B.-2-5a C.4a-2 D.2a-2答案:A解析:解答:a-2(1-3a)=a-2+6a=7a-2.选A.分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项3.如果m是三次多项式,n是三次多项式,那么m+n一定是()A.六次多项式 B.次数不高于三的整式C.三次多项式 D.次数不低于三的整式答案:B解析:解答:若两个三次多项式中,三次项的系数不相等,这两个三次多项式相减后就仍为三次多项式;若两个三次多项式中,三次项的系数相等,这两个三次多项式相减后三次多项式就会变为低于三次的整式.故选B.分析:根据合并同类项的法则,两个多项式相减后,多项式的次数一定不会升高.但当最高次数项的系数如果相等,相减后最高次数项就会消失,次数就低于34.计算x2-(x-5)+(x+1)的结果,正确的是()A.x2+6 B.x2-4x+5 C.-4x-5 D.x2-4x+5答案:A解析:解答: 原式=x2-x+5+x+1=x2+6.选A.分析:此题只需按照整式加减的运算法则,先去括号,再计算.5.化简x-y-(x+y)的最后结果是()A.0 B.2x C.-2y D.2x-2y答案:C解析:解答:原式=x-y-x-y=-2y.选C.分析:原式去括号合并即可得到结果6.(2a+3b)2=(2a-3b)2+(),括号内的式子是()A.6ab B.24ab C.12ab D.18ab答案:B解析:解答: 由题意得,设括号内的式子为A,则A=(2a+3b)2-(2a-3b)2=24ab.选B.分析:本题考查了整式的加减,比较简单,容易掌握7.如图,漠漠和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x,漠漠猜中的结果为y,则y 等于()A.2 B.3 C.6 D.x+2答案:A解析:解答: 根据题意得:(3x+6)÷3-x=y,解得:y=2.选A.分析:根据题意列出关系式,求出y8.如图,把四张形状大小完全相同的小长方形卡片不重叠地放在一个底面为长方形(长为a,宽为b)的盒子底部,盒子底面未被卡片覆盖的部分用阴影表示,则这两块阴影部分小长方形周长的和为()A.a+2b B.4a C.4b D.2a+b答案:C解析:解答: 设小长方形卡片的长为m,宽为n,∴L1周长=2(b-2n)+m,L2周长=2×2n+(b-m),∴两块阴影部分小长方形周长的和=2(b-2n)+m+2×2n+(b-m)=4b,选:C.分析:先设小长方形卡片的长为m,宽为n,再结合图形得出两部分的阴影周长加起来9.计算6a2-5a+3与5a2+2a-1的差,结果正确的是()A.a2-3a+4 B.a2-3a+2 C.a2-7a+2 D.a2-7a+4答案:D解析:解答:(6a2-5a+3 )-(5a2+2a-1)=6a2-5a+3-5a2-2a+1=a2-7a+4.选D.分析: 每个多项式应作为一个整体,用括号括起来,再去掉括号,合并同类项,化简10.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2.此空格的地方被钢笔水弄污了,那么空格中的一项是()A.-7xy B.7xy C.-xy D.xy答案:C解析:解答: 原式=x2+3xy-2x2-4xy=-x2-xy∴空格中是-xy选C.分析: 本题涉及整式的加减运算,解答时用先去括号,再合并同类项就可得出结果11.长方形的一边长等于3x+2y,另一边长比它长x-y,这个长方形的周长是()A.4x+y B.12x+2y C.8x+2y D.14x+6y答案:D解析:解答: 依题意得:周长=2(3x+2y+3x+2y+x-y)=14x+6y.选D分析: 根据题意表示另一边的长,进一步表示周长,化简12.一个多项式与x2-2x+1的和是3x-2,则这个多项式为()A.x2-5x+3 B.-x2+x-1 C.-x2+5x-3 D.x2-5x-13答案:C解析:解答: 由题意得:这个多项式=3x-2-(x2-2x+1),=3x-2-x2+2x-1,=-x2+5x-3.选C.分析: 由题意可得被减式为3x-2,减式为x2-2x+1,根据差=被减式-减式可得出这个多项式13.如果y=3x,z=2(y-1),那么x-y+z等于()A.4x-1 B.4x-2 C.5x-1 D.5x-2答案:B解析:解答: 原式=x-3x+2(3x-1)=4x-2.选B.分析:首先求得z的值(用x表示),再代入x-y+z求解.注意应用去括号得法则:括号前是正号,括号里各项都不变号;括号前是负号,括号里各项都变号14.a-(b+c-d)=(a-c)+()A.d-b B.-b-d C.b-d D.b+d答案:A解析:解答:a-(b+c-d)=(a-c)+(d-b),选A分析:根据去括号与添括号的法则求解即可.注意去添括号时,括号前是负号,括号里的各项都要变号15.下列计算中结果正确的是()A.4+5ab=9ab B.6xy-x=6yC.3a2b-3ba2=0 D.12x3+5x4=17x7答案:C解析:解答:4和5ab不是同类项,不能合并,所以A错误.6xy和x不是同类项,不能合并,所以B错误.3a2b和3ba2是同类项,可以合并,系数相减,字母和各字母的指数不变得:3a2b-3ba2=0,所以C正确.12x3和5x4不是同类项,不能合并,所以D错误.故选C分析:根据合并同类项的法则进行解题,同类项合并时,系数相加减,字母和各字母的指数都不改变.二、填空题(共5题)16.计算 2a-(-1+2a)=___答案:1解析:解答:原式=2a+1-2a=1.答案为:1.分析:本题考查了整式的加减、去括号法则两个考点.先按照去括号法则去掉整式中的小括号,再合并整式中的同类项17.多项式______与m2+m-2的和是m2-2m答案: -3m+2解析:解答: 根据题意得:(m2-2m)-(m2+m-2)=m2-2m- m2-m+2=-3m+2.答案为:-3m+2分析:根据题意列出关系式,去括号合并即可得到结果18.化简:5(x-2y)-4(x-2y)=_________答案:x-2y解析:原式=5x-10y-4x+8y=x-2y,答案为:x-2y.分析:原式去括号合并即可得到结果19.计算:2(a-b)+3b= _________答案:2a+b解析:解答:原式=2a-2b+3b=2a+b.答案为:2a+b.分析: 原式去括号合并即可得到结果20.已知一个多项式与3x2+9x+2的和等于3x2+4x-3,则此多项式是________答案:-5x-5解析:解答: 根据题意得:(3x2+4x-3)-(3x2+9x+2)=3x2+4x-3-3x2-9x-2=-5x-5.答案为:-5x-5分析: 根据和减去一个加数等于另一个加数列出关系式,去括号合并即可得到结果.三、解答题(共5题)21.化简:2(3x2-2xy)-4(2x2-xy-1)答案:-2x2+4解答: 原式=6x2-4xy-8x2+4xy+4=-2x2+4解析:分析: 原式去括号合并即可得到结果22.已知A=3x2-ax+6x-2,B=-3x2+4ax-7,若A+B的值不含x项,求a的值.答案:-2解答: ∵A=3x2-ax+6x-2,B=-3x2+4ax-7,∴A+B=(3x2-ax+6x-2)+(-3x2+4ax-7)=3x2-ax+6x-2-3x2+4ax-7=(3a+6)x-9,由结果不含x项,得到3a+6=0,解得a=-2.解析:分析: 将A与B代入A+B中,去括号合并得到最简结果,由结果不含x项,求出a 的值23.一个多项式加上5x2+3x-2的2倍得1-3x2+x,求这个多项式答案:-13x2-5x+5解答:根据题意得:(1-3x2+x)-2(5x2+3x-2)=1-3x2+x -10x2-6x+4=-13x2-5x+5所以这个多项式为-13x2-5x+5解析:分析: 先列式表示这个多项式,再化简.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.24.把多项式2x2-y2+x-3y写成两个二项式的和答案:(2x2-y2)+(x-3y)解答:由题意得2x2-y2+x-3y =(2x2-y2)+(x-3y)解析:分析:将四项任意分组即可得出答案25.试说明把一个两位数的十位上的数字与个位上的数字互换位置后,所得的新两位数与原两位数的和能被11整除答案:解答:设十位上数字为a,个位上数字为b,则原两位数为10a+b,调换后的两位数为10b+a,则(10a+b)+(10b+a)=10a+b+10b+a=11(a+b),则新两位数与原两位数的和能被11整除解析:分析: 设十位上数字为a,个位上数字为b,表示出原两位数,以及调换后的两位数,列出关系式,去括号合并得到结果,即可做出判断。
一、选择题1. 小明与小亮在操场上练习跑步,小明的速度是 x m/s ,小亮的速度是 y m/s ,小亮比小明跑得快,两人从同一地点同时起跑 a s 后,小明落后小亮 ( ) A . (ax −ay ) m B . (ay −ax ) m C . (ax +ay ) mD . axy m2. 小明用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是 8 时,输出的数据是 ( )输入⋯12345⋯输出⋯3223512310730⋯ A . 839B . 738C . 637D . 5363. 如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是 ( )A .B .C.D.4.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(−1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,⋯,依此规律跳动下去,点P第99次跳动至点P99的坐标是( )A.(26,50)B.(−26,50)C.(25,50)D.(−25,50)5.1883年,康托尔构造的这个分形,称做康托尔集,从长度为1的线段开始,康托尔取走其中间三分之一而达到第一阶段;然后从每人个余下的三分之一线段中取走中间三分之一而达到第二阶段,无限地重复这一过程,余下的无穷点就称做康托尔集,如图是康托尔集的最初几个阶段,当达到第5个阶段时,取走的所有线段的长度之和为( )A.13B.242243C.211243D.322436.如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2,⋯以此类推,第n次平移将长方形A n−1B n−1C n−1D n−1沿A n−1B n−1的方向向右平移5个单位,得到长方形A n B n C n D n(n>2),则AB n长为( )A.5n+6B.5n+1C.5n+4D.5n+37.下列计算正确的是( )A.3a2+a=4a2B.−2(a−b)=−2a+bC.a2b−2a2b=−a2b D.5a−4a=18.下列按照一定规律排列一组图形,其中图形①中共有2个小三角形,图形②中共有6个小“三角形,图形③中共有11个小三角形,图形④中共有17个小三角形,⋯⋯,按此规律,图形⑧中共有n个小三角形,这里的n=( )A.32B.41C.51D.539.为了解决老百姓看病难的问题,卫生部门决定大幅度降低药品价格,某种常用药品降价40%后的价格为a元,则降价前此药品的价格为( )A.52a元B.25a元C.53a元D.35a元10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形,⋯⋯,如此下去,则第2018个图中共有正方形的个数为( )A.2018B.2019C.6052D.6056二、填空题11.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,⋯,则第n−1(n为正整数,n⋯2)个图案由个▲组成.12.下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是.13.有理数a,b,c,d在数轴上的位置如图,则∣a−b∣+∣b−c∣−∣d−a∣=.14.在平面直角坐标系中,正方形ABCD的顶点坐标分别为A(1,1),B(1,−1),C(−1,−1),D(−1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称点P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,⋯⋯,按此操作下去,则P2020的坐标为.15.已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等.小明将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48.若将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0对准乙尺的刻度m,则此时甲尺的刻度n会对准乙尺的刻度为.(用含m,n的式子表示)16.观察下列图形:它们是按一定规律排列的,依照此规律,第10个图形中共有个点.+(b+c)m−m2的值为.17.若a,b互为倒数,b,c互为相反数,m的绝对值为1.则abm三、解答题18.若在运动会颁奖台上面及两侧铺上地毯(如图阴影部分),长为m,宽为n,高为ℎ(单位为:cm).(1) 用m,n,ℎ表示所需地毯的面积;(2) 若m=160,n=60,ℎ=75,求地毯的面积.19.如图所示,一块正方形纸板剪去四个相同的三角形后留下了阴影部分的图形.已知正方形的边长为a,三角形的高为ℎ.(1) 用式子表示阴影部分的面积;(2) 当a=2,ℎ=1时,求阴影部分的面积.220.阅读下面材料:在数轴上5与−2所对的两点之间的距离:∣5−(−2)∣=7;在数轴上−2与3所对的两点之间的距离:∣−2−3∣=5;在数轴上−8与−5所对的两点之间的距离:∣(−8)−(−5)∣=3.在数轴上点A,B分别表示数a,b,则A,B两点之间的距离AB=∣a−b∣=∣b−a∣.回答下列问题:(1) 数轴上表示−2和−5的两点之间的距离是;数轴上表示数x和3的两点之间的距离表示为;数轴上表示数和的两点之间的距离表示为∣x+2∣;(2) 七年级研究性学习小组在数学老师指导下,对式子∣x+2∣+∣x−3∣进行探究:请你在草稿纸上画出数轴,当表示数x的点在−2与3之间移动时,∣x−3∣+∣x+2∣的值总是一个固定的值为:.21.学校操场上的环形跑道长400米,小胖、小杰的速度分别是a米/分,b米/分(其中a>b).两人从同一地点同时出发,求:(1) 如果两人反向而行,则经过多长时间两人第一次相遇?(2) 如果两人同向而行,则经过多长时间两人第一次相遇?22.归纳.人们通过长期观察发现,如果早晨天空中有棉絮状的高积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学里,我们也常用这样的方法探求规律,例如:三角形有3个顶点,如果在它的内部再画n个点,并以(n+3)个点为顶点画三角形,那么最多以剪得多少个这样的三角形?为了解决这个问题,我们可以从n=1,n=2,n=3等具体的、简单的情形入手,探索最多可以剪得的三角形个数的变化规律.(1) 完成表格信息:,;(2) 通过观察、比较,可以发现:三角形内的点每增加1个,最多可以剪得的三角形增加个.于是,我们可以猜想:当三角形内的点的个数为n时,最多可以剪得个三角形.像这样通过对现象的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.在日常生活中,人们互相交谈时,常常有人在列举了一些现象后,说“这(即列举的现象)说明⋯⋯”其实这就是运用了归纳的方法.用归纳的方法得出的结论不一定正确,是否正确需要加以证实.(3) 请你尝试用归纳的方法探索(用表格呈现,并加以证实):1+3+5+7+⋯+(2n−1)的和是多少?23.探索规律,观察下面由⋇组成的图案和算式,解答问题:1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52.⋯(1) 请猜想1+3+5+7+9+⋯+19=;(2) 请猜想1+3+5+7+9+⋯+(2n−1)+(2n+1)+(2n+3)=;(3) 请计算:101+103+⋯+197+199.24.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”.如图1的“等和格”中,每行、每列及对角线上的3个代数式的和都等于15.(1) 图2是显示部分代数式的“等和格”,可得a=(用含b的代数式表示);(2) 图3是显示部分代数式的“等和格”,可得a=,b=;(3) 图4是显示部分代数式的“等和格”,求b的值(写出具体求解过程).25.A,B两地果园分别有橘子40吨和60吨,C,D两地分别需要橘子30吨和70吨;已知从A,B到C,D的运价如表: 到C地到D地A果园每吨15元每吨12元B果园每吨10元每吨9元(1) 若从A果园运到C地的橘子为x吨,则从A果园运到D地的橘子为吨,从A果园将橘子运往D地的运输费用为元.(2) 用含x的式子表示出总运输费(要求:列式,化简).(3) 求总运输费用的最大值和最小值.(4) 若这批橘子在C地和D地进行再加工,经测算,全部橘子加工完毕后总成本为w元,且w=−(x−25)2+4360.则当x=时,w有最值(填“大”或“小”).这个值是.答案一、选择题 1. 【答案】B【知识点】简单列代数式2. 【答案】D【解析】 ∵ 第 n 个数据的规律是:n+2n (n+1), 故 n =8 时为:8+28×9=1072=536. 【知识点】用代数式表示规律3. 【答案】C【解析】由题意知,原图形中各行、各列中点数之和为 10,符合此要求的只有C . 【知识点】用代数式表示规律4. 【答案】D【知识点】点的平移、用代数式表示规律5. 【答案】C【解析】根据题意知:第一阶段时,余下的线段的长度之和为 23, 第二阶段时,余下的线段的长度之和为 23×23=(23)2, 第三阶段时,余下的线段的长度之和为 23×23×23=(23)3, ⋯, 以此类推,当达到第五个阶段时,余下的线段的长度之和为 (23)5=32243, 取走的线段的长度之和为 1−32243=211243. 【知识点】用代数式表示规律6. 【答案】A【解析】每次平移 5 个单位,n 次平移 5n 个单位,即 BN 的长为 5n ,加上 AB 的长即为 AB n 的长,AB n =5n +AB =5n +6. 【知识点】用代数式表示规律7. 【答案】C【解析】3a2,a不是同类项,不能合并,故A错误;−2(a−b)=−2a+2b,故B错误;a2b−2a2b=−a2b,故C正确;5a−4a=a,故D错误,故选:C.【知识点】合并同类项、去括号8. 【答案】C【解析】设第m个图形中有a m(m为正整数)个小三角形.观察图形,可知:a1=1+1=2,a2=(1+2)+3=6,a3=(1+2+3)+5=11,a4= (1+2+3+4)+7=17,⋯,∴a m=(1+2+⋯+m)+2m−1=m(m+1)2+2m−1=12m2+52m−1(m为正整数),∴n=a8=12×82+52×8−1=51.【知识点】用代数式表示规律9. 【答案】C【知识点】用字母表示数10. 【答案】C【解析】第1个图形有正方形1个,第2个图形有正方形4个,第3个图形有正方形7个,第4个图形有正方形11个,⋯,第n个图形有正方形(3n−2)个,当n=2018时,3×2018−2=6052个正方形.【知识点】用代数式表示规律二、填空题11. 【答案】(3n−2)【解析】观察发现:第一个图形有3×2−3+1=4个三角形;第二个图形有3×3−3+1=7个三角形;第一个图形有3×4−3+1=10个三角形;⋯第n−1个图形有3n−3+1=3n−2个三角形.【知识点】用代数式表示规律12. 【答案】82【知识点】用代数式表示规律13. 【答案】c+d−2b【解析】根据数轴右侧的数大于左侧的数,则右侧数减去左侧数为正,去掉绝对值,∵a−b>0,b−c<0,d−a<0,∴∣a−b∣=a−b,∣b−c∣=−(b−c),∣d−a∣=−(d−a),故∣a−b∣+∣b−c∣−∣d−a∣=a−b−(b−c)+(d−a)=a−b−b+c+d−a=c+d−2b.【知识点】整式的加减运算、绝对值的几何意义14. 【答案】(0,2)【解析】∵点P坐标为(0,2),点A坐标为(1,1),∴点P关于点A的对称点P1的坐标为(2,0),点P1关于点B(1,−1)的对称点P2的坐标(0,−2),点P2关于点C(−1,−1)的对称点P3的坐标为(−2,0),点P3关于点D(−1,1)的对称点P4的坐标为(0,2),即点P4与点P重合了;∵2020÷4=505,∴点P2020的坐标与点P4的坐标相同,∴点P2020的坐标为(0,2).【知识点】坐标平面内图形轴对称变换n+m15. 【答案】43【知识点】简单列代数式16. 【答案】165【解析】第一个图形有3=3×1=3个点,第二个图形有3+6=3×(1+2)=9个点(在第一个图形的基础上,外面又包了一个三角形,三个顶点,在三边上多了三个点);第三个图形有3+6+9=3×(1+2+3)=18个点;(在第二个图形基础上,外面又包了一个三角形,在三边上多了三个点,即:在第一图形的基础上多了两个三角形,从里向外,依次多6个点,9个点,包括增加的三角形的顶点)⋯第n个图形有3+6+9+⋯+3n=3×(1+2+3+⋯+n)=3n(n+1)个点;2=165个点,当n=10时,3×10×112故答案为:165.【知识点】用代数式表示规律17. 【答案】0或−2【解析】ab=1,c+d=0.∣m∣=1.−1=0或−2.原式=1m【知识点】简单的代数式求值三、解答题18. 【答案】(1) 地毯的面积为:(mn+2nℎ)cm2.(2) 地毯总长:60×2+160=280(cm),160×60+2×60×75=18600(cm2),答:地毯的面积为18600cm2.【知识点】简单的代数式求值、简单列代数式19. 【答案】aℎ=a2−2aℎ.(1) 阴影部分的面积为:a2−4×12时,(2) 当a=2,ℎ=12原式=a2−2aℎ=22−2×2×12=2.【知识点】简单列代数式、简单的代数式求值20. 【答案】(1) 3;∣x−3∣;x;−2(2) 5【解析】(1) 数轴上表示−2和−5的两点之间的距离=∣−2−(−5)∣=3;数轴上表示数x和3的两点之间的距离=∣x−3∣;数轴上表示数x和−2的两点之间的距离表示为∣x+2∣.(2) 当−2≤x≤3时,∣x+2∣+∣x−3∣=x+2+3−x=5.【知识点】绝对值的几何意义、整式的加减运算、数轴的概念21. 【答案】(1) 400a+b分钟.(2) 400a−b分钟.【知识点】简单列代数式22. 【答案】(1) 5;7(2) 2;(2n+1)(3)加数的个数和1+3221+3+5321+3+5+742⋯⋯1+3+5+7+⋯+(2n−1)n2证明:∵S=1+3+5+7+⋯+(2n−5)+(2n−3)+(2n−1),∴S=(2n−1)+(2n−3)+(2n−5)+⋯+7+5+3+1,∴S+S=2n⋅n=2n2,2S=2n2,S=n2.【解析】(1) 由图形规律可得,答案为5,7.(2) ∵5−3=7−5=2,∴三角形内的点每增加1个,最多可以剪得的三角形增加2个;∵三角形内点的个数为1时,最多剪出的小三角形个数3=2×1+1,三角形内点的个数为2时,最多剪出的小三角形个数5=2×2+1,三角形内点的个数为3时,最多剪出的小三角形个数7=2×3+1,∴三角形内点的个数为n时,最多剪出的小三角形个数2n+1.【知识点】用代数式表示规律、整式的加减运算23. 【答案】(1) 100(2) (n+2)2(3)101+103+⋯+197+199 =(1+1992)2−(1+992)2=10000−2500=7500.【解析】(1) 1+3+5+7+9+⋯+19=(1+192)2=100.(2)1+3+5+7+9+⋯+(2n−1)+(2n+1)+(2n+3) =(1+2n+32)2=(n+2)2.【知识点】用代数式表示规律24. 【答案】(1) −b(2) −2;2(3) 2a2+a+(a−2a2)=a2+2a+(a+3),a2+a=−3,2a2+a+(a+3)=b+3a2+2a+(a2+2a),b=−2a2−2a+3,b=−2(a2+a)+3=6+3=9.【知识点】整式的加减运算25. 【答案】(1) (40−x),12(40−x).(2) 从A果园运到C地x吨,运费为每吨15元;从A果园运到D地的橘子为(40−x)吨,运费为每吨12元;从B果园运到C地(30−x)吨,运费为每吨10元;从B果园运到D地(30+x)吨,运费为每吨9元;所以总运费为:15x+12(40−x)+10(30−x)+9(30+x)=2x+1050.(3) 因为总运费=2x+1050,当x=30时,有最大值2×30+1050=1110元.当x=0时,有最小值2×0+1050=1050元.(4) 25大4360【解析】(1) 因为从A果园运到C地的橘子是x吨,那么从A果园运到D地的橘子为(40−x)吨,从A运到D地的运费是12元每吨,所以A果园将橘子运往D地的运输费用为12(40−x)吨.(4) w=−(x−25)2+4360,因为二次项系数−1<0,所以抛物线开口向下,当x=25时,w有最大值.最大值时4360.【知识点】二次函数的最值、简单的代数式求值、整式加减的应用、简单列代数式。
北师大版七上 第3章 第4节 第2课时 整式的加减一、选择题(共5小题)1. 下列各式从左到右的变形中,正确的是 ( )A. −(3x +2)=−3x +2B. −(−2x −7)=−2x +7C. −(3x −2)=−3x +2D. −(−2x −7)=2x −72. 下列各式中,去括号正确的是 ( )A. a +(2b −3c +d )=a −2b +3c −dB. a −(2b −3c +d )=a −2b −3c +dC. a −(2b −3c +d )=a −2b +3c −dD. a −(2b −3c +d )=a −2b +3c +d3. 下列去括号的结果正确的是 ( )A. x 2−3(x −y +z )=x 2−3x +3y +zB. 3x −[5x −(2x −1)]=3x −5x −2x +1C. a +(−3x +2y −1)=a −3x +2y −1D. −(2x −y )+(z −1)=−2x −y +z −14. 代数式 −{−[x −(y −z )]} 去括号的结果是 ( ) A. x +y +z B. x −y +z C. −x +y −z D. x −y −z5. 下列各式化简正确的是 ( )A. a −(2a −b +c )=−a −b +cB. (a +b )−(−b +c )=a +2b +cC. 3a −[5b −(2c −a )]=2a −5b +2cD. a −(b +c )−d =a −b +c −d二、填空题(共7小题)6. 去括号法则:(1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都 ; (2)括号前是“−”号,把括号和它前面的“−”号去掉后,原括号里各项的符号都要 .7. 去括号:(1)+(a −b )= ;(2)−(a +b )= ;(3)−3(2a −3b )= ;(4)−[−(m −n )]= .8. −6x +7y −3 的相反数是 .9. a −b +c 的相反数是 .10. 化简 (x +14)−(2x −12) 的结果是 .11. 把3+[3a−2(a−1)]化简,得.12. 若x2+ax−2y+7−(bx2−2x+9y−1)的值与x的取值无关,则a+b=.三、解答题(共5小题)13. 化简:m);(1)−4(1−14(2)2(2a−3b)+4(3a+5b);(3)(a−b−1)−3(c−d+2);(4)a−[b−2a−(a+b)].14. 化简下列各式:(1)2(4x−0.5);(2)3a−(a+5b);(3)5xy2−[3xy2−(4xy2−2x2y)]+2x2y−xy2;).(4)−3(x2−2x−4)+2(−x2+5x−1215. 一支钢笔的价格是(2a+3b)元,一本练习本的价格是(4a−b)元,一支钢笔比一本练习本贵多少元?16. 已知某艘游轮在顺水中行驶的速度是(a+b)km/h,逆水中行驶的速度是(2a−b)km/h,游轮顺水行驶3h,逆水行驶2h,共行驶了多少千米?17. 先化简,再求值:3x2+x2−(2x2−2x)+(3x−x2),其中x=−2.答案1. C2. C3. C4. B5. C6. 不改变,改变7. a−b,−a−b,−6a+9b,m−n8. 6x−7y+39. −a+b−c10. −x+3411. a+512. −113. (1)原式=−4+m.(2)原式=4a−6b+12a+20b=16a+14b.(3)原式=a−b−1−3c+3d−6=a−b−3c+3d−7.(4)原式=a−b+2a+a+b=4a.14. (1)原式=8x−1.(2)原式=3a−a−5b=2a−5b.(3)原式=5xy2−3xy2+4xy2−2x2y+2x2y−xy2 =5xy2.(4)原式=−3x 2+6x+12−2x2+10x−1=−5x2+16x+11.15. 根据题意,得(2a+3b)−(4a−b)=2a+3b−4a+b=4b−2a.因此,一支钢笔比一本练习本贵(4b−2a)元.16. 由题意,得3(a+b)+2(2a−b)=3a+3b+4a−2b=7a+b.因此,游轮共行驶了(7a+b)km.17. 原式=3x 2+x 2−2x 2+2x +3x −x 2=(3x 2+x 2−2x 2−x 2)+(2x +3x )=x 2+5x.将 x =−2 代入上式,得 原式=(−2)2+5×(−2)=4−10=−6.。
2021-2022学年北师大版七年级数学上册《第3章整式及其加减》期末综合知识点分类训练(附答案)一.代数式1.式子、0、a≤b、x+y=5、a+b+c2、8>6中,代数式的个数为()A.1B.2C.3D.4二.列代数式2.近年来,重庆作为网红城市,旅游业市场发展迅速.据调查,今年重庆5月份旅游旺季全市旅游业收入为x亿元,6月份比5月份减少了25%,暑期如约而至,7月份比6月份增加了78%,则7月份重庆全市的旅游业收入是()亿元.A.(1﹣25%+78%)x B.(1﹣25%)(1+78%)xC.(1﹣25%)x+(1+78%)x D.[1﹣25%(1+78%)]x3.对任意一个三位正整数m,如果各个数位上的数字之和为18,则称这个三位正整数m为“美好数”.(1)最小的三位“美好数”是,最大的三位“美好数”是.(2)求证:任意一个三位“美好数”都能被9整除.(3)若一个三位“美好数”前两位数字组成的两位数与这个“美好数”个位数字的4倍的和为111,求满足条件的三位“美好数”.三.代数式求值4.如果|a|=10,|b|=7,且a>b,则a+b的值等于()A.17或3B.17或﹣3C.﹣17或﹣3D.﹣17或35.如图所示是计算机程序图,若开始输入x=﹣1,则最后输出的结果是()A.5B.﹣3C.﹣11D.136.若x2﹣3x+4的值为15,那么代数式﹣3x2+9x﹣13的值等于.7.已知3a﹣2b=﹣4,则6a﹣4b+2=.四.同类项8.若代数式﹣2a m+2b2与是同类项,则m2021的值是()A.﹣1B.0C.1D.220219.若单项式3a m+1b与是同类项,则n﹣m=.五.合并同类项10.下列等式成立的是()A.2x3y4+3xy=5x4y5B.3a+2b=5abC.5x5﹣3=2x5D.2a+3a=5a六.去括号与添括号11.下列去括号运算正确的是()A.﹣(x+y﹣z)=﹣x+y﹣zB.x﹣(y﹣z)=﹣x﹣y+zC.x﹣2(y﹣z)=x﹣2y﹣2zD.﹣(a﹣b)﹣2(﹣c+d)=﹣a+b+2c﹣2d七.规律型:数字的变化类12.观察下列等式第1层1+2=3第2层4+5+6=7+8第3层9+10+11+12=13+14+15第4层16+17+18+19+20=21+22+23+24……在上述数字宝塔中,从上往下数,数字2016所在的层数是()A.43B.44C.45D.46八.整式13.在下面的式子中,不属于整式的是()A.x﹣3B.3﹣2x C.D.2x九.单项式14.单项式a3bc4的次数为()A.8B.7C.6D.5十.多项式15.已知一个多项式3x3y+4x2y+2,这个多项式是()A.三次三项式B.四次三项式C.三次四项式D.二次三项式16.将多项式x3﹣4xy2+7y3+6x2y按字母y升幂排列的是()A.7y3+4xy2+6x2y+x3B.7y3﹣4xy2+6x2y+x3C.x3﹣6x2y+4xy2+7y3D.x3+6x2y﹣4xy2+7y317.多项式的各项系数之积是()A.B.C.D.十一.整式的加减18.有这样一道题:有两个代数式A、B,已知B=4x2﹣5x﹣12,试求A+B,马小虎误将A+B 看成A﹣B,算得的答案是﹣7x2+10x+12,则代数式A为.19.已知(2a+b)2+|a﹣1|=0,A=5a2b﹣2ab2﹣3ab,B=10a2b﹣6ab2+4ab,求2A﹣B的值.十二.整式的加减—化简求值20.先化简,再求值:,其中x,y满足(x+1)2+|y﹣2|=0.21.整式的化简求值.已知|a+1|+|b﹣2|=0,求8a2﹣[8ab+2(ab+4a2)]﹣2ab的值.参考答案一.代数式1.解:在式子,0、a≤b、x+y=5、a+b+c2、8>6中代数式的个数有:,0,a+b+c2,共有3个.故选:C.二.列代数式2.解:∵5月份的旅游业收入是x亿元,则6月份的旅游业收入是(1﹣25%)x亿元,7月份重庆全市的旅游业收入(1﹣25%)(1+78%)x亿元,故选:B.3.解:(1)最小的三位“美好数”是189,最大的三位“美好数”是990,故答案为:189,990;(2)设“美好数”的百位上是x,十位上是y,个位上是(18﹣x﹣y),100x+10y+(18﹣x﹣y)=100x+10y+18﹣x﹣y=99x+9y+18=9(11x+y+2),∵11x+y+2是整数,∴100x+10y+(18﹣x﹣y)能被9整除;(3)设“美好数”的百位上是a,十位上是b,个位上是(18﹣a﹣b),由题意得,10a+b+4(18﹣a﹣b)=111,整理得2a﹣b=13,∵a、b、c均为整数,∴a=8,b=3,c=7或a=9,b=5,c=4,这个三位数是837,954.三.代数式求值4.解:∵|a|=10,∴a=±10.∴b=±7.∵a>b,∴a=10,b=±7.当a=10,b=7时,a+b=10+7=17;当a=10,b=﹣7时,a+b=10﹣7=3.综上,a+b=17或3.故选:A.5.解:当x=﹣1时,4x+1=﹣4+1=﹣3>﹣5,∴当x=﹣3时,4x+1=4×(﹣3+1=﹣11<﹣5,符合要求,∴最后输出的结果是:﹣11,故选:C.6.解:∵x2﹣3x+4=15,∴x2﹣3x=11,∴﹣3x2+4x﹣13=﹣3(x2﹣3x)﹣13=﹣3×11﹣13=﹣33﹣13=﹣46,故答案为﹣46.7.解:∵3a﹣2b=﹣4,∴原式=2(3a﹣2b)+2=﹣8+2=﹣6,故答案为:﹣6.四.同类项8.解:∵代数式﹣2a m+2b2与是同类项,∴m+2=﹣3m﹣2,解得:m=﹣1,9.解:∵单项式3a m+1b与是同类项,∴m+1=2,n﹣2=1,解得m=1,n=3,∴n﹣m=3﹣1=2.故答案为:2.五.合并同类项10.解:A.2x3y4与3xy不是同类项,所以不能合并,故本选项不合题意;B.3a与2b不是同类项,所以不能合并,故本选项不合题意;C.5x5与﹣3不是同类项,所以不能合并,故本选项不合题意;D.2a+3a=5a,正确,故本选项符合题意.故选:D.六.去括号与添括号11.解:A、﹣(x+y﹣z)=﹣x﹣y+z,故本选项错误,不符合题意;B、x﹣(y﹣z)=x﹣y+z,故本选项错误,不符合题意;C、x﹣2(y﹣z)=x﹣2y+2z,故本选项错误,不符合题意;D、﹣(a﹣b)﹣2(﹣c+d)=﹣a+b+2c﹣2d,故本选项正确,符合题意;故选:D.七.规律型:数字的变化类12.解:第一层,第一个数是12=1,最后一个数为22﹣1=3,第二次,第一个数是22=4,最后一个数是32﹣1=8,第三层,第一个数是32=9,最后一个数是42﹣1=15,∴第n层,第一个数n2,最后一个数是(n+1)2﹣1,∵442<2016<452,∴第2016个数在第44层,故选:B.八.整式13.解:A、x﹣3是整式,故A不符合题意;B、3﹣2x是整式,故B不符合题意;C、是分式,故C符合题意;D、2x是整式,故D不符合题意;故选:C.九.单项式14.解:单项式a3bc4的次数为8.故选:A.十.多项式15.解:已知一个多项式3x3y+4x2y+2,这个多项式是四次三项式,故选:B.16.解:多项式x3﹣4xy2+7y3+6x2y的各项为x3,﹣4xy2,7y3,6x2y,按字母y的升幂排列是:x3﹣6x2y+4xy2+7y3.故选:C.17.解:多项式的各项系数分别为:,﹣,则.故选:C.十一.整式的加减18.解:由题意得:A﹣B=﹣7x2+10x+12,∵B=4x2﹣5x﹣12,∴A=(4x2﹣5x﹣12)+(﹣7x2+10x+12)=4x2﹣5x﹣12﹣7x2+10x+12=﹣3x2+5x,故答案为:﹣3x2+5x.19.解:∵(2a+b)2+|a﹣1|=0,∴2a+b=0,a﹣1=0,解得:a=1,b=﹣2,∵A=5a2b﹣2ab2﹣3ab,B=10a2b﹣6ab2+4ab,∴2A﹣B=2(5a2b﹣2ab2﹣3ab)﹣(10a2b﹣6ab2+4ab)=10a2b﹣4ab2﹣6ab﹣10a2b+6ab2﹣4ab=2ab2﹣10ab,当a=1,b=﹣2时,原式=2×1×(﹣2)2﹣10×1×(﹣2)=8+20=28.十二.整式的加减—化简求值20.解:原式=4x2y﹣2xy2+3(xy﹣x2y)﹣xy+xy2=4x2y﹣2xy2+3xy﹣4x2y﹣xy+xy2=2xy﹣xy2,∵(x+1)2+|y﹣2|=0,∴x+1=0,y﹣2=0,解得x=﹣1,y=2,则原式=2×(﹣1)×2﹣(﹣1)×22=﹣4+1×4=﹣4+4=0.21.解:原式=8a2﹣(8ab+2ab+8a2)﹣2ab =8a2﹣8ab﹣2ab﹣8a2﹣2ab=﹣12ab,∵|a+1|+|b﹣2|=0,∴a+1=0,b﹣2=0,解得a=﹣1,b=2,则原式=﹣12×(﹣1)×2=24.。
3.1 字母表示数 1.填空:(1)小明比小红大3岁,当小红m 岁时,小明________岁. 2)三角形的底边是a ,对应该边上的高是h ,则该三角形的面积是_____ . (3)拿100元钱去买钢笔和笔记本,买了单价为2元的钢笔n 支,买了单价为3元的笔记本m 个,则一共花钱_________ 元.2.把长和宽分别是a 、b 的长方形纸片的四个角都剪去一个边长为x 的正方形.则纸片剩余部分的面积为________. 1.甲乙两人岁数的年龄和等于甲乙两人年龄差的3倍,甲x 岁,乙y 岁,则他们的年龄和如何用年龄差表示(). A.(x+y) B.(x -y) C.3(x -y) D.3(x+y)公路全长P 米,骑车n 小时可到,如想提前一小时到,则需每小时走_______米.3.2 代数式用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
注意:①代数式中不含有“=、>、<、≥、≤、≠”等符号。
②代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
※代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt ;②数字与字母相乘时,数字应写在字母前面,如4a ;③带分数与字母相乘时,应先把带分数化成假分数,如a ⨯312应写作a 37;④在代数式中出现除法运算时,一般写成分数的形式,如4÷(a-4)应写作44-a ;注意:分数线具有“÷”号和括号的双重作用。
⑤在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如)(22b a -平方米。
1.下列代数式中,符合代数式书写要求的有().(1)2113x y ;(2)3ab c ÷;(3)2m n ;(4)225a b -;(5)()2m n ⨯+;(6)4mb ⋅A.1个B.2个C.3个D.4个2.下列各式中哪些是代数式?哪些不是代数式? (1)12-x (2)1=a (3)2R s =(4)27(5)21>31 3.一个分数,分子是x ,分母比分子的5倍小3,则这个数是(). A .53x x - B .53x x + C .5(3)x x - D .53xx - 5.a b 、和的2倍乘以x 与y 的2倍的和的积,用代数式可表示为_______.1.小宁买了20个练习本,店主给他打八折(即标价的80%)优惠,结果便宜1.60元,则每个练习本的标价是()元.A.0.20元B.0.40元C.0.60元D.0.80元2.当4,8==b a 时,代数式ab ab 22-的值是().A.63B.62C.1022D.1263.如果012=-+x x ,那么代数式7223-+x x 的值为(). A.6 B.8 C.-6 D.-84.按照下图所示的操作步骤,若输入x 的值为-2,则给出的值为.5.现规定一种运算*a b ab a b =+-,其中a ,b 为有理数,则3*5的值为.☆能力提升11.代数式a 2+b 2的意义是().A.a 与b 的和的平方B.a+b 的平方C.a 与b 的平方和D.以上都不对 12.一个两位数,个位是a ,十位比个位大1,这个两位数是(). A.a(a+1) B.(a+1)a C.10(a+1)a D.10(a+1)+a 14.下列说法中错误的是( ).A.x 与y 平方的差是x 2-y 2B.x 加上y 除以x 的商是xyx +C.x 减去y 的2倍所得的差是x-2yD.x 与y 和的平方的2倍是2(x+y)2 15.若23(2)0m n -++=,则2m n +的值为(). A .4- B .1- C .0D .419.下面选项中符合代数式书写要求的是 ( ).A.123cb 2a B.ay ·3 C.24ab D .a ×b+c22.已知3a b ==-,x 、y 互为倒数,则()132a b xy +-的值是().A .12B .0C .-6D .-9 3.3 整式:单项式和多项式统称为整式。
一、选择题1.若x=−1,则代数式x2−3x−4的值是( )A.1B.0C.−1D.−22.已知2x6y2和−13x3m y n是同类项,则2m+n的值是( )A.6B.5C.4D.23.如果代数式4y2−2y+5的值为9,那么2y2−y+3的值等于( )A.5B.3C.−3D.−54.如图,矩形ABCD的面积为28,对角线交于点O;以AB,AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB,AO1为邻边作平行四边形AO1C2B;⋯,依此类推,则平行四边形AO6C7B的面积为( )A.78B.716C.732D.7645.平面上10条直线最多能把平面分成几个部分;平面上10个圆最多能把平面分成几个区域( )A.5590B.5591C.5692D.56936.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,⋯,像这样,则20条直线相交最多交点的个数是( )A.171B.190C.210D.3807.如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为( )A.148B.152C.174D.2028.观察图中正方形四个顶点所标的数字规律可知,有理数2016应标在( )A.第506个正方形的左下角B.第506个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角9.已知整数a1,a2,a3,a4,⋯⋯满足下列条件:a1=0,a2=−∣∣a1+1∣∣,a3=−∣∣a2+2∣∣,a4=−∣a3+3∣,⋯⋯,a n+1=−∣a n+n∣(n为正整数)依此类推,则a2020值为( )A.−1008B.−1009C.−1010D.−101110.按下面的程序计算:当输入x=100时,输出结果是299;当输入x=50时,输出结果是446;如果输入x的值是正整数,输出结果是257,那么满足条件的x的值最多有( )A.1个B.2个C.3个D.4个二、填空题11.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n幅图中共有个.12.如图,在Rt△ABC中,∠C=90∘,AC=2,BC=4.点M1,N1,P1分别在AC,BC,AB上,且四边形M1CN1P1是正方形,点M2,N2,P2分别在P1N1,BN1,BP1上,且四边形M 2N 1N 2P 2 是正方形,⋯,点 M n ,N n ,P n 分别在 P n−1N n−1,BN n−1,BP n−1 上,且四边形 M n N n−1N n P n 是正方形,则 BN 2019 的长度是 .13. 如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第 n 个图案中阴影小三角形的个数是 .14. 设 11,12,21,13,22,31,⋯⋯,1k ,2k−1,3k−2,⋯⋯,k1,⋯⋯,在这列数中,第 50 个数是 .15. 观察下列各式,你发现什么规律:1×3=22−1; 3×5=42−1; 5×7=62−1; 7×9=82−1; ⋯13×15=195=142−1.将你猜想到的规律用只含有一个字母的等式表示出来 .16. 已知 a −b =2,那么 2a −2b +5= .17. 已知 a 2+a −1=0,则 a 3+2a 2+2019= .三、解答题18. 已知 A ,B ,C 三点在数轴上的位置如图所示,它们表示的数分别是 a ,b ,c .(1) 填空:abc 0,a +b 0,ab −ac 0;(填“>”、“=”或“<”) (2) 若 ∣a ∣=2 且点 B 到点 C 的距离为点 B 到点 A 的距离的 2 倍,①当 b 2=9 时,求 c 的值;② P是数轴上B,C两点之间的一个动点,设点P表示的数为x,当P点在运动过程中,bx+cx+∣x−c∣−15∣x+a∣−c的值为定值,求b的值.19.先化简,再求值:若x=2,y=−1,求2(x2y−xy2−1)−(2x2y−3xy2−3)的值.20.“囧(jiong)”是近时期网络流行语,像一个人脸郁闷的神情,如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x,y,剪去的两个小直角三角形的两直角边长也分别为x,y.(1) 用含有x,y的代数式表示图中“囧”的面积.x=4时,求此时“囧”的面积.(2) 当y=1221.(1)化简x2−(2x2−4y)+2(x2−y);(2)先化简,再求值:(3x2−xy+y)−2(5xy−4x2+y),其中x=−2,y=1.322.表二,表三,表四分别是从表一中截取的一部分.表一1234⋯2468⋯36912⋯481216⋯⋯⋯⋯⋯⋯表二1215a表三202524b表四1824cd(1) a,b,c,d的值分别为.(2) 表一中第10行,第10列中的数是.23.节约是中华民族的传统美德.为倡导市民节约用水的意识,某市对市民用水实行“阶梯收费”,制定了如下用水收费标准:每户每月的用水不超过10立方米时,水价为每立方米 1.5元,超过10立方米时,超过的部分按每立方米2.5元收费.(1) 该市某户居民9月份用水x立方米(x>10),应交水费y元,请你用含x的代数式表示y;(2) 如果某户居民12月份交水费25元,那么这个月该户居民用了多少立方米水?24.已知a+b=−2,ab=3,求2[ab+(−3a)]−3(2b−ab)的值.25.根据下列条件,求多项式x2−6x+9的值.(1) x=−3.(2) x=3..(3) x=−12(4) x=1.3答案一、选择题1. 【答案】B【解析】当x=−1时,原式=1+3−4=0,故选:B.【知识点】简单的代数式求值2. 【答案】A【解析】∵2x6y2和−13x3m y n是同类项,∴3m=6,n=2,∴m=2,n=2,∴2m+n=2×2+2=6.【知识点】同类项3. 【答案】A【解析】∵4y2−2y+5=9,∴4y2−2y=4,则2y2−y=2,∴2y2−y+3=2+3=5.【知识点】简单的代数式求值4. 【答案】C【解析】设矩形ABCD的面积为S,根据题意得:平行四边形AOC1B的面积=12矩形ABCD的面积=12S,平行四边形AO1C2B的面积=12平行四边形AOC1B的面积=14S=S22,⋯,平行四边形AO n−1C n B的面积=S2n,∴平行四边形AO n C n+1B的面积=S2n+1,∴平行四边形AO6C7B的面积为S27=2827=732.【知识点】用代数式表示规律5. 【答案】C【解析】① 1条直线最多将平面分成2个部分;2条直线最多将平面分成4个部分;3条直线最多将平面分成7个部分;现在添上第4条直线.它与前面的3条直线最多有3个交,这3个交点将第4条直线分成4段,其中每一段将原来所在平面部分分为二,所以4条直线最多将平面分成了7+4=11个部分.完全类似地,5条直线最多将平面分成11+5=16个部分;6条直线最多将平面分成16+6= 22个部分;7条直线最多将平面分成22+7=29个部分;8条直线最多将平面分成29+8= 37个部分.题目的实际意义就是说平面内10条直线,两两直线相交,会有多少个区域,1条直线分平面2个区域,2条直线分平面4个区域,3条直线分平面7个区域,4条直线分平面11个区域,以此类推,10条直线分平面56个区域.② 1个圆把平面分成部分=2,2个圆把平面最多分成的部分=2+2=4,3个圆把平面最多分成的部分=2+2+4=2+2(1+2)=8,4个圆把平面最多分成的部分=2+2(1+2+3)= 14,∵10个圆把平面最多分成的部分=2+2(1+2+3+4+5+6+7+8+9)=92.【知识点】用代数式表示规律6. 【答案】B【解析】∵第一个图,2条直线相交,最多有1个交点,第二个图,3条直线相交最多有1+2=3个交点,第三个图,4条直线相交最多有1+2+3=6个交点,∴第四个图,5条直线相交,交点最多有1+2+3+4=10个,=190.∴20条直线相交,最多交点的个数是1+2+3+⋯+19=(1+19)×192【知识点】用代数式表示规律7. 【答案】C【知识点】用代数式表示规律8. 【答案】D【解析】由图可知,每个正方形的数字有4个,∵(2016+2)÷4=2018÷4=504⋯2,∴有理数2016应标在第505个正方形的右下角.【知识点】用代数式表示规律9. 【答案】C【解析】a1=0,a2=−∣∣a1+1∣∣=−∣0+1∣=−1,a3=−∣∣a2+2∣∣=−∣−1+2∣=−1,a4=−∣a3+3∣=−∣−1+3∣=−2,a5=−∣∣a4+4∣∣=−∣−2+4∣=−2,⋯⋯,所以 n 是奇数时,结果等于 −n−12;n 是偶数时,结果等于 −n2;a 2020=−20202=−1010.【知识点】用代数式表示规律10. 【答案】C【解析】第一个数就是直接输出其结果的:3x −1=257,解得:x =86, 第二个数是 (3x −1)×3−1=257 解得:x =29;第三个数是:3[3(3x −1)−1]−1=257,解得:x =10, 第四个数是 3{3[3(3x −1)−1]−1}−1=257,解得:x =113(不合题意舍去);第五个数是 3(81x −40)−1=257,解得:x =149(不合题意舍去);故满足条件所有 x 的值是 86,29 或 10. 故选:C .【知识点】简单的代数式求值二、填空题11. 【答案】 2n −1【知识点】用代数式表示规律12. 【答案】2202132019【解析】 ∵N 1P 1∥AC , ∴△B 1N 1P 1∽△BCA , ∴BN 1BC=N 1P 1AC ,设 N 1P 1=x ,则4−x 4=x 2,解得:x =43,∴BN 1=BC −CN 1=4−43=83, 同理, ∵N 2P 2∥AC , ∴△P 1N 1B ∽△P 2N 2B , 设 P 2N 2=y , ∴y43=83−y 83,解得:y =89,∴BN 2=83−89=169=2432.同理,BN 3=3227=2533,∴BN 2019 的长度是 2202132019.【知识点】基本定理、用代数式表示规律13. 【答案】 4n −2(或 2+4(n −1))个【解析】由图可知:第一个图案有阴影小三角形 2 个. 第二图案有阴影小三角形 2+4=6 个. 第三个图案有阴影小三角形 2+8=10 个,那么第 n 个就有阴影小三角形 2+4(n −1)=4n −2 个. 【知识点】用代数式表示规律14. 【答案】 56【解析】当 k =1 时,有一个数,这个数是 11, 当 k =2 时,有两个数,这两个数是 12,21, 当 k =3 时,有三个数,这三个数是 13,22,31,∵50=(1+2+3+4+5+6+7+8+9)+5, ∴ 第 50 个数是:510−4=56. 【知识点】用代数式表示规律15. 【答案】 (2n −1)(2n +1)=(2n)2−1【解析】 ∵(2×1−1)×(2×1+1)=(2×1)2−1; (2×2−1)×(2×2+1)=(2×2)2−1; (2×3−1)×(2×3+1)=(2×3)2−1; ∴ 第 n 个等式为 (2n −1)(2n +1)=(2n )2−1. 【知识点】用代数式表示规律16. 【答案】 9【解析】因为 a −b =2,所以 原式=2(a −b )+5=4+5=9. 【知识点】添括号17. 【答案】 2020【解析】∵a2+a−1=0,∴a2+a=1,∴a3+a2=a,又∵ a3+2a2+2019=a3+a2+a2+2019=a+a2+2019=1+2019=2020,∴a3+2a2+2019=2020.【知识点】合并同类项三、解答题18. 【答案】(1) <;>;>(2) ① ∵∣a∣=2且a<0,∴a=−2,∵b2=9且b>0,∴b=3,∵点B到点C的距离为点B到点A的距离的2倍,∴c−b=2(b−a),∴c−3=2[3−(−2)],∴c=13;②依题意,得x−c<0,x+a>0,∴∣x−c∣=c−x,∣x+a∣=x+a,∴原式=bx+cx+(c−x)−15(x+a)−c=bx+cx+c−x−15x−15a−c=(b+c−16)x−15a,∵点B到点C的距离为点B到点A的距离的2倍,∴c−b=2(b−a),∴c=3b−2a,∴原式=(b+c−16)x−15a=(4b−2a−16)x−15a=(4b−12)x+30,bx+cx+∣x−c∣−15∣x+a∣−c的值为定值,∴4b−12=0,b=3.【解析】(1) ∵a<0<b<c,∣a∣<∣b∣<∣c∣,∴abc<0,a+b>0,ab−ac>0,故答案为:<,>,>;【知识点】绝对值的化简、整式的加减运算、利用数轴比较大小19. 【答案】 原式=2x 2y −2xy 2−2−2x 2y +3xy 2+3=xy 2+1.当 x =2,y =−1 时,原式=3.【知识点】整式的加减运算20. 【答案】(1) 由已知得“囧”的面积为:20×20−12xy ×2−xy =400−2xy .(2) 当 y =12x =4 时,x =8,y =4,S =400−2×8×4=336,所以此时“囧”的面积为 336.【知识点】简单列代数式、简单的代数式求值21. 【答案】(1)原式=x 2−2x 2+4y +2x 2−2y =x 2+2y; (2)原式=3x 2−xy +y −10xy +8x 2−2y =11x 2−11xy −y, 当 x =−2,y =13 时,原式=44+223−13=51. 【知识点】整式的加减运算22. 【答案】(1) 18,30,28,35(2) 100【解析】(1) 在表一中,第一行和第一列中,前一个数加 1 的和就是后一个数, 第二行和第二列中,前一个数加 2 的和就是后一个数,第三行和第三列中,前一个数加 3 的和就是后一个数,第四行和第四列中,前一个数加 4 的和就是后一个数,⋯⋯,照这样的规律排列,表二中,前一个数加 3 的和就是后一个数, 所以,a 的值是:15+3=18,表三中,左边的两个数是上面的数加 4 就是下面的数,所以,右面的两个数应是上面的数加 5 就是下面的数,b 的值是:25+5=30,表四中,左边的两个数是上面的数加 6 就是下面的数,所以,c 的值应该是第 4 行,第 7 列的数,c的值是:(24÷6)×7=28,表四中,左边的两个数是上面的数加6就是下面的数,所以,d的值应该是第5行,第8列的数,d的值是:5×7=35.(2) 由(1)可知,表一中第10行,第10列中的数是100.【知识点】用代数式表示规律23. 【答案】(1) 根据题意得:y=10×1.5+2.5(x−10),即:y=2.5x−10(x>10);(2) ∵25>10×1.5,∴某户居民12月份的用水量超过10立方米,当y=25时,25=2.5x−10,解得:x=14,答:这个月该户居民用了14立方米水.【知识点】简单列代数式、一元一次方程的应用24. 【答案】原式=5ab−6a−6b=5ab−6(a+b).将a+b=−2,ab=3代入得:5ab−6a−6b=5ab−6(a+b)=27.【知识点】整式的加减运算25. 【答案】(1) 36.(2) 0.(3) 494.(4) 649.【知识点】多项式。
3.1 字母表示数 1.填空:(1)小明比小红大3岁,当小红m 岁时,小明________岁. 2)三角形的底边是a ,对应该边上的高是h ,则该三角形的面积是_____ . (3)拿100元钱去买钢笔和笔记本,买了单价为2元的钢笔n 支,买了单价为3元的笔记本m 个,则一共花钱_________ 元.2.把长和宽分别是a 、b 的长方形纸片的四个角都剪去一个边长为x 的正方形.则纸片剩余部分的面积为________. 1.甲乙两人岁数的年龄和等于甲乙两人年龄差的3倍,甲x 岁,乙y 岁,则他们的年龄和如何用年龄差表示( ). A.(x+y) B.(x -y) C.3(x -y) D.3(x+y)公路全长P 米,骑车n 小时可到,如想提前一小时到,则需每小时走_______米.3.2 代数式用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
注意:①代数式中不含有“=、>、<、≥、≤、≠”等符号。
②代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
※代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt ;②数字与字母相乘时,数字应写在字母前面,如4a ;③带分数与字母相乘时,应先把带分数化成假分数,如a ⨯312应写作a 37;④在代数式中出现除法运算时,一般写成分数的形式,如4÷(a-4)应写作44-a ;注意:分数线具有“÷”号和括号的双重作用。
⑤在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如)(22b a -平方米。
1.下列代数式中,符合代数式书写要求的有( ).(1)2113x y ;(2)3ab c ÷;(3)2m n ;(4)225a b -;(5)()2m n ⨯+;(6)4mb ⋅A.1个B.2个C.3个D.4个2.下列各式中哪些是代数式?哪些不是代数式? (1)12-x (2)1=a (3)2R s = (4)27 (5)21>31 3.一个分数,分子是x ,分母比分子的5倍小3,则这个数是( ). A .53x x - B .53x x + C . 5(3)x x - D .53xx - 5.a b 、和的2倍乘以x 与y 的2倍的和的积,用代数式可表示为_______.1.小宁买了20个练习本,店主给他打八折(即标价的80%)优惠,结果便宜1.60元, 则每个练习本的标价是( )元.A.0.20元B.0.40元C.0.60元D.0.80元2.当4,8==b a 时,代数式ab ab 22-的值是( ).A.63B.62C.1022D.1263.如果012=-+x x ,那么代数式7223-+x x 的值为( ). A.6 B.8 C.-6 D.-84.按照下图所示的操作步骤,若输入x 的值为-2,则给出的值为 .5.现规定一种运算*a b ab a b =+-,其中a ,b 为有理数,则3*5的值为 .☆能力提升11.代数式a 2+b 2的意义是( ). A.a 与b 的和的平方 B.a+b 的平方 C.a 与b 的平方和 D.以上都不对12.一个两位数,个位是a ,十位比个位大1,这个两位数是( ).A.a(a+1)B.(a+1)aC.10(a+1)aD.10(a+1)+a14.下列说法中错误的是( ).A.x 与y 平方的差是x 2-y 2B.x 加上y 除以x 的商是xyx +C.x 减去y 的2倍所得的差是x-2yD.x 与y 和的平方的2倍是2(x+y)2 15.若23(2)0m n -++=,则2m n +的值为( ). A .4- B .1- C .0D .419.下面选项中符合代数式书写要求的是 ( ).A.123cb 2a B.ay ·3 C.24ab D .a ×b+c22.已知3a b ==-,x 、y 互为倒数,则()132a b xy +-的值是( ).A .12B .0C .-6D .-9 3.3 整式:单项式和多项式统称为整式。
①单项式:都是数字和字母乘积的形式的代数式叫做单项式。
单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。
注意:1.单独的一个数或一个字母也是单项式;2.单独一个非零数的次数是0;3.当单项式的系数为1或-1时,这个“1”应省略不写,如-ab 的系数是-1,a 3b 的系数是1。
②多项式:几个单项式的和叫做多项式。
多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。
※课时达标1.(1)下列代数式中,是单项式的有______. ①-15; ②32a ③π1; ④abc32; ⑤b a 23+; ⑥0; ⑦m 7. (2)单项式c ab 322的系数是______,次数是________. (3)2R π是_____次单项式,32-是_____单项式. 2.x x 3222-由______和_______两项组成. 3.多项式132-+x x 是_____次_____项式.4.若已知2132723b a ab a n ---与53223y x π-的次数相等,则()11+-n =_______.5.下列代数式中,不是整式的是( ).A.a b a +2B.412+aC.0D.πb a 26.下列各式:41-,xy 3,22b a -,53yx -,x 2>1,x -,x 25.0+中,是整式的有____个,是单项式的有______个,是多项式的有______个. 1.代数式()221y x +π是( ).A.是单项式B.是多项式C.既不是单项式,也不是多项式D.无法确定3.若已知单项式5223yz x m -的次数是8,则m 的值是( ).A.2B.3C.5D.66.若()1223--n y x m 是关于y x ,的系数为1的六次单项式,则2n m -=________.☆能力提升8.单项式z y x n 123-是关于x 、y 、z 的五次单项式,则n ;9.关于x 的多项式b x x x a b -+--3)4(是二次三项式,则a= ,b= ; 10.若523m x y +与3n x y 的和是单项式,则m n = .3.4 整式的加减1、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:①同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。
②同类项与系数无关,与字母的排列顺序无关;③几个常数项也是同类项。
2、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。
3、去括号法则①根据去括号法则去括号:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。
4、整式的运算:整式的加减法:(1)去括号;(2)合并同类项。
1.将左右同类项用线段连接起来. y x 232 ba 2- 26xy - m 4 3 25xy y x 24- ab - m2.合并同类项.(1)x x x x 63531222+-+-+ (2)y x xy y x xy xy 22232334+--+ 3.化简()122-+-a a 的结果是( ). A.14--a B.14-a C.1 D.-1 4.化简:(1)()()()c b a c b a c b a --++---+ (2)()()2222232323y x y x --- (3)()[]}{1232-+--a a a a5.若已知有一整式与2522-+x x 的和为4522++x x ,则此整式为( ). A.2 B.6 C.610+x D.21042++x x6.先化简,再求值:⎪⎭⎫ ⎝⎛-++-2232369x y x y ,其中1,2-==y x .1.单项式131-+-a b a y x 与y x 23是同类项,则b a -的值( ).A.2B.0C.-2D.1 2.下列合并同类项中,正确的是( ). A.abb a 743=+ B.01313=-yx xy C.532835x x x =+D.y x x y y x 22254-=-3.()()[]z y x z y x -----等于( ). A.x 2 B.z 2 C.y 2- D.z 2- 5.下列运算正确的是( ). A.-3(x -1)=-3x -1B.-3(x -1)=-3x +1C.-3(x -1)=-3x -3D.-3(x -1)=-3x +36.若n m y x y x -和25是同类项,则n m 52-= .7.当m=________时,-x 3b 2m与14x 3b 是同类项.8.若523m x y +与3n x y 的和是单项式,则m n = .9.如果m n y x 123-与35y x m -是同类项,则m 和n 的取值是( ).A.3和-2B.-3和2C.3和2D.-3和-2 10.下列各组中,是同类项的是( ).A.y x 23与23xyB.abc 2与ac 3-C. xy 2-与ab 2-D. 2与25 11.化简(1)6(25)a a b --+;(2)5()3()6()a b a b a b +-+-+12.先化简,再求值:)4(3)125(23m m m -+--,其中3-=m .3.5 探索规律※课时达标1.已知①9×1+0=9;②9×2+1=19;③9×3+2=29;④9×4+3=39,....,根据前面的式子构成的规律写第6个式子是_____________ .2.下列给出的一串数:2,5,10,17,26,?,50… ….仔细观察后回答:缺少的数?是 .第n 个数是3.观察下列按顺序排列的等式: 220112122+=⨯+=,,23233⨯+=,24344⨯+=. 请你猜想第10个等式应为______________.4.观察下列各式:请你猜想到的规律用只含一个字母的式子表示出来: .5.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是8时,输出的数据是 ( ).A.618 B.638 C.658 D.6786.观察一串数:3,5,7,9……第n 个数可 表示为( ).A.()12-nB.12-nC.()12+nD.12+n7.下面一组按规律排列的数:1,2,4,8,16,……,第2002个数应是( ). A.20022 B.20022-1 C.20012 D.以上答案不对1.用同样大小的黑色棋子按如图3所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).3.观察下列算式:1010122=+=-; 3121222=+=-; 5232322=+=-;7343422=+=-;输入 … 1 2 3 4 5 …输出…21 52 103 174 265……9454522=+=-;……若字母n 表示自然数,请把你观察到的规律用含n 的式子表示出来.你认为的正确答案是 .4.下图是某同学在沙滩上用石于摆成的小房子.观察图形的变化规律,写出第n 个小房子用了 块石子.5.用火柴棒按下图中的方式搭图形如图所示:(1)按图式规律填空:图形标号 ① ② ③ ④ ⑤ 火棒数(2)照这样的规律摆下去,搭第n 个图形 需要多少根火柴棒?☆能力提高7.研究下列等式,你会发现什么规律?1×3+1=4=22 2×4+1=9=32 3×5+1=16=42 4×6+1=25=52 …设n 为正整数,请用n 表示出规律性的公式来. 10.观察下列等式,并回答问题:23)31(6321⨯+==++24)41(104321⨯+==+++ 25)51(1554321⨯+==++++ ……=++++n 321________________________ 。