攀枝花市第一高级中学2018-2019学年高二上学期第一次月考试卷化学
- 格式:pdf
- 大小:643.13 KB
- 文档页数:12
攀枝花市一中2018-2019学年高二上学期第一次月考试卷化学班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.下列物质的水溶液因水解而呈酸性的是A.HCl B.CH3COONa C.FeCl3D.NaCl2.一种新型的“锂-呼吸CO2电池”,结构如图所示,下列说法不正确的是A.该装置是化学能转变为电能B.利用该技术可减少温室气体CO2的排放C.正极的电极反应为:2CO2+ 2e- = C2O42-D.每生成10.2g Li2C2O4,有0.2mol Li+从正极迁移至负极3.下列关于SO2的叙述中不正确的是A.可用向上排空气法收集B.可用于漂白纸浆、草帽等C.遇石蕊溶液先变红,后褪色D.不能与氯化钡溶液发生反应4.某溶液中含有的离子可能是K+、Ba2+、Al3+、Mg2+、AlO2-、CO32-、SiO32-、Cl-中的几种,现进行如下实验:①取少量溶液加氢氧化钠溶液过程中无沉淀生成;②另取少量原溶液,逐滴加入5 mL 0.2 mol·L-1的盐酸,发生的现象是开始产生沉淀并逐渐增多,沉淀量基本不变后产生气体,最后沉淀逐渐减少至消失;③在上述②沉淀消失后的溶液中,再加入足量的硝酸银溶液可得到沉淀0.435 g。
下列说法中正确的是A.该溶液中一定不含有Ba2+、Mg2+、Al3+、SiO32-、Cl-B.该溶液中一定含有K+、AlO2-、CO32-、Cl-C.该溶液中是否含有K+需做焰色反应(透过蓝色钴玻璃片)D.可能含有Cl-5.2017年春节期间,一种“本宝宝福禄双全”的有机物刷爆朋友圈,其结构简式如下:(-CHO,一种官能团,其名称为醛基),该物质的同分异构体中具有“本宝宝福禄双全”谐音且两个醛基位于苯环间位的有机物有()A .4种B .6种C .7种D .9种6. N 2O 5是一种新型硝化剂,在一定温度下可发生下列反应:2N 2O 5(g )4NO 2(g ) + O 2(g ) △H =+Q kJ/mol(Q>0),某温度下,向2L 的密闭容器中通入N O ,部分实验数据见下表:时间/s500 1000 1500 c (N 2O 5)/mol/L 5.03.52.52.5A .500s 内N 2O 5分解速率为6×10-3mol/(L·s )B .该温度下的平衡常数K =125C .反应达平衡时,吸收的热量为5Q kJD .其他条件不变,若开始时c (N 2O 5)=10mol/L ,则达平衡后c (N 2O 5)=5mol/L 7. 下列说法正确的是A .在配制一定物质的量浓度溶液的实验中量筒是必需仪器B .实验室中,盛装NaOH 溶液的试剂瓶用橡皮塞C .某未知液中加入稀NaOH 溶液,没有产生使湿润的红色石蕊试纸变蓝的气体,则该未知液中不含NH 4+D .用pH 试纸测定某溶液的pH 时,需预先用蒸馏水湿润pH 试纸8. 混合动力汽车(HEV )中使用了镍氢电池,其工作原理如图所示:其中M 为储氢合金,MH 为吸附了氢原子的储氢合金,KOH 溶液作电解液。
2018-2019学年⾼⼆上学期第⼀次⽉考化学试题(附参考答案)2018-2019学年度⾼⼆化学第⼀次⽉考卷⼀:单项选择题(每⼩题3分,共60分)1、下列有关化学⽤语的说法正确的是( )A. 氯原⼦的结构⽰意图:B. 中⼦数为8、质⼦数为6的碳原⼦:68CC. 1H与2H互称同位素D. 230Th和232Th的化学性质不相同2、四种短周期元素在周期表中的位置如右图,其中Y元素原⼦电⼦层数等于最外层电⼦数。
下列说法不正确的是()A. Z位于元素周期表中第三周期、第IVA族B. Y 的最⾼价氧化物不能和X 的简单氢化物反应C. M的⾮⾦属性⽐Z的弱D. 原⼦半径⽐较: X3、短周期主族元素X、Y、Z、W的原⼦序数依次增⼤。
X原⼦的最外层电⼦数是其内层电⼦数的2倍,Y和W同主族,Z+与Y2-具有相同的电⼦层结构。
下列说法正确的是( )A. 原⼦半径⼤⼩顺序:r(W)>r(Z)>r(Y)>r(X)B. X的最⾼价氧化物对应⽔化物的酸性⽐W的弱C. Y分别与Z、W形成的化合物中化学键类型相同D. W的⽓态简单氢化物的热稳定性⽐Y的强4、下⾯有关离⼦化合物的说法正确的是( )A.离⼦化合物中⼀定含有⾦属元素,含⾦属元素的化合物⼀定是离⼦化合物B.离⼦键只存在于离⼦化合物中,离⼦化合物中⼀定含有离⼦键C.离⼦化合物中不可能含有共价键D.离⼦化合物受热熔化破坏化学键,吸收热量,属于化学变化5、下列各组物质中,化学键类型不同的是()A. NaCl和K2SB. H2O和NH3C. CaF2和CsClD. CCl4和Na2O6、下列关于下图装置的说法中,正确的是()A. 该装置能将电能转化为化学能B. 铜棒上发⽣还原反应C. 该装置⼯作时溶液中SO42-向正极移动D. 正极反应为Zn-2 e-= Zn2+7、下图表⽰的是钢铁在海⽔中的锈蚀过程,以下有关说法正确的是()A. 该⾦属腐蚀过程为析氢腐蚀B. 正极为C,发⽣的反应为氧化反应C. 在酸性条件下发⽣的是吸氧腐蚀D. 正极反应为:O2 + 2H2O + 4e →4OH8、在⼀定条件下,可逆反应:N2(g)+3H2(g)2NH3(g) △H<0,增加N2的浓度,平衡常数将()A. 增⼤B. 不变C. 减少D. ⽆法判断9、LiFePO4电池⼴泛⽤于电动车。
次半月考试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(云南省曲靖市会泽县一中2018-2019学年高二化学上学期第一次半月考试题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为云南省曲靖市会泽县一中2018-2019学年高二化学上学期第一次半月考试题的全部内容。
一次半月考试题第Ⅰ卷(共126分)考试中可能要用到的原子质量:H—1 C—12 N—14 O—16 Mg—24 Fe—56 Zn—65一、选择题(每小题6分,共126分,1—18题为单项选择题,只有一个选项正确;19-21题为多项选择题,全部选对得6分,选对但不全得3分,有选错得0分)7.化学与生产、生活密切相关.下列说法不正确...的是A.将地沟油回收加工成燃料,可提高资源的利用率B.煤的干馏与石油的分馏均属于化学变化C.用点燃,闻气味的方法可鉴别蚕丝与人造纤维D.开发利用可再生能源,减少化石燃料的使用8.N A代表阿伏加德罗常数,下列说法正确的是 ( )A.含有N A个氖原子的氖气在标准状况下的体积约为11。
2LB.2L1mol·L-1的盐酸中所含氯化氢分子数约为2N AC.常温常压下,ll.2L氮气所含的原子数目为N AD.常温下,0。
05 mol CO2和SO2混合气体中所含氧原子数为0.1N A9.在下列给定条件的水溶液中,一定能大量共存的离子组是A.能与铝反应生成H2的溶液:Ca2+、NH4+、HCO3-、Cl-B.存在大量Fe2+的溶液:H+、Na+、NO3-、SO42-C.加入石蕊溶液变红的溶液:Na+、K+、Cl-、NO3-D.常温下,c(H+)∶c(OH-)=1×10-12的溶液:K+、Ba2+、ClO-、CO32-10.在常温条件下,如图所示,烧杯中放入用导线相连的铁、铜两个电极,加入适量的浓HNO3,已知停止工作时,Fe、Cu均有剩余。
攀枝花市高级中学2018-2019学年高二上学期第一次月考试卷化学班级__________ 座号_____ 姓名__________ 分数__________一、选择题的是1.对常温下的溶液,下列叙述不正确...A.B. 加入少量固体后,降低C. 该溶液中由电离出的是D. 与等体积的溶液混合后所得溶液显酸性2.化合物A经李比希法和质谱法分析得知其相对分子质量为136,分子式为C8H8O2。
A 的核磁共振氢谱有4个峰且面积之比为1∶2∶2∶3,A分子中只含一个苯环且苯环上只有一个取代基,其红外光谱与核磁共振氢谱如下图。
关于A的下列说法中,正确的是()A.1mol A在碱性条件下水解消耗2 mol NaOHB.A在一定条件下可与4 mol H2发生加成反应C.符合题中A分子结构特征的有机物只有1种D.与A 属于同类化合物的同分异构体只有2 种3A.A B.B C.C D.D4.【2017年浙江省高三“超级全能生”3月联考】下列说法正确的是()A.淀粉溶液和蔗糖溶液都有丁达尔现象B.天然高分子化合物如糖类、油脂、纤维素都是人类重要的营养来源C.酶是具有催化作用的蛋白质,在光、热、酸、碱、重金属离子、乙醇等作用下会失去活性D.一定条件下,等物质的量的乙醇和乙酸分别与足量的Na反应,乙酸产生的氢气体积多5.某有机物的分子式为C8H9Cl,其分子结构中含有苯环的同分异构体共有A.9种B.10种C.13种D.14种6.某溶液中含有CH3COO-、SO42-、SO32-、HCO3-、CO32-等五种离子。
将过量的Na2O2固体加入其中后,仍能大量存在的离子是A.CH3COO-、SO42-、HCO3-B.SO42-、SO32-、CO32-C.SO32-、HCO3-、SO42-D.CH3COO-、SO42-、CO32-7.下列哪一个实验,不仅产生气体,而且最终一定能产生白色沉淀()A.将少量的Na投入到Ca(HCO3)2溶液中B.将过量的Na2O2投入到FeSO4溶液中C.将过量的Na投入到KAl(SO4)2溶液中D.将少量的Mg投入到NaOH溶液中8.容积固定的密闭容器中存在如下反应:A(g)+3B(g)2C(g)△H<0某研究小组研究了其他条件不变时,改变某一条件对上述反应的影响,并根据实验数据作出下列关系图:下列判断正确的是①图I研究的是压强对反应的影响,且乙的压强较高②图II研究的是压强对反应的影响,且甲的压强较高③图II研究的是温度对反应的影响,且乙的温度较高④图III研究的是不同催化剂对反应的影响,且甲使用的催化剂效率较高A.①②B.①③C.①④D.③④9.NH3催化还原NO是重要的烟气脱硝技术,其反应过程与能量关系如左图;研究发现在以Fe2O3为主的催化剂上可能发生的反应过程如右图。
攀枝花市外国语学校2018-2019学年高二上学期第一次月考试卷化学班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.工业上可由乙苯生产苯乙烯:,下列说法正确的是()A.该反应的类型为消去反应B.乙苯的同分异构体共有三种C.可用Br2/CCl4鉴别乙苯和苯乙烯D.乙苯和苯乙烯分子内共平面的碳原子数均为72.【新疆乌鲁木齐地区2017年高三二诊】下列有机反应:①甲烷与氯气光照反应②乙醛制乙酸③乙烯使溴水褪色④乙醇制乙烯⑤乙醛制乙醇⑥乙酸制乙酸乙酯⑦乙酸乙酯与NaOH溶液共热⑧液态植物油制人造脂肪⑨乙烯制乙醇的说法正确的是()A.②⑤的反应类型相同B.⑥⑦的反应类型不同C.④与其他8个反应的类型都不同D.①③⑧属于同一种反应类型3.在密闭容器中,加入3mo1A和1molB,一定条件下发生反应3A(g)+B(g)2C(g) +D(g),达平衡时,测得C 的浓度为w mol·L-1,若保持容器中容积和温度不变,重新按下列配比作起始物质,达到平衡时,C 的浓度仍然为w mol·L-1的是A.6molA +2molB B.1.5molA-0.5molB+1molC+0.5molDC.3molA+1molB+2molC+1molD D.1molB+2molC+1molD4.下列说法正确的是A.符合分子通式C n H2n+2的烃一定都是烷烃,分子中均只含单键B.通过石油裂化可以得到多种气态短链烃,其中包括重要化工原料C.苯和乙烯均能与溴水发生加成反应使溴水褪色D.甲醛易溶于水,其水溶液具有杀菌消毒作用,可用于浸泡海鲜食品5.下列说法正确的是()A.我国“西气东输”中的“气”指的是石油气B.生物质在一定条件下发生化学反应,产生热值较高的可燃气体,该过程属于生物化学转化C.煤干馏的主要产物为焦炭、煤焦油、粗氨水和焦炉气D.石油分馏是化学变化,可得到汽油、煤油等产品6.某同学利用下图装置探究SO2的性质。
四川省攀枝花市高二上学期第一次月考化学试卷姓名:________ 班级:________ 成绩:________一、选择题. (共20题;共40分)1. (2分)可用CO32- +2H+ = H2O+CO2↑表示离子反应的是()A . 稀硫酸和碳酸钡B . 稀硫酸和碳酸氢钠C . 醋酸和碳酸钠D . 硫酸氢钠和碳酸钾2. (2分)(2018·北京) 测定0.1mol·L-1Na2SO3溶液先升温再降温过程中的pH,数据如下。
时刻①②③④温度/℃25304025pH9.669.529.379.25实验过程中,取①④时刻的溶液,加入盐酸酸化的BaCl2溶液做对比试验,④产生白色沉淀多。
下列说法错误的是()A . Na₂SO3溶液中存在水解平衡:SO32-+H2O HSO-3+OH-B . ④的pH与①不同,是由于SO32-浓度减小造成的C . ①→③的过程中,温度和浓度对水解平衡移动方向的影响一致D . ①与④的Kw值相等3. (2分) (2019高二上·公主岭期末) 把1mL0.1mol•L-1的硫酸加水稀释成2L溶液,在此溶液中由水电离产生的H+ ,接近于()A . 1.0×10-4mol/LB . 1.0×10-8mol/LC . 1.0×10-10mol/LD . 1.0×10-11mol/L4. (2分)把a、b、c、d四块金属浸入稀H2SO4中,用导线两两相连可以组成各种原电池。
若a、b相连时a溶解;c、d相连时c为负极;a、c相连时,c极上产生大量气泡;b、d相连时,b为正极,则四种金属活动性顺序由强到弱为()A . a>b>c>dB . a>c>d>bC . c>a>b>dD . b>d>c>a5. (2分) (2018高二上·武汉期末) 利用下图装置进行实验,开始时,a、b两处液面相平,密封好,放置一段时间。
攀枝花市一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设函数f (x )的定义域为A ,若存在非零实数l 使得对于任意x ∈I (I ⊆A ),有x+l ∈A ,且f (x+l )≥f (x ),则称f (x )为I 上的l 高调函数,如果定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x ﹣a 2|﹣a 2,且函数f (x )为R 上的1高调函数,那么实数a 的取值范围为( )A .0<a <1B .﹣≤a ≤C .﹣1≤a ≤1D .﹣2≤a ≤22. 函数y=x 3﹣x 2﹣x 的单调递增区间为( )A .B .C .D .3. 在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力. 4. 已知直线y=ax+1经过抛物线y 2=4x 的焦点,则该直线的倾斜角为( )A .0B .C .D .5. 已知f (x )=x 3﹣6x 2+9x ﹣abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论: ①f (0)f (1)>0; ②f (0)f (1)<0; ③f (0)f (3)>0; ④f (0)f (3)<0.其中正确结论的序号是( ) A .①③B .①④C .②③D .②④6. 直线x+y ﹣1=0与2x+2y+3=0的距离是( )A .B .C .D .7. PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是据某地某日早7点至晚8点甲、乙两个PM 2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )A .甲B .乙C .甲乙相等D .无法确定8. 设集合S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,则实数a 的取值范围是( ) A .﹣3<a <﹣1 B .﹣3≤a ≤﹣1 C .a ≤﹣3或a ≥﹣1 D .a <﹣3或a >﹣1 9. 2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7D.10【命题意图】本题主要考查分层抽样的方法的运用,属容易题.10.单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则( )A .该几何体体积为B .该几何体体积可能为C .该几何体表面积应为+D .该几何体唯一11.已知函数f (x )=,则的值为( )A .B .C .﹣2D .312.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则点P 轨迹方程为( )A .86210x y --=B .86210x y +-=C .68210x y +-=D .68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.二、填空题13.在ABC ∆中,有等式:①sin sin a A b B =;②sin sin a B b A =;③cos cos a B b A =;④sin sin sin a b cA B C+=+.其中恒成立的等式序号为_________. 14.已知x ,y 为实数,代数式2222)3(9)2(1y x x y ++-++-+的最小值是 .【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力. 15.若点p (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为16.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函数,函数()22xa g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为32,则a 的值为______.17.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为( )A .1B .±1CD .【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.18.设函数,若用表示不超过实数m 的最大整数,则函数的值域为 .三、解答题19.在平面直角坐标系中,以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系.已知直线l 过点P (1,0), 斜率为,曲线C :ρ=ρcos2θ+8cos θ.(Ⅰ)写出直线l 的一个参数方程及曲线C 的直角坐标方程; (Ⅱ)若直线l 与曲线C 交于A ,B 两点,求|PA|•|PB|的值.20.(本小题满分12分)某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下:(Ⅰ)求频率分布直方图中的a 的值,并估计每天销售量的中位数;(Ⅱ)这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理.每售出1千克蔬菜获利4元,未售出的蔬菜,每千克亏损2元.假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克时获利的平均值.21.已知全集U 为R ,集合A={x|0<x ≤2},B={x|x <﹣3,或x >1}求:(I )A ∩B ;(II )(C U A )∩(C U B );(III )C U (A ∪B ).0.0050.02频率组距O千克22.某公司对新研发的一种产品进行合理定价,且销量与单价具有相关关系,将该产品按事先拟定的价格进行(1)现有三条y对x的回归直线方程:=﹣10x+170;=﹣20x+250;=﹣15x+210;根据所学的统计学知识,选择一条合理的回归直线,并说明理由.(2)预计在今后的销售中,销量与单价服从(1)中选出的回归直线方程,且该产品的成本是每件5元,为使公司获得最大利润,该产品的单价应定多少元?(利润=销售收入﹣成本)23.已知a>0,a≠1,设p:函数y=log a(x+3)在(0,+∞)上单调递减,q:函数y=x2+(2a﹣3)x+1的图象与x轴交于不同的两点.如果p∨q真,p∧q假,求实数a的取值范围.24.已知曲线C的极坐标方程为4ρ2cos2θ+9ρ2sin2θ=36,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系;(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)若P(x,y)是曲线C上的一个动点,求3x+4y的最大值.攀枝花市一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x﹣a2|﹣a2=图象如图,∵f(x)为R上的1高调函数,当x<0时,函数的最大值为a2,要满足f(x+l)≥f(x),1大于等于区间长度3a2﹣(﹣a2),∴1≥3a2﹣(﹣a2),∴﹣≤a≤故选B【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题.2.【答案】A【解析】解:∵y=x3﹣x2﹣x,∴y′=3x2﹣2x﹣1,令y′≥0即3x2﹣2x﹣1=(3x+1)(x﹣1)≥0解得:x≤﹣或x≥1故函数单调递增区间为,故选:A.【点评】本题主要考查导函数的正负和原函数的单调性的关系.属基础题.3.【答案】C4.【答案】D【解析】解:抛物线y2=4x的焦点(1,0),直线y=ax+1经过抛物线y2=4x的焦点,可得0=a+1,解得a=﹣1,直线的斜率为﹣1,该直线的倾斜角为:.故选:D.【点评】本题考查直线的倾斜角以及直线的斜率的关系,抛物线的简单性质的应用,考查计算能力.5.【答案】C【解析】解:求导函数可得f′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),∵a<b<c,且f(a)=f(b)=f(c)=0.∴a<1<b<3<c,设f(x)=(x﹣a)(x﹣b)(x﹣c)=x3﹣(a+b+c)x2+(ab+ac+bc)x﹣abc,∵f(x)=x3﹣6x2+9x﹣abc,∴a+b+c=6,ab+ac+bc=9,∴b+c=6﹣a,∴bc=9﹣a(6﹣a)<,∴a2﹣4a<0,∴0<a<4,∴0<a<1<b<3<c,∴f(0)<0,f(1)>0,f(3)<0,∴f(0)f(1)<0,f(0)f(3)>0.故选:C.6.【答案】A【解析】解:直线x+y﹣1=0与2x+2y+3=0的距离,就是直线2x+2y﹣2=0与2x+2y+3=0的距离是:=.故选:A.7.【答案】A【解析】解:根据茎叶图中的数据可知,甲地的数据都集中在0.06和0.07之间,数据分别比较稳定,而乙地的数据分布比较分散,不如甲地数据集中,∴甲地的方差较小.故选:A.【点评】本题考查茎叶图的识别和判断,根据茎叶图中数据分布情况,即可确定方差的大小,比较基础.8.【答案】A【解析】解:∵S=|x|x<﹣1或x>5},T={x|a<x<a+8},且S∪T=R,∴,解得:﹣3<a<﹣1.故选:A.【点评】本题考查并集及其运算,关键是明确两集合端点值间的关系,是基础题.9.【答案】C10.【答案】C【解析】解:由已知中三视图可得该几何体是由一个边长为1的正方体,截掉一个角(三棱锥)得到且该三棱锥有条过同一顶点且互相垂直的棱长均为1该几何体的表面积由三个正方形,有三个两直角边为1的等腰直角三角形和一个边长为的正三角形组成故其表面积S=3•(1×1)+3•(×1×1)+•()2=.故选:C.【点评】本题考查的知识点是由三视图求表面积,其中根据三视图分析出该几何的形状及各边边长是解答本题的关键.11.【答案】A【解析】解:∵函数f (x )=,∴f ()==﹣2,=f (﹣2)=3﹣2=.故选:A .12.【答案】D【解析】由切线性质知PQ CQ ⊥,所以222PQ PC QC=-,则由PQ PO =,得,2222(3)(4)4x y x y -++-=+,化简得68210x y --=,即点P 的轨迹方程,故选D , 二、填空题13.【答案】②④ 【解析】试题分析:对于①中,由正弦定理可知sin sin a A b B =,推出A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,所以不正确;对于②中,sin sin a B b A =,即sin sin sin sin A B B A =恒成立,所以是正确的;对于③中,cos cos a B b A =,可得sin()0B A -=,不满足一般三角形,所以不正确;对于④中,由正弦定理以及合分比定理可知sin sin sin a b cA B C+=+是正确,故选选②④.1 考点:正弦定理;三角恒等变换.14. 【解析】15.【答案】:2x ﹣y ﹣1=0解:∵P (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点, ∴圆心与点P 确定的直线斜率为=﹣,∴弦MN 所在直线的斜率为2,则弦MN 所在直线的方程为y ﹣1=2(x ﹣1),即2x ﹣y ﹣1=0. 故答案为:2x ﹣y ﹣1=0 16.【答案】52【解析】()1ln f x x a =--+',因为()f x 在()0e ,上是增函数,即()0f x '≥在()0e ,上恒成立,ln 1a x ∴≥+,则()max ln 1a x ≥+,当x e =时,2a ≥,又()22xa g x e a =-+,令xt e =,则()[]2,1,32a g t t a t =-+∈, (1)当23a ≤≤时,()()2max 112a g t g a ==-+,()()2min 2a g t g a ==,则()()max min 312g t g t a -=-=,则52a =,(2)当3a >时,()()2max 112a g t g a ==-+,()()2min 332a g t g a ==-+,则()()max min 2g t g t -=,舍。
攀枝花市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 2a 6=( )A .6B .9C .36D .722. 已知双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=1相切,则双曲线的离心率为()A .B .C .D .3. “互联网”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶+段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( )A .10B .20C .30D .404. 数列1,3,6,10,…的一个通项公式是( )A .B .C .D .21n a n n =-+(1)2n n n a -=(1)2n n n a +=21n a n =+5. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3B .2C .3D .46. 已知,,其中是虚数单位,则的虚部为( )i z 311-=i z +=32i 21z z A .B .C .D .1-54i -i 54【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.7. 在△ABC 中,∠A 、∠B 、∠C 所对的边长分别是a 、b 、c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形8. 已知函数f(x)是定义在R 上的奇函数,当x ≥0时,.若,f(x-1)≤f(x),则实数a 的取值范围为A[]B[]C[]D[]9. 函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为()A .0<a ≤B .0≤a ≤C .0<a <D .a >10.如果点P 在平面区域220,210,20x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q 在曲线22(2)1x y ++=上,那么||PQ 的最小值为()A1B1-C. 1- D1-11.若P 是以F 1,F 2为焦点的椭圆=1(a >b >0)上的一点,且=0,tan ∠PF 1F 2=,则此椭圆的离心率为( )A .B .C .D .12.函数f (x )=3x +x 的零点所在的一个区间是( )A .(﹣3,﹣2)B .(﹣2,﹣1)C .(﹣1,0)D .(0,1)二、填空题13.要使关于的不等式恰好只有一个解,则_________.x 2064x ax ≤++≤a =【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.14.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量(单位:毫克/升)与时间(单P t 位:小时)间的关系为(,均为正常数).如果前5个小时消除了的污染物,为了0ektP P -=0P k 10%消除的污染物,则需要___________小时.27.1%【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用.15.运行如图所示的程序框图后,输出的结果是 16.自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到C 22(3)(4)4x y -++=(,)P x y Q P 原点的长,则的最小值为( )O PQ A .B .3C .4D .13102110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.17.在△ABC 中,若角A 为锐角,且=(2,3),=(3,m ),则实数m 的取值范围是 . 18.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 . 三、解答题19.如图:等腰梯形ABCD ,E 为底AB 的中点,AD=DC=CB=AB=2,沿ED 折成四棱锥A ﹣BCDE ,使AC=.(1)证明:平面AED ⊥平面BCDE ;(2)求二面角E ﹣AC ﹣B 的余弦值.20.设函数f(x)=mx2﹣mx﹣1.(1)若对一切实数x,f(x)<0恒成立,求m的取值范围;(2)对于x∈[1,3],f(x)<﹣m+5恒成立,求m的取值范围.21.(本题满分12分)如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱DD1、C1D1的中点.(1)求直线BE和平面ABB1A1所成角 的正弦值;(2)证明:B1F∥平面A1BE.22.已知数列{a n}满足a1=,a n+1=a n +,数列{b n}满足b n=(Ⅰ)证明:b n∈(0,1)B11(Ⅱ)证明: =(Ⅲ)证明:对任意正整数n 有a n.23.(本小题满分12分)在中,内角的对边为,已知ABC ∆C B A ,,c b a ,,.1cos )sin 3(cos 2cos 22=-+C B B A(I )求角的值;C(II )若,且的面积取值范围为,求的取值范围.2b =ABC ∆c 【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力.24.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sinA ﹣sinC (cosB+sinB )=0.(1)求角C 的大小; (2)若c=2,且△ABC 的面积为,求a ,b 的值.攀枝花市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案)一、选择题1. 【答案】D【解析】解:设等比数列{a n }的公比为q ,∵a 1=3,a 1+a 3+a 5=21,∴3(1+q 2+q 4)=21,解得q 2=2.则a 2a 6=9×q 6=72.故选:D . 2. 【答案】D 【解析】解:双曲线﹣=1(a >0,b >0)的渐近线方程为 y=±x ,即x ±y=0.根据圆(x ﹣2)2+y 2=1的圆心(2,0)到切线的距离等于半径1,可得,1=,∴ =,,可得e=.故此双曲线的离心率为:.故选D .【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出的值,是解题的关键. 3. 【答案】B 【解析】试题分析:设从青年人抽取的人数为,故选B .800,,2050600600800x x x ∴=∴=++考点:分层抽样.4. 【答案】C 【解析】试题分析:可采用排除法,令和,验证选项,只有,使得,故选C .1n =2n =(1)2n n n a +=121,3a a ==考点:数列的通项公式.5. 【答案】A【解析】解:∵l 1:x+y ﹣7=0和l 2:x+y ﹣5=0是平行直线,∴可判断:过原点且与直线垂直时,中的M 到原点的距离的最小值∵直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0,∴两直线的距离为=,∴AB 的中点M 到原点的距离的最小值为+=3,故选:A【点评】本题考查了两点距离公式,直线的方程,属于中档题. 6. 【答案】B【解析】由复数的除法运算法则得,,所以的虚部为.i i i i i i i i z z 54531086)3)(3()3)(31(33121+=+=-+-+=++=21z z 547. 【答案】D【解析】解:∵sinC+sin (B ﹣A )=sin2A ,∴sin (A+B )+sin (B ﹣A )=sin2A ,∴sinAcosB+cosAsinB+sinBcosA ﹣cosBsinA=sin2A ,∴2cosAsinB=sin2A=2sinAcosA ,∴2cosA (sinA ﹣sinB )=0,∴cosA=0,或sinA=sinB ,∴A=,或a=b ,∴△ABC 为等腰三角形或直角三角形故选:D .【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA 而导致漏解,属中档题和易错题.8. 【答案】B 【解析】当x ≥0时,f (x )=,由f (x )=x ﹣3a 2,x >2a 2,得f (x )>﹣a 2;当a 2<x <2a 2时,f (x )=﹣a 2;由f (x )=﹣x ,0≤x ≤a 2,得f (x )≥﹣a 2。
攀枝花市一中2018-2019学年高二9月月考化学试题解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.使溶液中的Al3+完全转化成Al(OH)3,应选择的最好试剂是A.NH3·H2O B.NaOH C.CO2 D.HCl2.下列说法正确的是A.煤、石油、天然气均为化石燃料,它们属于可再生资源B.大自然利用太阳能最成功的是植物的光合作用C.石油的分馏、催化裂化、裂解等石油加工方法,其目的均为得到更多的汽油D.化肥的大量使用不会造成环境污染3.哈伯因发明用氮气和氢气合成氨气的方法而获得1918年诺贝尔化学奖。
现向一密闭容器中充入1 mol N2和3 mol H 2,在一定条件下使该反应发生N2+3H22NH3。
下列说法正确的是()A.一定条件下达到化学平衡时,N2、H2和NH3的物质的量浓度之比为1:3:2B.达到化学平衡时,N2完全转化为NH3C.达到化学平衡时,正反应和逆反应速率相等,且都为零D.单位时间内消耗a mol N2同时消耗2a mol NH3,说明该反应已达到平衡状态的是4.下列关于反应速率的说法中,不正确...A.反应速率用于衡量化学反应进行的快慢B.决定反应速率的主要因素有浓度、压强、温度和催化剂C.可逆反应达到化学平衡时,正、逆反应的速率都不为0D.增大反应物浓度、提高反应温度都能增大反应速率5.在实验室中,常用KMnO4代替MnO2与浓盐酸反应制取氯气,反应的化学方程式为2KMnO4+16HCl(浓)=2MnCl2+5Cl2↑+2KCl+8H2O,下列叙述中正确的是()A.反应中KMnO4被氧化B.HCl发生还原反应C.每消耗2mol HCl时,反应中转移的电子为2 molD.氧化剂与还原剂的物质的量之比为1﹕56.下列说法错误的是()①化学性质相似的有机物是同系物②分子组成相差一个或若干个CH2原子团的有机物是同系物③若烃中碳、氢元素的质量分数相同,它们必是同系物④互为同分异构体的两种有机物的物理性质有差别,但化学性质必定相似⑤相对分子质量相同而结构不同的化合物互为同分异构体⑥石墨与金刚石分子式相同,结构不同,互为同分异构体A.①②③④⑤⑥B.只有②③⑤C.只有③④⑥D.只有①②③⑥7.常温下,下列说法正确的是A.0.1mol/LNaHCO3溶液中:c(H+)+2c(H2CO3)=c(CO32-)+c(OH-)B.0.1mol/LHCN和0.1mol/L NaCN的等体积混合溶液中:c(HCN)>c(Na+)>c(CN-)>c(H+)>c(OH-)C.0.1mol/LNa2C2O4溶液滴加HCl溶液至c(H2C2O4)=c(HC2O4-):3c(H2C2O4)>c(OH-)+c(Cl-)D.0.1mol/LNH4HSO4溶液滴加NaOH溶液至pH=7:c(Na+)=c(NH4+)+2c(NH3·H2O)>c(SO42-)8.【2017新课标1卷】下列生活用品中主要由合成纤维制造的是()A.尼龙绳B.宣纸C.羊绒衫D.棉衬衣9.使用SNCR脱硝技术的原理是4NO(g)+4NH3(g)4N2(g)+6H2O(g),下图是其在密闭体系中研究反应条件对烟气脱硝效率的实验结果。
攀枝花市第一高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 直线2x+y+7=0的倾斜角为( ) A .锐角 B .直角 C .钝角 D .不存在2. 已知f (x )是定义在R 上的奇函数,且f (x ﹣2)=f (x+2),当0<x <2时,f (x )=1﹣log 2(x+1),则当0<x <4时,不等式(x ﹣2)f (x )>0的解集是( )A .(0,1)∪(2,3)B .(0,1)∪(3,4)C .(1,2)∪(3,4)D .(1,2)∪(2,3)3. 已知PD ⊥矩形ABCD 所在的平面,图中相互垂直的平面有( )A .2对B .3对C .4对D .5对4. 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )A .B .C .D . =0.08x+1.235. 已知11xyi i=-+,其中,x y 是实数,是虚数单位,则x yi +的共轭复数为 A 、12i + B 、12i - C 、2i + D 、2i -6. 已知x ,y 满足,且目标函数z=2x+y 的最小值为1,则实数a 的值是( )A .1B .C .D .7. 设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B ∪(∁U A )=( ) A .{5} B .{1,2,5}C .{1,2,3,4,5}D .∅8. 过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .569. 已知点P 是双曲线C :22221(0,0)x y a b a b-=>>左支上一点,1F ,2F 是双曲线的左、右两个焦点,且12PF PF ⊥,2PF 与两条渐近线相交于M ,N 两点(如图),点N 恰好平分线段2PF ,则双曲线的离心率是( )A.5B.2 D.2【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.10.如图,在正方体1111ABCD A B C D 中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )A 1CA.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.11.已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=()|x ﹣2|+()|x ﹣2|,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( )A .(﹣∞,)∪(2,+∞)B .(,2)C .(﹣∞,﹣)∪(2,+∞)D .(﹣,2)12.设i 是虚数单位,是复数z 的共轭复数,若z =2(+i ),则z=( )A .﹣1﹣iB .1+iC .﹣1+iD .1﹣i二、填空题13.已知,是空间二向量,若=3,||=2,|﹣|=,则与的夹角为 .14.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 .15.已知函数f (x )=,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范围是 .16.设有一组圆C k :(x ﹣k+1)2+(y ﹣3k )2=2k 4(k ∈N *).下列四个命题: ①存在一条定直线与所有的圆均相切; ②存在一条定直线与所有的圆均相交; ③存在一条定直线与所有的圆均不相交; ④所有的圆均不经过原点.其中真命题的代号是 (写出所有真命题的代号). 17.若圆与双曲线C :的渐近线相切,则_____;双曲线C 的渐近线方程是____.18.过椭圆+=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 .三、解答题19.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2ln f x ax x =+,()21145ln 639f x x x x =++,()22122f x x ax =+,a R ∈ (1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当23a =时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)20.(本小题12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.111](1)求{}n a ,{}n b 的通项公式; (2)求数列{}nna b 的前项和n S .21.已知矩阵M=的一个属于特质值3的特征向量=,正方形区域OABC 在矩阵N 应对的变换作用下得到矩形区域OA ′B ′C ′,如图所示. (1)求矩阵M ;(2)求矩阵N 及矩阵(MN )﹣1.22.已知p :,q :x 2﹣(a 2+1)x+a 2<0,若p 是q 的必要不充分条件,求实数a 的取值范围.23.已知函数()2ln f x x bx a x =+-.(1)当函数()f x 在点()()1,1f 处的切线方程为550y x +-=,求函数()f x 的解析式; (2)在(1)的条件下,若0x 是函数()f x 的零点,且()*0,1,x n n n N ∈+∈,求的值;(3)当1a =时,函数()f x 有两个零点()1212,x x x x <,且1202x x x +=,求证:()00f x '>.24.设A (x 0,y 0)(x 0,y 0≠0)是椭圆T :+y 2=1(m >0)上一点,它关于y 轴、原点、x 轴的对称点依次为B ,C ,D .E 是椭圆T 上不同于A 的另外一点,且AE ⊥AC ,如图所示.(Ⅰ) 若点A 横坐标为,且BD ∥AE ,求m 的值;(Ⅱ)求证:直线BD 与CE 的交点Q 总在椭圆+y 2=()2上.攀枝花市第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,即可判断出结论.【解答】解:设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,则θ为钝角.故选:C.2.【答案】D【解析】解:∵f(x)是定义在R上的奇函数,且f(x﹣2)=f(x+2),∴f(0)=0,且f(2+x)=﹣f(2﹣x),∴f(x)的图象关于点(2,0)中心对称,又0<x<2时,f(x)=1﹣log2(x+1),故可作出fx(x)在0<x<4时的图象,由图象可知当x∈(1,2)时,x﹣2<0,f(x)<0,∴(x﹣2)f(x)>0;当x∈(2,3)时,x﹣2>0,f(x)>0,∴(x﹣2)f(x)>0;∴不等式(x﹣2)f(x)>0的解集是(1,2)∪(2,3)故选:D【点评】本题考查不等式的解法,涉及函数的性质和图象,属中档题.3.【答案】D【解析】解:∵PD⊥矩形ABCD所在的平面且PD⊆面PDA,PD⊆面PDC,∴面PDA⊥面ABCD,面PDC⊥面ABCD,又∵四边形ABCD 为矩形 ∴BC ⊥CD ,CD ⊥AD ∵PD ⊥矩形ABCD 所在的平面 ∴PD ⊥BC ,PD ⊥CD ∵PD ∩AD=D ,PD ∩CD=D∴CD ⊥面PAD ,BC ⊥面PDC ,AB ⊥面PAD , ∵CD ⊆面PDC ,BC ⊆面PBC ,AB ⊆面PAB ,∴面PDC ⊥面PAD ,面PBC ⊥面PCD ,面PAB ⊥面PAD 综上相互垂直的平面有5对 故答案选D4. 【答案】C【解析】解:法一:由回归直线的斜率的估计值为1.23,可排除D 由线性回归直线方程样本点的中心为(4,5), 将x=4分别代入A 、B 、C ,其值依次为8.92、9.92、5,排除A 、B法二:因为回归直线方程一定过样本中心点,将样本点的中心(4,5)分别代入各个选项,只有C 满足,故选C【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程.5. 【答案】D【解析】1()1,2,1,12x x xi yi x y i =-=-∴==+故选D 6. 【答案】B【解析】解:由约束条件作出可行域如图,由图可知A(a,a),化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解得:a=.故选:B.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.【答案】B【解析】解:∵C U A={1,5}∴B∪(∁U A)={2,5}∪{1,5}={1,2,5}.故选B.8.【答案】D【解析】考点:1.斜率;2.两点间距离.9.【答案】A.【解析】10.【答案】D.第Ⅱ卷(共110分)11.【答案】B【解析】解:∵α,β为锐角△ABC的两个内角,可得α+β>90°,cosβ=sin(90°﹣β)<sinα,同理cosα<sinβ,∴f(x)=()|x﹣2|+()|x﹣2|,在(2,+∞)上单调递减,在(﹣∞,2)单调递增,由关于x的不等式f(2x﹣1)﹣f(x+1)>0得到关于x的不等式f(2x﹣1)>f(x+1),∴|2x﹣1﹣2|<|x+1﹣2|即|2x﹣3|<|x﹣1|,化简为3x2﹣1x+8<0,解得x∈(,2);故选:B.12.【答案】B【解析】解:设z=a+bi(a,b∈R),则=a﹣bi,由z=2(+i),得(a+bi)(a﹣bi)=2[a+(b﹣1)i],整理得a2+b2=2a+2(b﹣1)i.则,解得.所以z=1+i.故选B.【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.二、填空题13.【答案】60°.【解析】解:∵|﹣|=,∴∴=3,∴cos<>==∵∴与的夹角为60°.故答案为:60°【点评】本题考查平面向量数量积表示夹角和模长,本题解题的关键是整理出两个向量的数量积,再用夹角的表示式.14.【答案】.【解析】解:由题意画出几何体的图形如图由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥S﹣ABC的体积最大.∵△ABC是边长为2的正三角形,所以球的半径r=OC=CH=.在RT△SHO中,OH=OC=OS∴∠HSO=30°,求得SH=OScos30°=1,∴体积V=Sh=××22×1=.故答案是.【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键.考查空间想象能力、计算能力.15.【答案】(0,1).【解析】解:画出函数f(x)的图象,如图示:令y=k,由图象可以读出:0<k<1时,y=k和f(x)有3个交点,即方程f(x)=k有三个不同的实根,故答案为(0,1).【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题.16.【答案】②④【解析】解:根据题意得:圆心(k﹣1,3k),圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项②正确;考虑两圆的位置关系,圆k:圆心(k﹣1,3k),半径为k2,圆k+1:圆心(k﹣1+1,3(k+1)),即(k,3k+3),半径为(k+1)2,两圆的圆心距d==,两圆的半径之差R﹣r=(k+1)2﹣k2=2k+,任取k=1或2时,(R﹣r>d),C k含于C k+1之中,选项①错误;若k取无穷大,则可以认为所有直线都与圆相交,选项③错误;将(0,0)带入圆的方程,则有(﹣k+1)2+9k2=2k4,即10k2﹣2k+1=2k4(k∈N*),因为左边为奇数,右边为偶数,故不存在k使上式成立,即所有圆不过原点,选项④正确.则真命题的代号是②④.故答案为:②④【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题.17.【答案】,【解析】【知识点】圆的标准方程与一般方程双曲线【试题解析】双曲线的渐近线方程为:圆的圆心为(2,0),半径为1.因为相切,所以所以双曲线C的渐近线方程是:故答案为:,18.【答案】.【解析】解:由题意知点P的坐标为(﹣c,)或(﹣c,﹣),∵∠F1PF2=60°,∴=,即2ac=b2=(a2﹣c2).∴e2+2e﹣=0,∴e=或e=﹣(舍去).故答案为:.【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题.三、解答题19.【答案】(1)切线恒过定点1,22e ⎛⎫⎪⎝⎭.(2) a 的范围是11,22⎡⎤-⎢⎥⎣⎦ (3) 在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个【解析】试题分析:(1)根据导数的几何意义求得切线方程为11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,故过定点1,22e ⎛⎫ ⎪⎝⎭;试题解析:(1)因为()12f x ax x '=+,所以()f x 在点()(),e f e 处的切线的斜率为12k ae e=+, 所以()f x 在点()(),e f e 处的切线方程为()2121y ae x e ae e ⎛⎫=+-++ ⎪⎝⎭,整理得11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,所以切线恒过定点1,22e ⎛⎫⎪⎝⎭.(2)令()()()2p x f x f x =-=212ln 02a x ax x ⎛⎫--+< ⎪⎝⎭,对()1,x ∈+∞恒成立,因为()()1212p x a x a x =--+'()22121a x ax x --+=()()()1211*x a x x⎡⎤---⎣⎦=令()0p x '=,得极值点11x =,2121x a =-,①当112a <<时,有211x x >=,即112a <<时,在()2,x +∞上有()0p x '>,此时()p x 在区间()2,x +∞上是增函数,并且在该区间上有()()()2,p x p x ∈+∞,不合题意;②当1a ≥时,有211x x <=,同理可知,()p x 在区间()1,+∞上,有()()()1,p x p ∈+∞,也不合题意; ③当12a ≤时,有210a -≤,此时在区间()1,+∞上恒有()0p x '<, 从而()p x 在区间()1,+∞上是减函数;要使()0p x <在此区间上恒成立,只须满足()111022p a a =--≤⇒≥-, 所以1122a -≤≤.综上可知a 的范围是11,22⎡⎤-⎢⎥⎣⎦. (利用参数分离得正确答案扣2分)(3)当23a =时,()21145ln 639f x x x x =++,()221423f x x x =+ 记()()22115ln 39y f x f x x x =-=-,()1,x ∈+∞.因为22565399x x y x x='-=-, 令0y '=,得56x =所以()()21y f x f x =-在50,6⎛⎫⎪ ⎪⎝⎭为减函数,在5,6⎛⎫+∞ ⎪ ⎪⎝⎭上为增函数, 所以当56x =时,min 59180y =设()()()15901180R x f x λλ=+<<,则()()()12f x R x f x <<, 所以在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个20.【答案】(1)2,2==q d ;(2)12326-+-=n n n S .【解析】(2)1212--=n n n n b a ,………………6分122121223225231---+-++++=n n n n n S ,① n n n n n S 212232252321211321-+-++++=- .②……………8分 ①-②得n n n n n S 2122222222212`1221--+++++=-- 23112222211222222nn nn S --=++++-,…………10分所以12326-+-=n n n S .………………12分 考点:等差数列的概念与通项公式,错位相减法求和,等比数列的概念与通项公式.【方法点晴】本题主要考查等差数列和等比数列的通项公式以及数列的求和,通过设}{n a 的公差为d ,}{n b 的公比为,根据等差数列和等比数列的通项公式,联立方程求得d 和,进而可得}{n a ,}{n b 的通项公式;(2)数列}a {nnb 的通项公式由等差数列和等比数列对应项相乘构成,需用错位相减法求得前项和n S . 21.【答案】【解析】解:(1)根据题意,可得,故,解得所以矩阵M=;(2)矩阵N 所对应的变换为,故N=,MN=.∵det (MN )=,∴=.【点评】本题考查矩阵与变换、矩阵的特征值、特征向量等基础知识,考查运算求解能力,考查函数与方程的思想.22.【答案】【解析】解:由p :⇒﹣1≤x <2,方程x 2﹣(a 2+1)x+a 2=0的两个根为x=1或x=a 2,若|a|>1,则q :1<x <a 2,此时应满足a 2≤2,解得1<|a|≤,当|a|=1,q :x ∈∅,满足条件, 当|a|<1,则q :a 2<x <1,此时应满足|a|<1,综上﹣.【点评】本题主要考查复合命题的应用,以及充分条件和必要条件的应用,结合一元二次不等式的解法是解决本题的关键.23.【答案】(1)()26ln f x x x x =--;(2)3n =;(3)证明见解析. 【解析】试题解析: (1)()2af'x x b x =+-,所以(1)251(1)106f'b a b f b a =+-=-=-⎧⎧⇒⎨⎨=+==⎩⎩, ∴函数()f x 的解析式为2()6ln (0)f x x x x x =-->;(2)22626()6ln '()21x x f x x x x f x x x x--=--⇒=--=,因为函数()f x 的定义域为0x >,令(23)(2)3'()02x x f x x x +-==⇒=-或2x =, 当(0,2)x ∈时,'()0f x <,()f x 单调递减,当(2,)x ∈+∞时,'()0f x >,函数()f x 单调递增, 且函数()f x 的定义域为0x >,(3)当1a =时,函数2()ln f x x bx x =+-,21111()ln 0f x x bx x =+-=,22222()ln 0f x x bx x =+-=,两式相减可得22121212()ln ln 0x x b x x x x -+--+=,121212ln ln ()x x b x x x x -=-+-. 1'()2f x x b x =+-,0001'()2f x x b x =+-,因为1202x x x +=,所以12120121212ln ln 2'()2()2x x x x f x x x x x x x +-=⋅+-+--+ 212121221221122112211121ln ln 2()211ln ln ln 1x x x x x x x x x x x x x x x x x x x x x x ⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤--⎝⎭⎢⎥=-=--=-⎢⎥⎢⎥-+-+-⎣⎦+⎢⎥⎢⎥⎣⎦设211xt x =>,2(1)()ln 1t h t t t -=-+,∴2222214(1)4(1)'()0(1)(1)(1)t t t h t t t t t t t +--=-==>+++, 所以()h t 在(1,)+∞上为增函数,且(1)0h =,∴()0h t >,又2110x x >-,所以0'()0f x >.考点:1、导数几何意义及零点存在定理;2、构造函数证明不等式.【方法点睛】本题主要考查导数几何意义及零点存在定理、构造函数证明不等式,属于难题.涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.24.【答案】【解析】(Ⅰ)解:∵BD∥AE,AE⊥AC,∴BD⊥AC,可知A(),故,m=2;(Ⅱ)证明:由对称性可知B(﹣x0,y0),C(﹣x0,﹣y0),D(x0,﹣y0),四边形ABCD为矩形,设E(x1,y1),由于A,E均在椭圆T上,则,由②﹣①得:(x1+x0)(x1﹣x0)+(m+1)(y1+y0)(y1﹣y0)=0,显然x1≠x0,从而=,∵AE⊥AC,∴k AE•k AC=﹣1,∴,解得,代入椭圆方程,知.【点评】本题主要考查圆锥曲线的定义的应用,关键是利用椭圆的对称性寻求点的坐标间的关系,体现了整体运算思想方法,是中档题.。
攀枝花市第一高级中学2018-2019学年高二上学期第一次月考试卷化学一、选择题1. 已知直线的参数方程为(为参数,为直线的倾斜角),以原点O 为极点,轴l 1cos sin x t y t αα=+⎧⎪⎨=⎪⎩t αl x 正半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆的两个交点为,当C 4sin()3πρθ=+l C ,A B 最小时,的值为( )||AB αA .B .C .D .4πα=3πα=34πα=23πα=2. 已知数列的首项为,且满足,则此数列的第4项是( ){}n a 11a =11122n n n a a +=+A .1B . C.D .1234583. 某棵果树前n 年的总产量S n与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,则m 的值为()A .5B .7C .9D .114. 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A .B .C .D .5. 已知集合,,则( ){2,1,0,1,2,3}A =--{|||3,}B y y x x A ==-∈A B =I A .B .C .D .{2,1,0}--{1,0,1,2}-{2,1,0}--{1,,0,1}-【命题意图】本题考查集合的交集运算,意在考查计算能力.6. 若多项式 x 2+x 10=a 0+a 1(x+1)+…+a 8(x+1)8+a 9(x+1)9+a 10(x+1)10,则 a 8=( )A .45B .9C .﹣45D .﹣97. 已知函数f (x )=ax 3﹣3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是( )A .(1,+∞)B .(2,+∞)C .(﹣∞,﹣1)D .(﹣∞,﹣2)8. 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )A .B .C .D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 复数满足=i z ,则z 等于( )2+2z 1-iA .1+iB .-1+iC .1-iD .-1-i10.已知命题且是单调增函数;命题,.:()(0xp f x a a =>1)a ≠5:(,)44q x ππ∀∈sin cos x x >则下列命题为真命题的是( )A .B .C. D .p q ∧p q ∨⌝p q ⌝∧⌝p q⌝∧11.椭圆=1的离心率为( )A .B .C .D .12.下列关系正确的是( )A .1∉{0,1}B .1∈{0,1}C .1⊆{0,1}D .{1}∈{0,1}二、填空题13.在直角坐标系xOy 中,已知点A (0,1)和点B (﹣3,4),若点C 在∠AOB 的平分线上且||=2,则= .14.若圆与双曲线C :的渐近线相切,则_____;双曲线C 的渐近线方程是____.15.函数f (x )=log a (x ﹣1)+2(a >0且a ≠1)过定点A ,则点A 的坐标为 . 16.若函数f (x )=3sinx ﹣4cosx ,则f ′()= .17.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称;②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;③若实数x ,y 满足x 2+y 2=1,则的最大值为;④若△ABC 为锐角三角形,则sinA <cosB .⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且•=5,则△ABC 的形状是直角三角形.18.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为 .14.已知集合,若3∈M ,5∉M ,则实数a 的取值范围是 .三、解答题19.已知向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),求向量,的夹角θ.20.(本小题满分12分)已知数列的各项均为正数,,.{}n a 12a =114n n n na a a a ++-=+(Ⅰ)求数列的通项公式;{}n a (Ⅱ)求数列的前项和.11n n a a +⎧⎫⎨⎬+⎩⎭n n S 21.(本题满分12分)已知向量,,,记函数(sin cos ))a x x x =+r )cos sin ,(cos x x x b -=R x ∈.x f ⋅=)((1)求函数的单调递增区间;)(x f (2)在中,角的对边分别为且满足,求的取值范围.ABC ∆C B A ,,c b a ,,C a c b cos 22=-)(B f 【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.22.已知椭圆C : =1(a >2)上一点P 到它的两个焦点F 1(左),F 2 (右)的距离的和是6.(1)求椭圆C 的离心率的值;(2)若PF 2⊥x 轴,且p 在y 轴上的射影为点Q ,求点Q 的坐标.23.已知复数z=m (m ﹣1)+(m 2+2m ﹣3)i (m ∈R )(1)若z 是实数,求m 的值;(2)若z 是纯虚数,求m 的值;(3)若在复平面C 内,z 所对应的点在第四象限,求m 的取值范围.24.(本小题满分12分)已知等差数列的前项和为,且,.{}n a n n S 990S =15240S =(1)求的通项公式和前项和;{}n a n a n n S (2)设是等比数列,且,求数列的前n 项和.(){}1nn n b a --257,71b b =={}n b n T 【命题意图】本题考查等差数列与等比数列的通项与前项和、数列求和等基础知识,意在考查逻辑思维能力、n 运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用.攀枝花市第一高级中学2018-2019学年高二上学期第一次月考试卷化学(参考答案)一、选择题1. 【答案】A【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C的方程为,直线的普通方程为,直线过定点,∵22((1)4x y -+-=l tan (1)y x α=-l M ,∴点在圆的内部.当最小时,直线直线,,∴直线的斜率为,∴||2MC <M C ||AB l ⊥MC 1MC k =-l 1,选A .4πα=2. 【答案】B 【解析】3. 【答案】C【解析】解:若果树前n 年的总产量S 与n 在图中对应P (S ,n )点则前n 年的年平均产量即为直线OP 的斜率由图易得当n=9时,直线OP 的斜率最大即前9年的年平均产量最高,故选C 4. 【答案】C【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为.故选:C 5. 【答案】C【解析】当时,,所以,故选C .{2,1,0,1,2,3}x ∈--||3{3,2,1,0}y x =-∈---A B =I {2,1,0}--6. 【答案】A【解析】解:a 8 是 x 10=[﹣1+(x+1)]10的展开式中第九项(x+1)8 的系数,∴a 8==45,故选:A .【点评】本题主要考查二项展开式的通项公式,二项展开式系数的性质以及多项恒等式系数相等的性质,属于基础题. 7. 【答案】D【解析】解:∵f (x )=ax 3﹣3x 2+1,∴f ′(x )=3ax 2﹣6x=3x (ax ﹣2),f (0)=1;①当a=0时,f (x )=﹣3x 2+1有两个零点,不成立;②当a >0时,f (x )=ax 3﹣3x 2+1在(﹣∞,0)上有零点,故不成立;③当a <0时,f (x )=ax 3﹣3x 2+1在(0,+∞)上有且只有一个零点;故f (x )=ax 3﹣3x 2+1在(﹣∞,0)上没有零点;而当x=时,f (x )=ax 3﹣3x 2+1在(﹣∞,0)上取得最小值;故f ()=﹣3•+1>0;故a <﹣2;综上所述,实数a 的取值范围是(﹣∞,﹣2);故选:D . 8. 【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有4×6=24个,而在8个点中选3个点的有C 83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题. 9. 【答案】【解析】解析:选D.法一:由=i z 得2+2z1-i2+2z =i z +z ,即(1-i )z =-2,∴z ===-1-i.-21-i-2(1+i )2法二:设z =a +b i (a ,b ∈R ),∴2+2(a +b i )=(1-i )i (a +b i ),即2+2a +2b i =a -b +(a +b )i ,∴,{2+2a =a -b 2b =a +b )∴a =b =-1,故z =-1-i.10.【答案】D 【解析】考点:1、指数函数与三角函数的性质;2、真值表的应用.11.【答案】D【解析】解:根据椭圆的方程=1,可得a=4,b=2,则c==2;则椭圆的离心率为e==,故选D .【点评】本题考查椭圆的基本性质:a 2=b 2+c 2,以及离心率的计算公式,注意与双曲线的对应性质的区分. 12.【答案】B【解析】解:由于1∈{0,1},{1}⊆{0,1},故选:B【点评】本题考查的知识点是元素与集合关系的判断,其中正确理解集合元素与集合关系的实质,即元素满足集合中元素的性质,是解答本题的关键. 二、填空题13.【答案】 (﹣,) .【解析】解:∵,,设OC 与AB 交于D (x ,y )点则:AD :BD=1:5即D 分有向线段AB 所成的比为则解得:∴又∵||=2∴=(﹣,)故答案为:(﹣,)【点评】如果已知,有向线段A(x1,y1),B(x2,y2).及点C分线段AB所成的比,求分点C的坐标,可将A,B两点的坐标代入定比分点坐标公式:坐标公式进行求解.14.【答案】,【解析】【知识点】圆的标准方程与一般方程双曲线【试题解析】双曲线的渐近线方程为:圆的圆心为(2,0),半径为1.因为相切,所以所以双曲线C的渐近线方程是:故答案为:,15.【答案】 (2,2) .【解析】解:∵log a1=0,∴当x﹣1=1,即x=2时,y=2,则函数y=log a(x﹣1)+2的图象恒过定点(2,2).【点评】本题考查对数函数的性质和特殊点,主要利用log a1=0,属于基础题.16.【答案】 4 .【解析】解:∵f′(x)=3cosx+4sinx,∴f′()=3cos+4sin=4.故答案为:4.【点评】本题考查了导数的运算法则,掌握求导公式是关键,属于基础题.17.【答案】:①②③【解析】解:对于①函数y=2x3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x0,2﹣y0)也满足函数的解析式,则①正确;对于②对∀x,y∈R,若x+y≠0,对应的是直线y=﹣x以外的点,则x≠1,或y≠﹣1,②正确;对于③若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(﹣2,0)连线的斜率,其最大值为,③正确;对于④若△ABC为锐角三角形,则A,B,π﹣A﹣B都是锐角,即π﹣A﹣B<,即A+B>,B>﹣A,则cosB<cos(﹣A),即cosB<sinA,故④不正确.对于⑤在△ABC中,G,O分别为△ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,∵=|,由则,即则又BC=5则有由余弦定理可得cosC<0,即有C为钝角.则三角形ABC为钝角三角形;⑤不正确.18.【答案】 6 .【解析】解:f (x )=x 3﹣2cx 2+c 2x ,f ′(x )=3x 2﹣4cx+c 2,f ′(2)=0⇒c=2或c=6.若c=2,f ′(x )=3x 2﹣8x+4,令f ′(x )>0⇒x <或x >2,f ′(x )<0⇒<x <2,故函数在(﹣∝,)及(2,+∞)上单调递增,在(,2)上单调递减,∴x=2是极小值点.故c=2不合题意,c=6.故答案为6【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式. 三、解答题19.【答案】【解析】解:∵向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),∴=0,+8=0,∴=,化为,代入=0,化为: +16﹣cos 2θ,∴,∴θ=或.【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题. 20.【答案】(本小题满分12分)解: (Ⅰ)由得,∴是等差数列,公差为4,首项为4, (3分)114n n n na a a a ++-=+2214n n a a +-={}2n a ∴,由得(6分)244(1)4n a n n =+-=0n a>n a =(Ⅱ)∵, (9分)1112n n a a +==+ ∴数列的前项和为11n na a +⎧⎫⎨⎬+⎩⎭n .(12分)11111)1)2222-+++=L 21.【答案】【解析】(1)由题意知,)cos )(sin cos (sin 23cos sin )(x x x x x x x f +-+=⋅=……………………………………3分)32sin(2cos 232sin 21π-=-=x x x 令,,则可得,.223222πππππ+≤-≤-k x k Z k ∈12512ππππ+≤≤-k x k Z k ∈∴的单调递增区间为().…………………………5分)(x f 125,12[ππππ+-k k Z k ∈22.【答案】【解析】解:(1)根据椭圆的定义得2a=6,a=3;∴c=;∴;即椭圆的离心率是;(2);∴x=带入椭圆方程得,y=;所以Q (0,). 23.【答案】【解析】解:(1)z 为实数⇔m 2+2m ﹣3=0,解得:m=﹣3或m=1;(2)z 为纯虚数⇔,解得:m=0;(3)z 所对应的点在第四象限⇔,解得:﹣3<m <0.24.【答案】【解析】(1)设等差数列的首项为,公差为,{}n a 1a d 则由,,得,解得,……………3分990S =15240S =119369015105240a d a d +=⎧⎨+=⎩12a d ==所以,即,2(n 1)22n a n =+-⨯=2n a n =,即.……………5分(1)22(1)2n n n S n n n -=+⨯=+1n S n n =+()。