去藕电容和旁路电容的作用有什么区别
- 格式:doc
- 大小:39.00 KB
- 文档页数:5
滤波电容、去耦电容、旁路电容作用电容在减小同步开关噪声起重要作用,而电源完整性设计的重点也在如何合理地选择和放置这些电容上。
各种各样的电容种类繁杂,但无论再怎么分类,其基本原理都是利用电容对交变信号呈低阻状态。
交变电流的频率f越高,电容的阻抗就越低。
旁路电容起的主要作用是给交流信号提供低阻抗的通路;去耦电容的主要功能是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地,加入去耦电容后电压的纹波干扰会明显减小;滤波电容常用于滤波电路中。
对于理想的电容器来说,不考虑寄生电感和电阻的影响,那么在电容设计上就没有任何顾虑,电容的值越大越好。
但实际情况却相差很远,并不是电容越大对高速电路越有利,反而小电容才能被应用于高频。
滤波电容用在电源整流电路中,用来滤除交流成分。
使输出的直流更平滑。
去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。
旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。
1.去耦电容蓄能作用的理解(1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。
而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。
如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。
而去耦电容可以弥补此不足。
这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一(在Vcc引脚上通常并联一个去耦电容,这样交流分量就从这个电容接地。
(2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。
去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。
2.旁路电容与去耦电容的区别去耦电容:去除在器件切换时从高频器件进入到配电网络中的RF能量。
旁路电容和去耦电容一、引言旁路电容和去耦电容是电子电路中常见的两种电容器应用。
它们在不同的场景下起到了重要的作用。
本文将从定义、原理、应用以及选型等方面对旁路电容和去耦电容进行详细介绍。
二、旁路电容1. 定义旁路电容,又称旁路电容器,是指将电容器连接在电路中,以提供低阻抗路径来滤除高频噪声的装置。
其作用是将高频信号引到地,使其不进入到灵敏的电路中,从而保证电路的正常工作。
2. 原理旁路电容的原理是利用电容器的阻抗与频率成反比的特性。
在高频信号下,电容器的阻抗较小,相当于一个短路,因此高频信号会优先通过电容器,而不会进入到灵敏的电路中。
而在低频信号下,电容器的阻抗较大,相当于一个开路,所以低频信号可以绕过电容器,进入到灵敏的电路中。
3. 应用旁路电容广泛应用于各种电子设备中,特别是在功放电路、滤波电路和信号处理电路中。
它可以有效地滤除电源中的高频噪声,提高电路的抗干扰能力,保证信号的准确传输。
此外,旁路电容还可以用于电源线路的滤波,降低电源波动对设备的影响。
4. 选型旁路电容的选型需要考虑电容值、耐压、耐温度等因素。
一般来说,电容值越大,对高频信号的旁路作用越好;耐压越高,适用范围越广;耐温度越高,适应环境的能力越强。
因此,在选型时需要根据具体的应用场景来选择合适的旁路电容。
三、去耦电容1. 定义去耦电容,又称绕行电容,是指将电容器连接在电路中,以提供低阻抗路径来平衡电压的装置。
其作用是将电源中的纹波电压补偿掉,保证电路的稳定工作。
2. 原理去耦电容的原理是利用电容器的阻抗与频率成反比的特性。
在电源中存在纹波电压时,电容器的阻抗较小,相当于一个短路,因此纹波电压会优先通过电容器,而不会进入到电路中。
而在直流信号下,电容器的阻抗较大,相当于一个开路,所以直流信号可以绕过电容器,进入到电路中。
3. 应用去耦电容广泛应用于各种电子设备中,特别是在功放电路、放大器电路和稳压电路中。
它可以有效地补偿电源中的纹波电压,提高电路的稳定性,保证信号的可靠传输。
旁路电容去耦电容旁路电容、去耦电容是电子电路中常见的元件,它们在保证电路稳定性和提高信号质量方面起到了重要作用。
本文将详细介绍旁路电容和去耦电容的定义、作用、选择和使用注意事项。
一、旁路电容旁路电容(Bypass Capacitor)是指将电容器连接在某个电路或器件的两个节点上,起到稳定电压和滤波的作用。
旁路电容通常被连接在电源和地之间,用于阻止高频噪声通过电源线进入电路,保持电路的稳定工作。
旁路电容的容值一般较大,通常在几十微法到几百微法之间。
旁路电容的作用主要有两个方面:一是通过对高频信号的短路作用,将高频噪声引流至地,使电路的工作频率范围更加纯净;二是通过对低频信号的开路作用,使电源电压更加稳定,提供一个低阻抗的电源供电路径,减小电源线的电压波动。
在选择旁路电容时,需要根据电路的工作频率范围和所需的电容值来确定。
一般来说,电容值越大,旁路效果越好;而工作频率越高,电容值则需要相应减小。
此外,还应选择具有良好高频特性和低ESR(Equivalent Series Resistance)的电容器,以保证电路的性能。
二、去耦电容去耦电容(Decoupling Capacitor)是指将电容器连接在电源和地之间,用于平衡电源电压和提供瞬态电流的元件。
去耦电容主要用于提供电流给电路中的各个部分,以满足电路对瞬态电流的需求,避免电源线上的电压波动对电路的干扰。
去耦电容的作用主要有两个方面:一是通过对高频信号的短路作用,使高频噪声引流至地,减小电源线上的噪声干扰;二是通过对低频信号的开路作用,提供电流给电路中的各个部分,保持电源电压的稳定性。
在选择去耦电容时,需要考虑电路的工作频率范围、电容值和ESR 等因素。
一般来说,去耦电容的电容值应根据电路的瞬态电流需求来确定,电容值越大,能提供的瞬态电流越大;而ESR越低,能提供的瞬态电流响应越快。
因此,在实际应用中,需要根据电路的需求综合考虑这些因素,选择合适的去耦电容。
47关于滤波电容、去耦电容、旁路电容作用发表于 2006-11-10 0:47:52滤波电容用在电源整流电路中,用来滤除交流成分。
使输出的直流更平滑。
去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。
旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。
1.关于去耦电容蓄能作用的理解1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。
而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。
你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水,这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。
实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。
如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。
而去耦电容可以弥补此不足。
这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一(在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。
)2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。
去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地2.旁路电容和去耦电容的区别去耦:去除在器件切换时从高频器件进入到配电网络中的RF能量。
去耦电容还可以为器件供局部化的DC电压源,它在减少跨板浪涌电流方面特别有用。
旁路:从元件或电缆中转移出不想要的共模RF能量。
这主要是通过产生AC旁路消除无意的能量进入敏感的部分,另外还可以提供基带滤波功能(带宽受限)。
我们经常可以看到,在电源和地之间连接着去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰。
滤波电容、去耦电容、旁路电容作用电容在减小同步开关噪声起重要作用,而电源完整性设计的重点也在如何合理地选择和放置这些电容上。
各种各样的电容种类繁杂,但无论再怎么分类,其基本原理都是利用电容对交变信号呈低阻状态。
交变电流的频率f越高,电容的阻抗就越低。
旁路电容起的主要作用是给交流信号提供低阻抗的通路;去耦电容的主要功能是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地,加入去耦电容后电压的纹波干扰会明显减小;滤波电容常用于滤波电路中。
对于理想的电容器来说,不考虑寄生电感和电阻的影响,那么在电容设计上就没有任何顾虑,电容的值越大越好。
但实际情况却相差很远,并不是电容越大对高速电路越有利,反而小电容才能被应用于高频。
滤波电容:滤波电容用在电源整流电路中,用来滤除交流成分。
使输出的直流更平滑。
去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。
旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。
1.去耦电容蓄能作用的理解(1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。
而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。
你可以把总电源看作水库,我们大楼内的家家户户都需要供水,这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。
实际水是来自于大楼顶上的水塔,水塔其实是一个buffer 的作用。
如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。
而去耦电容可以弥补此不足。
这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一(在Vcc引脚上通常并联一个去耦电容,这样交流分量就从这个电容接地。
(2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。
什么是旁路电容?什么是去耦电容?它们有什么区别和联系?一、旁路电容在电路中,如果希望将某一频率以上或全部交流成分的信号去掉,那么便可以使用滤波电容。
习惯上,通常将少部分只有滤波作用的电容器称为旁路电容器(Bypass Capacitors)或者傍路电容器。
例如,在晶体管的射极电阻或真空管的阴极电阻上并联的电容器,就被称为旁路电容(因为交流信号是经该电容器而进入接地端的);又如在电源电路中,除了数千微法的平滑滤波或反交联电容之外,通常也用零点几微法的高频电容来将高频旁路(实际上,此高频旁路电容也可被视为高频滤波及反交联电容)。
旁路电容的应用电路如下图所示。
二、去耦电容在电子电路中,经常会看到在集成电路的电源引脚附近有一个电解电容器,这个电容器就是去耦合电容器,简称去耦电容(Decoupling Capacitors),又称退耦电容器。
去耦电容器通常有两个作用:一个是蓄能;一个是去除高频噪声。
去耦电容器主要是去除高频,如RF信号的干扰。
干扰的进入方式是通过电磁辐射。
为什么说去耦电容具有蓄能的作用呢?举个简单的例子,我们就能很容易地明白了:我们可以把总电源看作一个水库,我们大楼内的家家户户都需要供水,这时,水不是直接来自于水库,那样距离太远啦,等水过来,我们已经渴的不行了,实际上我们用的水来自于大楼附近的水塔。
集成电路在工作的时候,其电流是不连续的,而且频率很高,而集成电路的电源引脚到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗也会很大(线路的电感影响非常大),这样会导致器件在需要电流的时候,不能及时供给,而去耦电容器可以弥补此不足,这也是为什么很多电路板在高频器件电源引脚处放置小电容的原因之一。
集成电路内部的开关在工作时产生的高频开关噪声将沿着电源线传播,去耦电容的主要功能就是提供一个局部的直流电源给集成电路,以减少开关噪声在电路板的传播并将噪声引导到地。
去耦电容器还可以防止电源携带的噪声对电路构成干扰,在设计电路时,去耦电容应放置在电源入口处,连线应尽可能短。
去耦电容与旁路电容的区别在布线时,模拟器件贺数字器件都需要这些类型的电容,都需要靠近其电源引脚处连接一个电容,此电容值通常为0.1uF。
系统供电电源处需要另一类电容,通常此电容值为10uF。
电容取值范围为推荐值的1/10至10倍之间。
但引脚必须较短,且要尽量靠近器件或供电电源。
在电路板上加旁路或去耦电容,以及这些电容在板上的设置,对于数字和模拟设计来说都属于基本常识,但有趣的是,其原因却有所不同。
在模拟布线设计中,旁路电容通常用于旁路电源上的高频信号,如果不加旁路电容,这些高频信号可能通过电源引脚进入敏感的模拟芯片。
一般来说,这些高频信号的频率超出模拟器件抑制高频信号的能力。
如果在模拟电路中不使用旁路电容的话,就可能在信号路径上引入噪声,更严重的情况甚至会引起振动。
对于控制器和处理器这样的数字器件,同样需要取耦电容,但原因不同。
这些电容的一个功能是用作“微型”电荷库。
在数字电路中,执行门状态的切换通常需要很大的电流。
由于开关时芯片上产生开关瞬态电流并流经电路板,有额外的“备用”电荷是有利的。
如果执行开关动作时没有足够的电荷,会造成电源电压发生很大变化。
电压变化太大,会导致数字信号电平进入不确定状态,并很可能引起数字器件中的状态机错误运行。
基于多种原因,在供电电源处或有源器件的电源引脚处施加旁路(或去耦)电容是好的做法。
一般来说,容量为uf级的电容,像电解电容或钽电容,他的电感较大,谐振频率较小,对低频信号通过较好,而对高频信号,表现出较强的电感性,阻抗较大,同时,大电容还可以起到局部电荷池的作用,可以减少局部的干扰通过电源耦合出去;容量为0.001~0.1uf的电容,一般为陶瓷电容或云母电容,电感小,谐振频率高,对高频信号的阻抗较小,可以为高频干扰信号提供一条旁路,减少外界对该局部的耦合干扰。
工程领域中的数字设计人员和数字电路板设计专家在不断增加,这反映了行业的发展趋势。
尽管对数字设计的重视带来了电子产品的重大发展,但仍然存在,而且还会一直存在一部分与模拟或现实环境接口的电路设计。
在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。
对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling)电容也称退耦电容,是把输出信号的干扰作为滤除对象。
去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。
从电路来说,总是存在驱动的源和被驱动的负载。
如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。
这就是耦合。
去耦电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。
去耦和旁路都可以看作滤波。
去耦电容相当于电池,避免由于电流的突变而使电压下降,相当于滤纹波。
具体容值可以根据电流的大小、期望的纹波大小、作用时间的大小来计算。
去耦电容一般都很大,对更高频率的噪声,基本无效。
旁路电容就是针对高频来的,也就是利用了电容的频率阻抗特性。
电容一般都可以看成一个RLC串联模型。
在某个频率,会发生谐振,此时电容的阻抗就等于其ESR。
如果看电容的频率阻抗曲线图,就(1)去耦电容去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。
而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。
你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水,这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。
实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。
如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。
滤波电容、去耦电容、旁路电容作用电容在减小同步开关噪声起重要作用,而电源完整性设计的重点也在如何合理地选择和放置这些电容上。
各种各样的电容种类繁杂,但无论再怎么分类,其基本原理都是利用电容对交变信号呈低阻状态。
交变电流的频率 f 越高,电容的阻抗就越低。
旁路电容起的主要作用是给交流信号提供低阻抗的通路;去耦电容的主要功能是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地,加入去耦电容后电压的纹波干扰会明显减小;滤波电容常用于滤波电路中。
对于理想的电容器来说,不考虑寄生电感和电阻的影响,那么在电容设计上就没有任何顾虑,电容的值越大越好。
但实际情况却相差很远,并不是电容越大对高速电路越有利,反而小电容才能被应用于高频。
滤波电容用在电源整流电路中,用来滤除交流成分。
使输出的直流更平滑。
去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。
旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。
1. 去耦电容蓄能作用的理解(1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。
而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。
如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z= i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。
而去耦电容可以弥补此不足。
这也是为什么很多电路板在高频器件vcC f脚处放置小电容的原因之一(在Vcc 引脚上通常并联一个去耦电容,这样交流分量就从这个电容接地。
(2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。
去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。
2. 旁路电容与去耦电容的区别去耦电容:去除在器件切换时从高频器件进入到配电网络中的RF能量。
去藕电容和旁路电容的作用有什么区别?旁路电容的主要功能是产生一个交流分路,从而消去进入易感区的那些不需要的能量。
旁路电容一般作为高频旁路器件来减小对电源模块的瞬态电流需求。
通常铝电解电容和钽电容比较适合作旁路电容,其电容值取决于PCB板上的瞬态电流需求,一般在10至470µF范围内。
若PCB板上有许多集成电路、高速开关电路和具有长引线的电源,则应选择大容量的电容。
去耦电容有源器件在开关时产生的高频开关噪声将沿着电源线传播。
去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。
实际上,旁路电容和去耦电容都应该尽可能放在靠近电源输入处以帮助滤除高频噪声。
去耦电容的取值大约是旁路电容的1/100到1/1000。
为了得到更好的EMC特性,去耦电容还应尽可能地靠近每个集成块(IC),因为布线阻抗将减小去耦电容的效力。
陶瓷电容常被用来去耦,其值决定于最快信号的上升时间和下降时间。
例如,对一个 33MHz的时钟信号,可使用4.7nF到100nF的电容;对一个100MHz时钟信号,可使用10n F的电容。
选择去耦电容时,除了考虑电容值外,ESR值也会影响去耦能力。
为了去耦,应该选择ESR值低于1欧姆的电容。
两者的区别:从电路来说,总是存在驱动的源和被驱动的负载。
如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。
这就是耦合。
去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。
旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。
高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。
去藕电容和旁路电容的作用有什么区别?旁路电容的主要功能是产生一个交流分路,从而消去进入易感区的那些不需要的能量。
旁路电容一般作为高频旁路器件来减小对电源模块的瞬态电流需求。
通常铝电解电容和钽电容比较适合作旁路电容,其电容值取决于PCB板上的瞬态电流需求,一般在10至470µF范围内。
若PCB板上有许多集成电路、高速开关电路和具有长引线的电源,则应选择大容量的电容。
去耦电容有源器件在开关时产生的高频开关噪声将沿着电源线传播。
去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。
实际上,旁路电容和去耦电容都应该尽可能放在靠近电源输入处以帮助滤除高频噪声。
去耦电容的取值大约是旁路电容的1/100到1/1000。
为了得到更好的EMC特性,去耦电容还应尽可能地靠近每个集成块(IC),因为布线阻抗将减小去耦电容的效力。
陶瓷电容常被用来去耦,其值决定于最快信号的上升时间和下降时间。
例如,对一个 33MHz的时钟信号,可使用4.7nF到100nF的电容;对一个100MHz时钟信号,可使用10nF的电容。
选择去耦电容时,除了考虑电容值外,ESR值也会影响去耦能力。
为了去耦,应该选择ESR值低于1欧姆的电容。
两者的区别:从电路来说,总是存在驱动的源和被驱动的负载。
如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。
这就是耦合。
去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。
旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。
高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。
旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。
这应该是他们的本质区别。
作为无源元件之一的电容,其作用不外乎以下几种:1、应用于电源电路,实现旁路、去藕、滤波和储能的作用,下面分类详述之:1)旁路旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。
就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。
为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。
这能够很好地防止输入值过大而导致的地电位抬高和噪声。
地弹是地连接处在通过大电流毛刺时的电压降。
2)去藕去藕,又称解藕。
从电路来说,总是可以区分为驱动的源和被驱动的负载。
如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。
这就是耦合。
去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。
将旁路电容和去藕电容结合起来将更容易理解。
旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。
高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10uF或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。
旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。
这应该是他们的本质区别。
3)滤波从理论上(即假设电容为纯电容)说,电容越大,阻抗越小,通过的频率也越高。
但实际上超过1uF的电容大多为电解电容,有很大的电感成份,所以频率高后反而阻抗会增大。
有时会看到有一个电容量较大电解电容并联了一个小电容,这时大电容通低频,小电容通高频。
电容的作用就是通高阻低,通高频阻低频。
电容越大低频越容易通过,电容越大高频越容易通过。
具体用在滤波中,大电容(1000uF)滤低频,小电容(20pF)滤高频。
曾有网友将滤波电容比作“水塘”。
由于电容的两端电压不会突变,由此可知,信号频率越高则衰减越大,可很形象的说电容像个水塘,不会因几滴水的加入或蒸发而引起水量的变化。
它把电压的变动转化为电流的变化,频率越高,峰值电流就越大,从而缓冲了电压。
滤波就是充电,放电的过程。
4)储能储能型电容器通过整流器收集电荷,并将存储的能量通过变换器引线传送至电源的输出端。
电压额定值为40~450VDC、电容值在220~150 000uF之间的铝电解电容器(如EPCOS公司的 B43504或B43505)是较为常用的。
根据不同的电源要求,器件有时会采用串联、并联或其组合的形式,对于功率级超过10KW的电源,通常采用体积较大的罐形螺旋端子电容器。
2、应用于信号电路,主要完成耦合、振荡/同步及时间常数的作用:1)耦合举个例子来讲,晶体管放大器发射极有一个自给偏压电阻,它同时又使信号产生压降反馈到输入端形成了输入输出信号耦合,这个电阻就是产生了耦合的元件,如果在这个电阻两端并联一个电容,由于适当容量的电容器对交流信号较小的阻抗,这样就减小了电阻产生的耦合效应,故称此电容为去耦电容。
2)振荡/同步包括RC、LC振荡器及晶体的负载电容都属于这一范畴。
3)时间常数这就是常见的 R、C 串联构成的积分电路。
当输入信号电压加在输入端时,电容(C)上的电压逐渐上升。
而其充电电流则随着电压的上升而减小。
电流通过电阻(R)、电容(C)的特性通过下面的公式描述: i=(V/R)e-(t/CR)电容的用途非常多,主要有如下几种:1.隔直流:作用是阻止直流通过而让交流通过。
2.旁路(去耦):为交流电路中某些并联的元件提供低阻抗通路。
3.耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路4.滤波:这个对DIY而言很重要,显卡上的电容基本都是这个作用。
5.温度补偿:针对其它元件对温度的适应性不够带来的影响,而进行补偿,改善电路的稳定性。
6.计时:电容器与电阻器配合使用,确定电路的时间常数。
7.调谐:对与频率相关的电路进行系统调谐,比如手机、收音机、电视机。
8.整流:在预定的时间开或者关半闭导体开关元件。
9.储能:储存电能,用于必须要的时候释放。
例如相机闪光灯,加热设备等等。
(如今某些电容的储能水平已经接近锂电池的水准,一个电容储存的电能可以供一个手机使用一天。
电容就是两块导体(阴极和阳极)中间夹着一块绝缘体(介质)构成的电子元件。
电容的种类首先要按照介质种类来分。
这当中可分为无机介质电容器、有机介质电容器和电解电容器三大类。
不同介质的电容,在结构、成本、特性、用途方面都大不相同。
陶瓷电容常用在超高频器件例如GPU上无机介质电容器:包括大家熟悉的陶瓷电容以及云母电容,在CPU上我们会经常看到陶瓷电容。
陶瓷电容的综合性能很好,可以应用GHz级别的超高频器件上,比如CPU/GPU。
当然,它的价格也很贵。
有机介质电容器:例如薄膜电容器,这类电容经常用在音箱上,其特性是比较精密、耐高温高压。
双电层电容器:这种电容的电容量特别大,可以达到几百f(f=法,电容量单位,1f=100000μf)。
因此这种电容可以做UPS的电池用,作用是储存电能。
说句题外话,如果把地球算做一个孤立导体的话,那么它的容量只有700μf,还不如主板上用的一个铝电容。
电解电容器:由于主板、显卡等产品使用的基本都是电解电容,因此这是我们要讲的重点。
大家熟悉的铝电容,钽电容其实都是电解电容。
如果说电容是电子元器件中最重要和不可取代的元件的话,那么电解电容器又在整个电容产业中占据了半壁江山。
我国电解电容年产量300亿只,且年平均增长率高达30%,占全球电解电容产量的1/3以上。
在了解电容的分类后,我想大家已经知道,和DIY玩家最切实相关的还属电解电容,所以我们接下来主要讲的也是它。
首先让我们了解一下电解电容的性能特点,这样我们才能清楚为什么主板、显卡以及几乎所有的计算机设备里面都使用到了电解电容:电解电容器特点一:单位体积的电容量非常大,比其它种类的电容大几十到数百倍。
电解电容器特点二:额定的容量可以做到非常大,可以轻易做到几万μf甚至几f(但不能和双电层电容相比)。
电解电容器特点三:价格比其它种类具有压倒性优势,因为电解电容的组成材料都是普通的工业材料,比如铝等等。
制造电解电容的设备也都是普通的工业设备,可以大规模生产,成本相对比较低。
目前,新型的电解电容发展的非常快,某些产品的性能已达到无机电容器的水准,电解电容正在替换某些无机和有机介质电容器。
电解电容的使用范围相当广泛,基本上,有电源的设备都会使用到电解电容。
例如通讯产品,数码产品,汽车上音响、发动机、ABS、GPS、电子喷油系统以及几乎所有的家用电器。
由于技术的进步,如今在小型化要求较高的军用电子对抗设备中也开始广泛使用电解电容。
总结:有电源的地方就有电解电容,它价格便宜,使用在几百上千元的主板、显卡上是再合适不过了。
电解电容的分类,传统的方法都是按阳极材质,比如说铝或者钽。
所以,电解电容按阳极分,为以下几种:1.铝电解电容。
不管是SMT贴片工艺的(上图左,就是大家说的“贴片电容”,识别方式是底坐有黑色橡胶),还是直插式的,或者有塑料表皮的(上图右就是直插式有塑料表皮的,这个被很多人认为是“电解电容”),只要它们的阳极材质是铝,那么他们就都叫做铝电解电容。
电容的封装方式和电容的品质本身并无直接联系,电容的性能只取决于具体型号,这个我们后面会详细说明。
2.钽电解电容。
阳极由钽构成,就是那种我们在显卡上一见到就会惊呼“这个显卡做工真不错!”的那种黄色或黑色小颗粒。
目前很多钽电解电容都用贴片式安装,其外壳一般由树脂封装(采用同样封装的也可能是铝电解电容)。
但是,钽电容的阴极也是电解质,所以很不幸的,它也是大家十分瞧不起的“电解电容”的一种。
(有种晴天霹雳的感觉吧?)。
3。
铌电解电容。
这种电容如今已经用的比少,所以就不多介绍了。
以往传统的看法是钽电容性能比铝电容好,因为钽电容的介质为阳极氧化后生成的五氧化二钽,它的介电能力(通常用ε表示)比铝电容的三氧化二铝介质要高。
因此在同样容量的情况下,钽电容的体积能比铝电容做得更小。
(电解电容的电容量取决于介质的介电能力和体积,在容量一定的情况下,介电能力越高,体积就可以做得越小,反之,体积就需要做得越大)再加上钽的性质比较稳定,所以通常认为钽电容性能比铝电容好。