人教版七年级下数学导学案5.3.1 第2课时 平行线的性质和判定及其综合运用
- 格式:doc
- 大小:1.05 MB
- 文档页数:4
平行线的性质(第二课时)一、目标导学1、使学生理解平行线的性质,能知道平行线的性质与判定的区别,能初步利用平行线的性质进行有关计算.2、使学生体会观察、猜想、实验、归纳、验证的研究问题方法.重点:平行线的性质.难点:平行线的性质及性质与判定的区别二、自学质疑活动1 知识准备(1)平行线的判定方法有哪些? (2)平行线的性质有哪些?活动2 教材导学1.打过台球的同学们,你们知道打台球时会涉及平行线的知识吗?如图5-3-43所示,打台球时,用白球沿图示箭头方向去打黑球,要使黑球经过一次反弹后直接撞入袋中,入射角∠4等于反射角∠5,且∠1=∠2.若∠3=30°,则打黑球时必须保持∠1等于多少度才能将黑球撞入袋中?图5-3-43 图5-3-44 图5-3-45 2.如图5-3-44,三个相同的三角板拼接成一个图形,请找出图中所有的平行线.知识点一平行线的性质的应用性质1:两直线平行,同位角__ __.如图5-3-45,∵AB∥CD(已知),∴∠1=∠2( ).性质2:两直线平行,内错角__ __.如图5-3-45,∵AB∥CD(已知),∴∠2=∠3( ).性质3:两直线平行,同旁内角__ __.如图5-3-45,∵AB∥CD(已知),∴∠2+∠4=180°( ).知识点二平行线的判定的应用判定方法1:同位角__ __,两直线平行.如图5-3-45,∵∠1=∠2(已知),∴AB∥CD( ).判定方法2:内错角__ __,两直线平行.如图5-3-45,∵∠2=∠3(已知),∴AB∥CD( ).判定方法3:同旁内角___,两直线平行.如图5-3-45,∵∠2+∠4=180°(已知),∴AB∥CD( ).三、互助探究例1 如图5-3-46,已知∠1=73°,∠2=107°,∠3=79°,求∠4的度数.例2 如图5-3-47是一张四边形纸片ABCD被撕掉∠A,∠C后的剩余部分(∠A在左上角).量得∠1=∠2,∠B=45°,∠D=105°.在图中画出被撕掉的部分并求原来∠A,∠C的度数.例3 如图5-3-49,已知AB∥CD,EG,FR分别是∠BEF,∠EFC的平分线.试说明EG∥FR.图5-3-46 图5-3-47 如图5-3-49四.展示点评(学生展示成果,学生点评,教师引导)五、达标巩固(必做题)1.如图5-3-56,已知∠1=∠2,∠3=73°,则∠4的度数为________度.图5-3-56 图5-3-58 图5-3-59 2.如图5-3-58,若∠1=40°,∠2=40°,∠3=116°30′,则∠4=__________.3.已知:如图5-3-59,若∠1=∠2,∠A=60°,则∠AD C=________度.4.如图5-3-60,l∥m,若∠1=120°,∠A=55°,则∠ACB的大小是________.图5-3-60图5-3-615.已知:如图5-3-61,∠1=∠2,CE∥BF,试说明AB∥CD.六、归结反思通过学习这节课,我的收获和困惑分别是:2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.近五年中,中国与“一带一路”国家的每年进出口总额如图所示,则其中进出口总额增长最快的是()A.2013- 2014年B.2014- 2015年C.2015 -2016年D.2016 -2017年2.下列各组图形可以通过平移互相得到的是()A.B.C.D.3.关于“19”,下列说法不正确的是A.它是一个无理数B.它可以用数轴上的一个点来表示C.它可以表示面积为19的正方形的边长n=D.若191<<+(n为整数),则5n n4.下列图中∠1和∠2不是同位角的是()A.B. C.D.5.以下列各组线段为边作三角形,能构成直角三角形的是A.2,3,4 B.4,4,6 C.6,8,10 D.7,12,136.如图,直线,将()的直角顶点放在直线上,若,则 的度数为( )A .B .C .D .7.如图所示,四幅汽车标志设计中,能通过平移得到的是( )A .,B .,C .,D ., 8.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥BA 于E ,且AB =10cm ,则△DEB 的周长为( )A .20cmB .16cmC .10cmD .8cm9.已知x ,y 满足方程组2123x y t x y t+=+⎧⎨-=-⎩,则x 与y 的关系是( ) A .34x y += B .32x y += C .34x y -= D .32x y -=10.小明去超市买东西花20元,他身上只带了面值为2元和5元的纸币,营业员没有零钱找给他,那么小明付款有几种方式( )A .2种B .3种C .4种D .5种二、填空题题11.某物体运动的路程S (厘米)与运动的时间t (秒)之间的关系如图所示.则该物休运动20秒所经过的路程是_____厘米.12.如图,如果AB BC ⊥垂足为B ,5AB =,4BC =,那么点C 到AB 的距离为_______.13.如图,用火柴棍拼成一排图形:第1个图形用了5根;第2个图形用了9根;第3个图形用了13根,……,那么第n 个图形用了_____根.14.等腰三角形的一个外角是80,则这个等腰三角形的底角度数是___.15.在平面直角坐标系中,若点P 在x 轴的下方,y 轴的右方,到y 轴的距离都是3,到x 轴的距离都是5,则点P 的坐标为_____.16.小明和小芳用编有数字1~10的10张纸片(除数字外大小颜色都相同)做游戏,小明从中任意抽取一张(不放回),小芳从剩余的纸片中任意抽取一张,谁抽到的数字大,谁就获胜(数字从小到大顺序为1,2,3,4,5,6,7,8,9,10)然后两人把抽到的纸片都放回,重新开始游戏,如果小明已经抽到的纸片上的数字为3,然后小芳抽纸片,则小芳获胜的概率是_____.17.如果不等式组321x x m <⎧⎨>-⎩有解,则实数m 的取值范围是 . 三、解答题18.如图,012180,D C ∠+∠=∠=∠,求证://AD BC ,请将证明过程填写完整.证明:∵012180∠+∠=(已知)又∵1AOE ∠=∠( )∴________02180+∠=,∴//DE ____________( )∴C ∠=______________( )又∵C D ∠=∠(已知)∴D ∠=________________,∴//AD BC ( )19.(6分)某家商店的账目记录显示,某天卖出6件甲商品和3件乙商品,收入108元;另一天,以同样价格卖出5件甲商品和1件乙商品,收入84元.问每件甲商品和乙商品的售价各是多少元?20.(6分)解不等式组:4261139x x x x >-⎧⎪-+⎨≤⎪⎩,并把解集在数轴上表示出来. 21.(6分)解不等式组513(1)1+213x x x x ->+⎧⎪⎨≥-⎪⎩并在数轴上表示出它的解集.22.(8分)如图所示的大正方形是由两个小正方形和两个长方形组成.(1)通过两种不同的方法计算大正方形的面积,可以得到一个数学等式;(2)利用(1)中得到的结论,解决下面的问题:若a+b =2,ab =﹣3,求:①a 2+b 2;②a 1+b 1.23.(8分)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有人共买鸡,人出八,盈三;人出七,不足四.问人数、鸡价各几何?”译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”请列方程组解决此问题.24.(10分)在如图所示的网格中,将△ABC先向右平移4格得到△A1B1C1,再将△A1B1C1绕点A1逆时针旋转90°得到△A1B1C1,请依次画出△A1B1C1和△A1B1C1.25.(10分)已知点P(2m+4,m-1),请分别根据下列条件,求出点P的坐标.(1)点P在x轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过点A(2,-4)且与y轴平行的直线上.参考答案一、选择题(每题只有一个答案正确)1.D【解析】【分析】2013- 2014年与2016 -2017年的增长额比较即可.【详解】. 2015 -2016年与2016 -2017年进出口总额减少,不合题意;2013- 2014年:15026-14103=923亿美元,2016 -2017年:14303-12005=1298亿美元,故选D.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,准确识图是解题的关键. 2.C【解析】试题解析:观察图形可知图案C通过平移后可以得到.故选C.点睛:图形的平移只改变图形的位置,而不改变图形的形状和大小,易混淆图形的平移与旋转或翻转,而误选A、B、D.3.D【解析】【分析】分别根据无理数的定义、数轴的意义、正方形面积公式以及无理数的估算方法判断即可.【详解】解:A. A不合题意;B. B不合题意;C.它可以表示面积为19的正方形的边长,说法正确,故选项C不合题意;D.45<<,故选项D说法不正确.故选:D.【点睛】本题主要考查了无理数的定义、数轴的意义以及无理数的估算,无理数的估算关键是确定无理数的整数部分.“夹逼法”是估算的一般方法,也是常用方法.4.C【解析】【分析】根据同位角的定义(在截线的同侧,并且在被截线的同一方的两个角是同位角)进行判断.【详解】A选项:∠1与∠2有一边在同一条直线上,另一条边在被截线的同一方,是同位角,B选项:∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,C选项:∠1与∠2的两条边都不在同一条直线上,不是同位角,D选项:∠1与∠2有一边在同一条直线上,另一条边在被截线的同一方,是同位角.故选C.【点睛】考查了同位角的定义,判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.5.B【解析】【分析】只要验证两小边的平方和等于最长边的平方即可判断是直角三角形.【详解】解:A、22+32=13≠42,不能构成直角三角形,故本选项错误;B、42+42=32≠62,不能构成直角三角形,故本选项错误;C、62+82=100=102,能构成直角三角形,故本选项正确;D、72+122=193≠132,不能构成直角三角形,故本选项错误;故选:B.【点睛】本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形只要验证两小边的平方和等于最长边的平方即可.6.C【解析】【分析】过点B作直线b∥l,再由直线m∥l可知m∥l∥b,得出∠3=∠1,∠2=∠1,由此可得出结论.【详解】解:过点B作直线b∥l,如图所示:∵直线m∥l,∴m∥l∥b,∴∠3=∠1,∠2=∠1.∵∠2=21°,∴∠1=21°,∴∠3=15°-21°=21°,∴∠1=∠3=21°;故选择:C.【点睛】本题考查的是平行线的性质;熟练掌握平行线的性质,并能进行推理论证与计算是解决问题的关键.7.A【解析】根据平移的定义:“把一个图形沿着一定的方向移动一定的距离的图形变换叫做图形的平移”分析可知,A选项中的图形可通过平移得到,其余三个选项中的图形不能通过平移得到.故选A.8.C【解析】【分析】根据等腰直角三角形的性质可得出BE=DE,由角平分线的性质可得出DE=DC、AE=AC,根据周长的定义即可得出C△DEB=BE+DE+BD=AB=10,此题得解【详解】解:∵△ABC中,∠C=90°,AC=BC,∴△ABC为等腰直角三角形,∴∠B=45°,∴△BDE为等腰直角三角形,∴BE=DE.∵AD平分∠CAB交BC于D,∴DE=DC,AE=AC,.C△DEB=BE+DE+BD=BE+DC+BD=BE+BC=BE+AE=AB=10cm.故选C.【点睛】本题考查了等腰直角三角形以及角平分线的性质,根据角平分线的性质结合等腰直角三角形的性质找出BE=DE、DE=DC、AE=AC是解题的关键.9.A【分析】把t 看做已知数,根据x 、y 系数的特殊性相加可得结论.【详解】2123x y t x y t +=+⎧⎨-=-⎩①②, ①+②得:3x+y=4故选A .【点睛】本题考查了二元一次方程组的解,灵活运用所学的知识解决问题,并运用了整体思想.10.B【解析】试题分析:设小明带了面值为2元的纸币x 张,面值为5元的纸币y 张,由题意得,2x+5y=20,因为x 和y 都是非负的整数,所以x=0,y=4,或x=5,y=2,x=10,y=0,共3种付款方式.故选B .考点:二元一次方程.二、填空题题11.1【解析】【分析】分析题意,设函数解析式为:s=kt ,把(4,10)代入即可求得函数解析式.【详解】设函数解析式为:s=kt ,把(4,10)代入得:4k=10,k=2.5,∴s=2.5t ,当t=20时,s=1.∴物体运动所经过的路程为1厘米.【点睛】本题考查的知识点是:在这条直线上的点的坐标一定适合这条直线的解析式,正确求出k 是解题关键. 12.4【解析】根据AB⊥BC,BC=1,可知点C到AB的距离为1.【详解】∵AB⊥BC,BC=1,∴可知点C到AB的距离为1,故答案是:1.【点睛】本题运用了点到直线的距离定义,关键是理解好定义.13.4n+1.【解析】【分析】由已知图形得出每增加一个四边形就多4根火柴棍,据此可得.【详解】∵图①中火柴棍的个数5=4×1+1,图②中火柴棍的个数9=4×2+1,图③中火柴棍的个数13=4×3+1,……∴第n个图形中火柴棍的个数为(4n+1)根,故答案为:4n+1.【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.14.40【解析】【分析】将80°角分为底角的外角和顶角的外角两种情况讨论即可.【详解】①若80°是顶角的外角时,该三角形的顶角为18080100︒-︒=︒底角=180100402︒-︒=︒②若80°是底角的外角时,该三角形的底角为18080100︒-︒=︒100100200180︒+︒=︒>︒不符合三角形内角和定理,此情况不存在.故答案为40°.【点睛】本题考查了等腰三角形的性质,当三角形的外角不确定是底角的外角还是顶角的外角时,要分类讨论,再根据三角形的内角和等于180°求解.15. (3,-5)【解析】【分析】由题可知点P在x轴的下方且在y轴的右侧,于是可以确定M点在第四象限;由于第四象限内点的横坐标为正数、纵坐标为负数,结合P点到两坐标轴的距离可得点P的坐标.【详解】∵点P在x轴的下方且在y轴的右侧,∴点P在第四象限.∵点P到到y轴的距离都是3,到x轴的距离都是5,∴点P的坐标是(3,-5).【点睛】本题考查了象限内点的坐标的确定,需明确各象限内点的横纵坐标的符号特点.16.7 9【解析】【分析】根据概率公式即可计算求解.【详解】由题意可知小芳获胜只需抽到比3大的数,故概率为7 9【点睛】此题主要考查概率的计算,解题的关键是根据题意找到关系. 17.m<2【解析】【分析】根据不等式组的解集即可求出答案.【详解】解:由于该不等式组有解,∴2m﹣1<3,∴m<2,故答案为:m<2【点睛】本题考查不等式组,解题的关键是正确理解不等式组的解集,本题属于基础题型.三、解答题18.答案见解析.【解析】【分析】由平行线的性质以及判定一一判断即可.【详解】证明:∵∠1+∠2=180°(已知)又∵∠1=∠AOE(对顶角相等)∴∠AOE+∠2=180°∴DE∥AC,(同旁内角互补,两直线平行)∴∠C=∠DEB(两直线平行,同位角相等)又∵∠C=∠D(已知)∴∠D=∠DEB∴AD∥BC(内错角相等两直线平行).故答案为:对顶角相等,∠AOE,AC,同旁内角互补,两直线平行,∠DEB,两直线平行,同位角相等,∠DEB,内错角相等两直线平行.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并准确识图是解题的关键.19.每件甲商品的售价为16元,每件乙商品的售价为4元.【解析】分析:设甲种商品每件进价是x元,乙种商品每件进价是y元,根据“卖出6件甲商品和3件乙商品,收入108元;同样价格卖出5件甲商品和1件乙商品,收入84元”列出方程组解答即可;详解:设每件甲商品的售价为x元,每件乙商品的售价为y元.根据题意,得63108 584.x yx y+=⎧⎨+=⎩,解得16,4.x y =⎧⎨=⎩答:每件甲商品的售价为16元,每件乙商品的售价为4元.点睛:本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.20.-3<x≤2.【解析】试题分析:先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可. 试题解析:426{1139x x x x --+≤>①② ∵解不等式①得:x >-3,解不等式②得:x≤2,∴不等式组的解集为-3<x≤2,在数轴上表示不等式组的解集为:.考点:1.解一元一次不等式组;2.在数轴上表示不等式的解集.21.2<x ≤4,数轴表示见解析.【解析】【分析】首先分别解出两个不等式,再根据:大大取大,小小取小,大小小大取中,大大小小取不着,确定出两个不等式的公共解集后,再在数轴上表示即可.【详解】513(1)1+213x x x x ->+⎧⎪⎨≥-⎪⎩①② 解不等式①,得:x>2,解不等式②,得:x≤4,所以,不等式组的解集为2<x≤4.在数轴上表示为.【点睛】此题主要考查了不等式组的解法,解题过程中要注意:①移项,去括号时的符号变化;②去分母时要注意不要漏乘没有分母的项;③不等式两边同时除以同一个负数时,不等号的方向要改变.22.(1)(a+b )3=a 3+3ab+b 3;(3)①10;②3.【解析】【分析】(1)根据正方形面积公式和长方形面积公式进行计算即可得到答案;(3)将①、②两个式子利用完全平方公式进行变形,然后代入相应的数值进行计算即可得到答案.【详解】(1)由图可得,正方形的面积=(a+b )3,正方形的面积=a 3+3ab+b 3,∴(a+b )3=a 3+3ab+b 3.故答案为:(a+b )3=a 3+3ab+b 3.(3)①a 3+b 3=(a+b )3﹣3ab =33﹣3×(﹣3)=10;②a 1+b 1=(a 3+b 3)3﹣3a 3b 3=103﹣3×(﹣3)3=100﹣18=3.【点睛】本题考查完全平方式、正方形面积公式和长方形面积公式,解题的关键是掌握完全平方式、正方形面积公式和长方形面积公式.23.人数为7人,鸡的价钱为53钱【解析】【分析】根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.【详解】解:设人数为x 人,鸡的价钱为y 钱,根据题意,列方程组得:8374x y y x -=⎧⎨-=⎩. 解方程组得753x y =⎧⎨=⎩. 答:人数为7人,鸡的价钱为53钱.【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.24.见解析【解析】【分析】首先确定A、B、C三点向右平移4个单位的对应点位置,然后再连接即可;利用旋转的性质得出各对应点位置,再顺次连结即可求解.【详解】如图所示:△A1B1C1和△A1B1C1即为所求.【点睛】本题考查了作图﹣﹣平移变换、旋转变换,关键是正确确定组成图形的关键点平移和旋转后的对应点的位置.25.(1)(6,0);(2)(-12,-9);(3)(2,-2)【解析】试题分析:(1)让纵坐标为0求得m的值,代入点P的坐标即可求解;(2)让纵坐标-横坐标=3得m的值,代入点P的坐标即可求解;(3)让横坐标为2求得m的值,代入点P的坐标即可求解.试题解析:(1))点P在x轴上,故纵坐标为0,所以m-1=0,m=1,点P的坐标(6,0);(2)因为点P的纵坐标比横坐标大3,故(m -1)-(2m+4)=3,m=-8,点P的坐标(-12,-9);(3) 点P在过A(2,-4)点,且与y轴平行的直线上,所以点P横坐标与A(2,-4)相同,即2m+4=2,m=-1,点P的坐标(2,-2)2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .2.下列计算正确的是( ) A .(x+y )2=x 2+y 2B .(﹣x+y )2=x 2+2xy+y 2C .(x ﹣2y )(x+2y )=x 2﹣2y 2D .(x ﹣1)(﹣x ﹣1)=1﹣x 23.如图,点P 在直线AB 上,点C ,D 在直线AB 的上方,且PC⊥PD,∠APC=28°,则∠BPD 的度数为( )A .28°B .60°C .62°D .152°4.下列各组线段不能组成三角形的是( ) A .3cm ,8cm ,5cm B .6cm ,6cm ,6cm C .3cm ,5cm ,7cmD .3cm ,4cm ,5cm5.已如一组数据10861091311,111010,,,,,,,,,下列各组中频率为0.2的是( ) A .5.57.5-B .7.59.5-C .9.511.5-D .11.513.5-6.如图所示的四个图案是我国几家国有银行的图标,其中图标属于中心对称的有( )A .1个B .2个C .3个D .4个7.如果a <b ,那么下列不等式成立的是( ) A .-3a >-3bB .a -3>b -3C .1133a b >D .a -b >08.某市举办画展,如图,在长14m ,宽10m 的长方形展厅中,划出三个形状大小完全一样的小长方形区域摆放水仙花,则每个小长方形的周长为( )A .8mB .13mC .16mD .20m9.若一个多边形的内角和为 540°,那么这个多边形对角线的条数为( ) A .5B .6C .7D .810.用加减法解方程组32104150x y x y -=⎧⎨-=⎩①②时,最简捷的方法是( )A .①×4﹣②消去xB .①×4+②×3消去xC .②×2+①消去yD .②×2﹣①消去y二、填空题题 11.已知12x y =⎧⎨=⎩是方程ax -y =3的解,则a 的值为________.12.写出命题“两直线平行,同旁内角互补.”的逆命题________。
5.3.2平行线的性质(第2课时)平行线的性质(二)教学目标1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.3.能够综合运用平行线性质和判定解题. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用. 教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:如图,BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么?cb二、进行新课1.例1 已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗?让学生写出说理过程,师生共同评价三种不同的说理. 2.实践与探究(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F通过上述实践,试猜想∠B 、∠F 、∠C 之间的关系,写出这种关系,试加以说明.E D C B AFECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导:①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.FEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行).所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式. 师生共同分析上述四个命题的题设和结论,重点分析第②、③语句. 第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设, “结果仍是等式”是结论。
第2课时平行线的性质与判定及其综合运用一、教学目标1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.2.会用平行线的性质进行推理和计算.3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.二、学法引导1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.三、重点·难点解决办法(一)重点平行线的性质公理及平行线性质定理的推导.(二)难点平行线性质与判定的区别及推导过程.(三)解决办法1.通过教师创设情境,学生积极思维,解决重点.2.通过学生自己推理及教师指导,解决难点.3.通过学生讨论,归纳小结.四、课时安排1课时五、教具学具准备投影仪、三角板、自制投影片.六、师生互动活动设计1.通过引例创设情境,引入课题.2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.3.通过学生讨论,完成课堂小结.七、教学步骤(一)明确目标掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.(二)整体感知以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习巩固新知.(三)教学过程创设情境,复习导入师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题(出示投影片1).1.如图1,(1)∵(已知),∴().(2)∵(已知),∴().(3)∵(已知),∴().2.如图2,(1)已知,则与有什么关系为什么(2)已知,则与有什么关系为什么图2 图33.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度学生活动:学生口答第1、2题.师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.探究新知,讲授新课师:我们都知道平行线的画法,请同学们画出直线的平行线,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的学生活动:学生在练习本上画图并思考.学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.提出问题:是不是每一对同位角都相等呢请同学们任画一条直线,使它截平行线与,得同位角、,利用量角器量一下;与有什么关系学生活动:学生按老师的要求画出图形,并进行度量,回答出不论怎样画截线,所得的同位角都相等.根据学生的回答,教师肯定结论.师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.[板书]两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗同学们可以讨论一下.学生活动:学生们思考,并相互讨论后,有的同学举手回答.【教法说明】在前面复习引入的第2题的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣.教师根据学生回答,给予肯定或指正的同时板书.[板书]∵(已知),∴(两条直线平行,同位角相等).∵(对项角相等),∴(等量代换).师:由此我们又得到了平行线有怎样的性质呢学生活动:同学们积极举手回答问题.教师根据学生叙述,板书:[板书]两条平行经被第三条直线所截,内错角相等.简单说成:西直线平行,内错角相等.师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程和第三条性质,形成正确板书.[板书]∵(已知),∴(两直线平行,同位角相等).∵(邻补角定义),∴(等量代换).即:两条平行线被第三条直线所截,同旁内角互补.简单说成,两直线平行,同旁内角互补.师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵(已知见图6),∴(两直线平行,同位角相等).∵(已知),∴(两直线平行,内错角相等).∵(已知),∴.(两直线平行,同旁内角互补)(板书在三条性质对应位置上.)尝试反馈,巩固练习师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢学生活动:学生给出答案,并很快地说出理由.练习(出示投影片2):如图7,已知平行线、被直线所截:图7(1)从,可以知道是多少度为什么(2)从,可以知道是多少度为什么(3)从,可以知道是多少度,为什么【教法说明】练习目的是巩固平行线的三条性质.变式训练,培养能力完成练习(出示投影片3).如图8是梯形有上底的一部分,已知量得,,梯形另外两个角各是多少度图8学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.【教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找和的大小.这里学生能够自己解题,教师避免包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,规范学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的板书.[板书]解:∵(梯形定义),∴,(两直线平行,同旁内角互补).∴.∴.变式练习(出示投影片4)1.如图9,已知直线经过点,,,.(1)等于多少度为什么(2)等于多少度为什么(3)、各等于多少度2.如图10,、、、在一条直线上,.(1)时,、各等于多少度为什么(2)时,、各等于多少度为什么学生活动:学生独立完成,把理由写成推理格式.【教学说明】题目中的为什么,可以用语言叙述,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,若学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.(四)总结、扩展(出示投影片1第1题和投影片5)完成并比较.如图11,(1)∵(已知),∴().(2)∵(已知),∴().(3)∵(已知),∴().学生活动:学生回答上述题目的同时,进行观察比较.师:它们有什么不同,同学们可以相互讨论一下.(出示投影6)学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质.【教法说明】通过有形的具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同.巩固练习(出示投影片7)1.如图12,已知是上的一点,是上的一点,,,.(1)和平行吗为什么图12(2)是多少度为什么学生活动:学生思考、口答.【教法说明】这个题目是为了巩固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.八、布置作业(一)必做题课本第99~100页A组第11、12题.(二)选做题课本第101页B组第2、3题.作业答案A组11.(1)两直线平行,内错角相等.(2)同位角相等,两直线平行.两直线平行,同旁内角互补.(3)两直线平行,同位角相等.对顶角相等.12.(1)∵(已知),∴(内错角相等,两直线平行).(2)∵(已知),∴(两直线平行,同位角相等),(两直线平行,同位角相等).B组2.∵(已知),∴(两直线平行,同位角相等),(两直线平行,内错角相等).∵(已知),∴(两直线平行,同位角相等),(同上).又∵(已证),∴.∴.又∵(平角定义),∴.3.平行线的判定与平行线的性质,它们的题设和结论正好相反.。
部审人教版七年级数学下册教学设计5.3.1《第2课时平行线的性质和判定及其综合运用》2一. 教材分析人教版七年级数学下册第5.3.1节《第2课时平行线的性质和判定及其综合运用》主要介绍了平行线的性质和判定方法。
本节课的内容是学生在学习了直线、射线、线段以及平行线的基础知识之后进行的,是进一步培养学生空间想象能力和逻辑思维能力的重要环节。
教材通过丰富的图片和实例,引导学生探究平行线的性质和判定方法,并运用这些知识解决实际问题。
本节课的内容为学生后续学习几何知识奠定了基础。
二. 学情分析七年级的学生已经掌握了直线、射线、线段以及平行线的基本概念,对于这些基础知识有了一定的了解。
但是,对于平行线的性质和判定方法,学生可能还较为陌生。
因此,在教学过程中,需要通过生动的实例和图片,激发学生的学习兴趣,引导学生主动探究平行线的性质和判定方法。
此外,学生可能对于如何将理论知识运用到实际问题中还存在一定的困难,因此,在教学过程中,需要设计一些具有实际意义的练习题,让学生在解答问题的过程中,巩固所学知识。
三. 教学目标1.理解平行线的性质和判定方法。
2.能够运用平行线的性质和判定方法解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.平行线的性质和判定方法的掌握。
2.如何将平行线的性质和判定方法运用到实际问题中。
五. 教学方法1.情境教学法:通过生动的实例和图片,引导学生主动探究平行线的性质和判定方法。
2.实践教学法:设计具有实际意义的练习题,让学生在解答问题的过程中,巩固所学知识。
3.小组合作学习:鼓励学生之间相互讨论、交流,共同解决问题。
六. 教学准备1.教学课件:制作包含丰富实例和图片的教学课件,帮助学生更好地理解平行线的性质和判定方法。
2.练习题:设计具有实际意义的练习题,供学生在课堂上巩固所学知识。
3.黑板:用于板书教学过程中的关键知识点和步骤。
七. 教学过程1.导入(5分钟)通过展示一些生活中的平行线图片,如马路、书架等,引导学生关注平行线,激发学生的学习兴趣。
人教版七年级数学下册5.3.1.2《平行线的性质与判定的综合应用》教学设计一. 教材分析《平行线的性质与判定的综合应用》是人教版七年级数学下册第五章第三节的一个知识点。
本节课主要通过平行线的性质和判定来解决一些实际问题,进一步巩固学生对平行线的理解。
教材中提供了丰富的例题和练习题,有助于学生通过实践巩固所学知识。
二. 学情分析学生在之前的学习中已经掌握了平行线的概念、性质和判定方法,但应用这些知识解决实际问题的能力还不够强。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生将理论知识与实际问题相结合,提高解决问题的能力。
三. 教学目标1.理解平行线的性质和判定方法。
2.能够运用平行线的性质和判定方法解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重点:平行线的性质和判定方法的运用。
2.难点:如何将平行线的性质和判定方法应用于解决实际问题。
五. 教学方法1.讲授法:讲解平行线的性质和判定方法。
2.案例分析法:分析实际问题,引导学生运用平行线的性质和判定方法解决问题。
3.讨论法:分组讨论,分享解题心得。
六. 教学准备1.课件:制作课件,展示平行线的性质和判定方法。
2.练习题:准备一些实际问题,供学生练习。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的平行线现象,如楼梯、轨道等,引导学生关注平行线。
提问:你们知道平行线有什么性质和判定方法吗?2.呈现(10分钟)讲解平行线的性质和判定方法,结合课件和实例进行说明。
强调平行线的性质和判定在解决实际问题中的应用。
3.操练(10分钟)让学生分组讨论,分享各自解题心得。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些实际问题,让学生独立解决。
问题难度可适当调整,以满足不同学生的需求。
5.拓展(5分钟)邀请学生上台展示自己的解题过程,让大家共同学习、探讨。
6.小结(5分钟)总结本节课所学内容,强调平行线的性质和判定方法在实际问题中的应用。
第2课时平行线的性质与判定及其综合运用一、教学目标1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.2.会用平行线的性质进行推理和计算.3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.二、学法引导1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.三、重点·难点解决办法(一)重点平行线的性质公理及平行线性质定理的推导.(二)难点平行线性质与判定的区别及推导过程.(三)解决办法1.通过教师创设情境,学生积极思维,解决重点.2.通过学生自己推理及教师指导,解决难点.3.通过学生讨论,归纳小结.四、课时安排1课时五、教具学具准备投影仪、三角板、自制投影片.六、师生互动活动设计1.通过引例创设情境,引入课题.2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.3.通过学生讨论,完成课堂小结.七、教学步骤(一)明确目标掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.(二)整体感知以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习巩固新知.(三)教学过程创设情境,复习导入师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题(出示投影片1).1.如图1,(1)∵(已知),∴().(2)∵(已知),∴().(3)∵(已知),∴().2.如图2,(1)已知,则与有什么关系?为什么?(2)已知,则与有什么关系?为什么?图2 图33.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?学生活动:学生口答第1、2题.师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.探究新知,讲授新课师:我们都知道平行线的画法,请同学们画出直线的平行线,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?学生活动:学生在练习本上画图并思考.学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线,使它截平行线与,得同位角、,利用量角器量一下;与有什么关系?学生活动:学生按老师的要求画出图形,并进行度量,回答出不论怎样画截线,所得的同位角都相等.根据学生的回答,教师肯定结论.师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.[板书]两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.学生活动:学生们思考,并相互讨论后,有的同学举手回答.【教法说明】在前面复习引入的第2题的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣.教师根据学生回答,给予肯定或指正的同时板书.[板书]∵(已知),∴(两条直线平行,同位角相等).∵(对项角相等),∴(等量代换).师:由此我们又得到了平行线有怎样的性质呢?学生活动:同学们积极举手回答问题.教师根据学生叙述,板书:[板书]两条平行经被第三条直线所截,内错角相等.简单说成:西直线平行,内错角相等.师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程和第三条性质,形成正确板书.[板书]∵(已知),∴(两直线平行,同位角相等).∵(邻补角定义),∴(等量代换).即:两条平行线被第三条直线所截,同旁内角互补.简单说成,两直线平行,同旁内角互补.师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵(已知见图6),∴(两直线平行,同位角相等).∵(已知),∴(两直线平行,内错角相等).∵(已知),∴.(两直线平行,同旁内角互补)(板书在三条性质对应位置上.)尝试反馈,巩固练习师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?学生活动:学生给出答案,并很快地说出理由.练习(出示投影片2):如图7,已知平行线、被直线所截:图7(1)从,可以知道是多少度?为什么?(2)从,可以知道是多少度?为什么?(3)从,可以知道是多少度,为什么?【教法说明】练习目的是巩固平行线的三条性质.变式训练,培养能力完成练习(出示投影片3).如图8是梯形有上底的一部分,已知量得,,梯形另外两个角各是多少度?图8学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.【教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找和的大小.这里学生能够自己解题,教师避免包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,规范学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的板书.[板书]解:∵(梯形定义),∴,(两直线平行,同旁内角互补).∴.∴.变式练习(出示投影片4)1.如图9,已知直线经过点,,,.(1)等于多少度?为什么?(2)等于多少度?为什么?(3)、各等于多少度?2.如图10,、、、在一条直线上,.(1)时,、各等于多少度?为什么?(2)时,、各等于多少度?为什么?学生活动:学生独立完成,把理由写成推理格式.【教学说明】题目中的为什么,可以用语言叙述,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,若学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.(四)总结、扩展(出示投影片1第1题和投影片5)完成并比较.如图11,(1)∵(已知),∴().(2)∵(已知),∴().(3)∵(已知),∴().学生活动:学生回答上述题目的同时,进行观察比较.师:它们有什么不同,同学们可以相互讨论一下.(出示投影6)学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质.【教法说明】通过有形的具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同.巩固练习(出示投影片7)1.如图12,已知是上的一点,是上的一点,,,.(1)和平行吗?为什么?图12(2)是多少度?为什么?学生活动:学生思考、口答.【教法说明】这个题目是为了巩固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.八、布置作业(一)必做题课本第99~100页A组第11、12题.(二)选做题课本第101页B组第2、3题.作业答案A组11.(1)两直线平行,内错角相等.(2)同位角相等,两直线平行.两直线平行,同旁内角互补.(3)两直线平行,同位角相等.对顶角相等.12.(1)∵(已知),∴(内错角相等,两直线平行).(2)∵(已知),∴(两直线平行,同位角相等),(两直线平行,同位角相等).B组2.∵(已知),∴(两直线平行,同位角相等),(两直线平行,内错角相等).∵(已知),∴(两直线平行,同位角相等),(同上).又∵(已证),∴.∴.又∵(平角定义),∴.3.平行线的判定与平行线的性质,它们的题设和结论正好相反.。
第2课时 平行线的性质和判定及其综合运用1.掌握平行线的性质与判定的综合运用;(重点、难点)2.体会平行线的性质与判定的区别与联系.一、复习引入问题:平行线的判定与平行线的性质的区别是什么?判定是已知角的关系得平行关系,性质是已知平行关系得角的关系.两者的条件和结论刚好相反,也就是说平行线的判定与性质是互逆的.二、合作探究探究点一:先用判定再用性质如图,C ,D 是直线AB 上两点,∠1+∠2=180°,DE 平分∠CDF ,EF ∥AB .(1)CE 与DF 平行吗?为什么?(2)若∠DCE =130°,求∠DEF 的度数.解析:(1)由∠1+∠DCE =180°,∠1+∠2=180°,可得∠2=∠DCE ,即可证明CE ∥DF ;(2)由平行线的性质,可得∠CDF =50°.由DE 平分∠CDF ,可得∠CDE =12∠CDF =25°.最后根据“两直线平行,内错角相等”,可得到∠DEF 的度数.解:(1)CE ∥DF .理由如下:∵∠1+∠2=180°,∠1+∠DCE =180°,∴∠2=∠DCE ,∴CE ∥DF ;(2)∵CE ∥DF ,∠DCE =130°,∴∠CDF =180°-∠DCE =180°-130°=50°.∵DE 平分∠CDF ,∴∠CDE =12∠CDF =25°.∵EF ∥AB ,∴∠DEF =∠CDE =25°. 方法总结:根据题目中的数量找出各量之间的关系是解这类问题的关键.从角的关系得到直线平行用平行线的判定,从平行线得到角相等或互补的关系用平行线的性质,二者不要混淆.探究点二:先用性质再用判定如图,已知DF ∥AC ,∠C =∠D ,CE 与BD 有怎样的位置关系?说明理由.解析:由图可知∠ABD 和∠ACE 是同位角,只要证得同位角相等,则CE ∥BD .由平行线的性质结合已知条件,稍作转化即可得到∠ABD =∠C .解:CE ∥BD .理由如下:∵DF ∥AC ,∴∠D =∠ABD .∵∠C =∠D ,∴∠ABD =∠C ,∴CE∥BD .方法总结:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角. 探究点三:平行线性质与判定中的探究型问题如图,AB ∥CD ,E ,F 分别是AB ,CD 之间的两点,且∠BAF =2∠EAF ,∠CDF =2∠EDF .(1)判定∠BAE ,∠CDE 与∠AED 之间的数量关系,并说明理由;(2)∠AFD 与∠AED 之间有怎样的数量关系?解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED =∠BAE +∠CDE .理由如下:如图,过点E 作EG ∥AB .∵AB ∥CD ,∴AB ∥EG ∥CD ,∴∠AEG =∠BAE ,∠DEG =∠CDE .∵∠AED =∠AEG +∠DEG ,∴∠AED =∠BAE +∠CDE ;(2)同(1)可得∠AFD =∠BAF +∠CDF .∵∠BAF =2∠EAF ,∠CDF =2∠EDF ,∴∠BAE +∠CDE =32∠BAF +32∠CDF=32(∠BAF +∠CDF )=32∠AFD ,∴∠AED =32∠AFD .方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计 ⎭⎪⎬⎪⎫同位角相等内错角相等同旁内角互补判定性质两直线平行本节内容的重点是平行线的性质及判定的综合,直接运用了“∵”“∴”的推理形式,为学生创设了一个学习推理的环境,逐步培养学生的逻辑推理能力.因此,这一节课有着承上启下的作用,比较重要.本节内容的难点是理解平行线的性质和判定的区别,并在推理中正确地应用.由于学生还没有学习命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,所以在教学中,应让学生通过应用和讨论,体会到如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果两直线平行,得出角的关系,就是平行线的性质。
cba 4321第五章 相交线与平行线5.3.1平行线的性质【教学目标】知识与技能1.探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.2.能区分平行线的性质和判定,平行线的性质与判定的综合运用过程与方法通过本节课的教学,培养学生的概括能力和“观察-猜想-证明”的探索方法,培养学生的辩证思维能力和逻辑思维能力.情感、态度与价值观1.通过推理论证教学,培养学生的分析问题和解决问题的能力2.培养学生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性.【教学重难点】重点: 平行线性质的研究和发现过程;用平行线性质进行简单的推理和计算.难点: 正确区分平行线的性质和判定【导学过程】【知识回顾】我们学了哪些判定平行的方法?【情景导入】用直尺和三角尺画出两条平行线a ∥b ,再画一条截线c 与直线a 、b 相交,标出所形成的八个角.【新知探究】探究一、平行线性质 1、探索活动:完成教材18页探究2、观察思考:教材19页思考3、归纳性质:同位角 。
两条平行线被第三条直线所截, 。
∵a ∥b (已知)同位角 。
∴∠1=∠5(两直线平行,同位角相等)∵a ∥b (已知)简单说成:两直线平行 。
∴∠3=∠5( )∵a ∥b (已知)。
∴∠3+∠6=180°( )探究二、证明性质:1、性质1→性质2:如右图,∵a ∥b (已知)∴∠1=∠2( ) 又∵∠3=∠1(对顶角相等)。
DC B AD C B A 1∴∠2=∠3(等量代换)。
2、性质1→性质3:如右图,∵a ∥b (已知)∴∠1=∠2( )又∵ ( )。
∴ 。
探究三、例 (教材P19)如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°, 梯形另外两个角分别是多少度?1、分析①梯形这条件说明 ∥ 。
②∠A 与∠D 、∠B 与∠C 的位置关系是 ,数量关系是 。
探究四、比一比:平行线的判定与性质有什么不同?已知 得到【知识梳理】本节课你学到了什么?有什么收获和体会?还有什么困惑?1.______叫两直线平行。
第2课时 平行线的性质和判定及其综合运用
学习目标:1.分清平行线的性质和判定.已知平行用性质,要证平行用判定.
2.能够综合运用平行线性质和判定解题.
学习重点:平行线性质和判定综合应用 学习难点:平行线性质和判定灵活运用 学习过程: 一、学前准备
1、预习疑难: 。
2、填空:①平行线的性质有哪些?
②平行线的判定有哪些?
二、平行线的性质与判定的区别与联系
1、区别:性质是:根据两条直线平行,去证角的相等或互补.
判定是:根据两角相等或互补,去证两条直线平行.
2、联系:它们都是以两条直线被第三条直线所截为前提;
它们的条件和结论是互逆的。
3、总结:已知平行用性质,要证平行用判定 三、应用
(一) 例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
1、分析:
(执果索因)从图直观分析,欲证AD ∥EF ,只需∠A +∠AEF =180°, (由因求果)因为AD ∥BC ,所以∠A +∠B =180°,又∠B =∠AEF , 所以∠A +∠AEF =180°成立.于是得证
2、证明:∵ AD ∥BC (已知)
∴ ∠A+∠B =180°( ) ∵ ∠AEF=∠B (已知) ∴ ∠A +∠AEF =180°(等量代换) ∴ AD ∥EF ( ) 3、思考:在填写两个依据时要注意什么问题?
4、推广:你有其他方法证明这个问题吗?你写出过程。
(二)练一练: 1、如图,已知:AB ∥DE ,∠ABC+∠DEF=180°, 求证:BC ∥EF 。
A B C
D F
E
2、如图,已知:∠1=∠2,求证:∠3+∠4=180o
3、如图,已知:AB ∥CD ,MG 平分∠AMN ,NH 平分∠DNM ,求证:MG ∥NH 。
4、如图,已知:AB ∥CD ,∠A =∠C , 求证:AD ∥
BC 。
四、学习体会:
1、本节课你有哪些收获?你还有哪些疑惑?
2、预习时的疑难解决了吗?
五、自我检测:
1、如图1,AB ∥EF,∠ECD=∠E,则CD ∥AB.说理如下:
因为∠ECD=∠E,
所以CD ∥EF( )
又AB ∥EF,
所以CD ∥AB( ). (1)
2、下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;•③内错角相等,两直
线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是( ) A.① B.②和③ C.④ D.①和④
3、如图,平行光线AB 、DE 照射在平面镜上,经反射得到光线BC 与EF ,已知∠1= ∠2, ∠3= ∠4,则光线BC 与EF 平行吗?为什么?
4、如图,已知B 、E 分别是AC 、DF 上
C
A B C
D
M
G
12
3
45
1A
B
C
D
M
F
G
E
H
N
2
B
E
F E D C
B A
的点,∠1=∠2,∠C=∠D.
(1)∠ABD 与∠C 相等吗?为什么.
(2)∠A 与∠F 相等吗?请说明理由.
5、如图,已知EAB 是直线,AD ∥BC,AD 平分∠EAC,试判定∠B 与∠C 的大小关系,并说明理由.
E D
B
A
一、拓展延伸
1.已知,如图1,∠AOB 纸片沿CD 折叠,若O′C ∥BD,那么O′D 与AC 平行吗?请说明理由.
O '43
21O
D
C
B
A
2、如图,EF ⊥AB ,CD ⊥AB ,∠EFB=∠GDC ,求证:∠AGD=∠ACB 。
3、探索发现: 如图所示,已知AB ∥CD,分别探索下列四个图形中∠P 与∠A,∠C 的关系,•请你从所得的四个关系中任选一个加以说明.(提示:过点P 做平行线)
P
D C
B
A P D
C
B
A
P D
C
B A P
D
C
B A
(1) (2) (3) (4) 变式1:如图所示,已知AB ∥CD,∠ABE=130°,∠CDE=152°,求∠BED 的度数.
A
B C D G
E
F E 21
D C B A
七年级下数学
F
E
D
C B
A 变式2:如图所示,AB∥CD,则∠A+∠E+∠F+∠C等于( )
A.180°
B.360°
C.540°
D.720°
E
D
C
B
A。