人教版七年级下册数学-.平行线教案与教学反思
- 格式:doc
- 大小:1.01 MB
- 文档页数:7
平行线教学目标1.经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念.2.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论.3.会用符号语方表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线.重点:探索和掌握平行公理及其推论.难点:对平行线本质属性的理解,用几何语言描述图形的性质.教学过程一、创设问题情境1.复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?学生回答后,教师把教具中木条b与c重合在一起,转动木条a确认学生的回答.教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗?2.教师演示教具.顺时针转动木条b两圈,让学生思考:把a、b想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?3.教师组织学生交流并形成共识.转动b 时,直线b 与c 的交点从在直线a 上A 点向左边距离A 点很远的点逐步接近A 点,并垂合于A 点,然后交点变为在A 点的右边,逐步远离A 点.继续转动下去,b 与a 的交点就会从A 点的左边又转动A 点的左边……可以想象一定存在一个直线b 的位置,它与直线a 左右两旁都没有交点.二、平行线定义表示法1.结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a 与直线b 不相交的位置,这时直线a 与b 互相平行.换言之,同一平面内,不相交的两条直线叫做平行线.直线a 与b 是平行线,记作“∥”,这里“∥”是平行符号.教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设有交点的两条直线.2.同一平面内,两条直线的位置关系教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系.在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一.即两条直线不相交就是平行,或者不平行就是相交.三、画图、观察、归纳概括平行公理及平行公理推论1.在转动教具木条b 的过程中,有几个位置能使b 与a 平行?cb ac ba C 本问题是学生直觉直线b 绕直线a 外一点B 转动时,有并且只有一个位置使a 与b 平行.2.用直线和三角尺画平行线.已知:直线a,点B,点C.(1)过点B 画直线a 的平行线,能画几条?(2)过点C 画直线a 的平行线,它与过点B 的平行线平行吗?3.通过观察画图、归纳平行公理及推论.(1)由学生对照垂线的第一性质说出画图所得的结论.(2)在学生充分交流后,教师板书.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(3)比较平行公理和垂线的第一条性质.共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的.不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外.4.归纳平行公理推论.(1)学生直观判定过B 点、C 点的a 的平行线b 、c 是互相平行.(2)从直线b 、c 产生的过程说明直线b∥直线c.(3)学生用三角尺与直尺用平推方验证b∥c.(4)师生用数学语言表达这个结论,教师板书.结果两条直线都与第三条直线平行,那么这条直线也互相平行. 结合图形,教师引导学生用符号语言表达平行公理推论: c b a如果b∥a,c∥a,那么b∥c.(5)简单应用.练习:如果多于两条直线,比如三条直线a、b、c与直线L都平行,那么这三条直线互相平行吗?请说明理由.本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范.四、作业:课本P19.7,P20.11.。
七年级数学下册《平行线的性质》教学反思【教学反思】
反思本节课的教学有以下成功之处:
1、这节课是在学生已学习平行线判断方法的基础上进行的,所以我通过创设一个疑问:能不能通过两直线平行,来得到同位角相等呢,自然引入新课,激发学生的思考,进而引导学生进行平行线性质的探索。
2、整个课最突出的环节是平行线性质的得到过程,事先让学生准备好白纸、三角板,在上课时学生通过自主画图进行探索,得到猜想,再通过验证发现的。
即在学生充分活动的基础上,由学生自己发现问题的结论,让学生感受成功的喜悦,增强学习的兴趣和学习的自信心。
在探究“两直线平行,同位角相等”时,要求全体学生参与,体现了新课程理念下的交流与合作。
3、在教学中,设计了知识的拓展环节,加深了学生对平行性质的理解。
4、在练习的设置过程中,从简到难,由简单的平行线性质的应用到平行线性质两步或三步运用,学生容易接受。
这节课存在的问题:
1、在上课过程中,担心学生由于基础差,不能很好的掌握知识,所以新课教学时间过长,学生练习时间短。
2、由于课堂练习时间短,所以学生在灵活运用知识上还有
欠缺,推理过程的书写格式还不够规范。
七年级数学下册《平行线判定》教学反思七年级数学下册《平行线判定》教学反思「篇一」方程是应用广泛的数学工具,它在义务教育阶段的数学课程中占有重要地位!也是代数学的核心之教学反思一!这一章主要讲了三大内容:1:一元一次方程的定义,等式的基本性质。
2:一元一次方程的解法。
3:一元一次方程的应用。
下面我想就这三个方面的教学的得与失进行反思和总结。
一:在一元一次方程的概念教学上。
对"元"和"次"的解释,对整式的理解,大多都是我讲了,学生(xuesheng)的自我建构不深,造成理解不透。
在判别的环节上,自我感觉问题设置太粗糙,学生(xuesheng)不能理解透彻。
以致在后来的《数学天地》的报纸中还要进行进一步的补充说明。
等式的基本性质我也讲得比较粗糙,但学生有小学的基础,掌握情况还比较好二:解方程学生在5年级的时候就开始接触。
学生已有的解方程的经验是以算式的方式即找出被减数,减数,差。
加数,另一个加数,和,被除数,除数,商等哪一个未知进而利用公式来进行解答的。
而现在我们是要深入学习方程,并为以后学习更复杂的方程作铺垫。
所以,我们是在学好等式的基本性质之后,利用等式的基本性质去分母,去括号,移项,化简,系数化为1来解方程,学生能从理论上理解解方程的原理。
在讲解解法时,我们采用一步一个脚印的方法让学生牢牢掌握好一元一次方程的解法,在考试中也表明了学生这一知识点学得比较好三:利用一元一次方程解应用题是数学教学中的一个重点,而对于学生来说却是学习的一个难点。
七年级的学生分析问题、寻找数量关系的能力较差,在一元一次方程的应用这几节课中,我始终把分析题意、寻找数量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。
但学生在学习的过程中,却不能很好地掌握这一要领,会经常出现一些意想不到的错误。
如,数量之间的相等关系找得不清;列方程忽视了解设的步骤等。
5.2.1 平行线一、教学目标【知识与技能】1.了解两条直线的平行关系,掌握有关的符号表示.2.学会用三角尺、量角器画平行线.3.掌握平行公理及其推论,培养空间想象能力.【过程与方法】让学生经历观察、实践、讨论、体会平行公理的过程,发展学生的抽象概括能力.【情感态度与价值观】学生经历观察、动手操作、发现讨论等数学活动,感受数学活动充满探索性与创造性,促进学生乐于探究.二、课型新授课三、课时1课时四、教学重难点【教学重点】平行公理及推论【教学难点】理解平行公理的推论课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.五、教学过程(一)导入新课(出示课件2-4)数学来源于生活,生活中处处有数学,观察下面的图片,你发现了什么?以上的图片都有两条相互平行的直线,这将是我们这节课学习的内容.(二)探索新知1.出示课件6-10,探究平行线的定义及表示教师问:如图,分别将木条a、b与木条c钉在一起,并把它们想象成在同一平面内两端可以无限延伸的三条直线.转动a,直线a 从在c的左侧与直线b相交逐步变为在c的右侧与b相交.想象一下,在这个过程中,有没有直线a与直线b不相交的位置呢?师生一起解答:在木条转动过程中,存在一个直线a与直线b不相交的位置,这时我们说直线a与b互相平行.教师问:平行线在生活中是很常见的,你还能举出其他一些例子学生答:摩托车在平行高速上奔驰、平行铁轨的两边、跑道中的直道等,如下图:总结点拨:(出示课件11)平行线的概念在木条转动过程中,存在直线a与直线b不相交的情形,这时我们说直线a与b互相平行.记作“a∥b”.在同一平面内,不相交的两条直线叫做平行线.教师问:平行线的定义包含哪些意思呢?学生1答:“在同一平面内”是前提条件.学生2答:“不相交”就是说两条直线没有交点.学生3答:平行线指的是“两条直线”而不是两条射线或两条线教师强调:平行线的定义包含三层意思:(1)“在同一平面内”是前提条件;(2)“不相交”就是说两条直线没有交点;(3)平行线指的是“两条直线”而不是两条射线或两条线段.总结归纳:(出示课件12)平行线的表示法:我们通常用“//”表示平行.读作:“AB 平行于CD”读作:“a平行于b ”教师问:同一平面内两条直线的位置关系有哪些?学生1答:平行和相交.学生2答:相交和平行.学生3答:平行和垂直.教师归纳小结:(出示课件13)同一平面内两直线的位置关系:在同一平面内,不重合的两直线的位置关系只有平行与相交两种.考点1:平行线的识别出示课件14:下列说法正确的是( )A.两条不相交的直线一定相互平行B.在同一平面内,两条不平行的直线一定相交C.在同一平面内,两条不相交的线段一定平行D.在同一平面内,两条不相交的射线互相平行师生共同讨论解答如下:解:同一平面内,直线只有平行和相交两种位置关系,选项A没有说明在同一平面内,所以A错误;同一平面内,直线只有平行和相交两种位置关系,所以选项B正确,根据平行线的概念进行判断.线段不相交,延长后不一定不相交,所以选项C错误;射线不平行也可以不相交,选项D错误.故答案为B.答案:B.总结点拨:同一平面内,两条直线的位置关系只有两种:平行和相交.两条线段平行、两条射线平行是指它们所在的直线平行,因此,两条线段不相交不意味着它们所在的直线不相交,也就无法判断它们是否平行.出示课件15,学生自主练习后口答,教师订正.2.出示课件16-17,探究平行线的画法教师问:如何画出平行线呢?师生一起解答:(出示课件16)“推平行线法”:一、放:把三角板或直尺放在直线所在的平面上,与直线相交.二、靠:把另一只三角板或直尺紧靠前一支三角板或直尺的边放上.三、推:推动后一只三角板或直尺到不与直线重合的位置.四、画:沿着后一只尺子边缘画一条直线即可.教师问:已知直线AB和直线外一点P,过点P画一条直线和已知直线AB平行,如何做呢?师生一起解答:(出示课件17)一、放:把三角板或直尺放在直线所在的平面上,与直线相交.二、靠:把另一只三角板或直尺紧靠前一支三角板或直尺的边放上.三、推:推动后一只三角板或直尺到点在直尺或三角板边缘的位置.四、画:沿着后一只尺子边缘画一条直线即可.考点2:按要求作出平行线如图,在△ ABC中,P是AC边上一点.过点P画AB的平行线.(出示课件18)学生独立思考后,师生共同解答.解:如图所示:PD就是所要画的直线.出示课件19,学生自主练习后口答,教师订正.3.出示课件20-21,探究平行公理及其推论教师问:经过点C能画出几条直线?学生答:无数条.教师问:与直线AB平行的直线有几条?学生答:无数条.教师问:经过点C能画出几条直线与直线AB平行?学生答:只有一条.教师问:过点D画一条直线与直线AB平行,与(3)中所画的直线平行吗?学生答:平行.教师问:你能对这些情况进行归纳总结吗?师生一起解答:(出示课件21)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.教师提示:(1)平行公理中强调“直线外一点”,若点在直线上,不可能有平行线;(2)“有且只有”强调这样的直线是存在的,也是唯一的.总结点拨:(出示课件22)平行公理的推论(平行线的传递性):如果两条直线都与第三条直线平行,那么这两条直线也互相平行.几何语言:∵a//c , c//b,∴ a//b(如果两条直线都和第三条直线平行,那么这两条直线也互相平行).考点3:平行公理及其推论的应用下列说法中,正确的是( )(1)过一点,有且只有一条直线与已知直线平行;(2)平行于同一条直线的两条直线互相平行;(3)一条直线的平行线有且只有一条;(4)若a∥b,b∥c,则a∥c.A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)学生独立思考后,师生共同解答.解析:根据平行公理、平行线的性质进行判断.(1)过直线外一点有且只有一条直线与这条直线平行,错误;(2) 平行于同一条直线的两条直线互相平行,正确;(3)过直线外一点与已知直线平行的直线有且只有一条,错误;(4)平行于同一条直线的两条直线互相平行,正确;正确的有2个.故答案为D.答案:D.师生共同归纳:对于平行线公理中,必须是过直线外一点可以作已知直线的平行线,但过直线上一点不能作已知直线的平行线.出示课件24,学生自主练习,教师给出答案.教师:学了前面的知识,接下来做几道练习题看看你掌握的怎么样吧.(三)课堂练习(出示课件25-32)练习课件第25-32页题目,约用时20分钟.(四)课堂小结(出示课件33)(五)课前预习预习下节课(5.2.2第1课时)的相关内容.知道平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.七、课后作业1、教材第12页练习.2、七彩课堂第18-19页第1题.八、板书设计:1.知识梳理平行线⎩⎪⎨⎪⎧概念两条直线的位置关系:平行或相交性质⎩⎪⎨⎪⎧平行公理平行公理的推论2.考点讲解考点1 考点2 考点3九、教学反思:成功之处:这节课的主要内容是 “平行线的定义”,在这节课中我尽可能地把数学问题与实际生活紧密联系起来,让学生体会到数学从生活中来,又到生活中去,感受到数学就在身边,生活离不开数学。
人教版数学七年级下册- 打印版《平行线》教学反思本节课的主要内容是平行线的定义、表示方法、作图,重点是通过作图得出平行公理及其推论。
鉴于学生的特点及教材的特点,本节课主要采用“互动式”的课堂教学模式及“谈话式”的教学方法,启发、诱导、实例探究、讲练结合,重视知识的发生和形成过程,讲评点拨,发展学生的观察力、想象力和思维力,以此实现生生互动、师生互动、学生与教材之间的互动,使学生成为学习的主体。
(一)在师生互动方面,教师注重问题设计,注重引导、点拨及提高性总结。
使学生学中有思、思中有获。
让学生先进行观察、思考、解答。
第一步让学生通过观察及作图发现规律;第二步是让学生对发现的规律进行验证。
实际上是根据不相交的不同情况而得到的规律,引导学生自己去发现、探索、理解,较好地感悟所学的内容,帮助学生在数学语言能力、互助学习和全体学习能力的提高。
(二)在学生与学生的互动上,教师注重活动设计,使学生学中有乐,乐中悟道。
由于本节课主要以观察作图为主,所以为了提高学生的学习兴趣及更好的抓好基础,提高学生的观察能力及数学语言能力,如此这般设计。
(三)在个体与群体的互动方式上,教师注重合作设计,使学生学中有辩,辩中求同。
如本节课中对难点问题:“过直线外一点.....做已知直线的平行线”的教学,让学生思考为什么必须是直线外一点,找个别学生说出自己的想法,然后其它同学补充完成。
学生的主体意识和自主能力不是生来就有的,主要靠教师的激励和主导,才能达到彼此互动。
正是在这一教育思想的指导下,追求学生的认知活动与情感活动的协调发展,有效地唤起学生的主体意识,在和谐、愉快的情境中达到师生互动,生生互动。
互动式教学模式的目的是让教师乐教、会教、善教,促使学生乐学、会学、善学,从而优化课堂教学、提高教学质量,在和谐、愉快的情景中实现教与学的共振。
平行线的性质教学反思本节的亮点:1、复习提问时,采用对学方式让师友互考平行线的判定方法,1分钟后,提问学友。
学生对学的时效性较强。
都想给小组加分。
2、在探究平行线的性质时,让学生画两条平行线被第三条直线所截,观察构成的同位角有什么数量关系?你是怎么得到的?给3分钟小组群学。
学生探究出4种方法:1是用三张纸条摆成两条平行线被第三条直线所截,平移一条平行线与另一条重合,得到同位角相等。
2是通过画平行线观察平移三角板即是使同位角相等的过程。
3是画好图后,用量角器测量同位角,可得两角相等。
4是画好图后,把其中一个同位角剪下放到另一个角上可发现它们相等。
但只演示了前两个方法,后两个没有全班交流。
这两个演示非常形象、具体的展示了平行线的性质:两直线平行,同位角相等。
使学生很容易接受。
在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力。
通过多种方法开阔了学生思维,拓展了思路。
教师又追问:如果两条直线不平行,同位角还相等吗?一名学生板演画出两条相交直线被第三条直线所截构成的同位角是不相等的。
让学生明确性质的前提条件必不可少。
3、先探究出平行线的性质1后,给出两道证明题,(1题如图,已知a∥b,求证:∠2=∠3.2题已知a∥b,求证:∠2+∠4=180°)。
先让学生独学,有了一定想法后,再对学、群学。
但此处对学不明显。
让学生通过证明得到另外两条性质,发展了学生逻辑思维,增强了主动学习的意识,目的性很明确。
4、用一个版块,结合同一个图形,板书课前复习的平行线的判定和通过证明得到的平行线的性质的推理格式,加以对比,让学生观察它们有何不同?通过有形的具体实例,使学生在有了充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同。
判定是由两角相等或互补的数量关系推出两直线平行的位置关系;性质是由两直线平行的位置关系推出两角相等或互补的数量关系。
第2课时 平行线的性质和判定及其综合运用1.掌握平行线的性质与判定的综合运用;(重点、难点)2.体会平行线的性质与判定的区别与联系.一、复习引入问题:平行线的判定与平行线的性质的区别是什么?判定是已知角的关系得平行关系,性质是已知平行关系得角的关系. 两者的条件和结论刚好相反,也就是说平行线的判定与性质是互逆的.二、合作探究探究点一:先用判定再用性质如图,C ,D 是直线AB 上两点,∠1+∠2=180°,DE 平分∠CDF ,EF ∥AB .(1)CE 与DF 平行吗?为什么?(2)若∠DCE =130°,求∠DEF 的度数.解析:(1)由∠1+∠DCE =180°,∠1+∠2=180°,可得∠2=∠DCE ,即可证明CE ∥DF ;(2)由平行线的性质,可得∠CDF =50°.由DE 平分∠CDF ,可得∠CDE =12∠CDF =25°.最后根据“两直线平行,内错角相等”,可得到∠DEF 的度数.解:(1)CE ∥DF .理由如下:∵∠1+∠2=180°,∠1+∠DCE =180°,∴∠2=∠DCE ,∴CE ∥DF ;(2)∵CE ∥DF ,∠DCE =130°,∴∠CDF =180°-∠DCE =180°-130°=50°.∵DE 平分∠CDF ,∴∠CDE =12∠CDF =25°.∵EF ∥AB ,∴∠DEF =∠CDE =25°.方法总结:根据题目中的数量找出各量之间的关系是解这类问题的关键.从角的关系得到直线平行用平行线的判定,从平行线得到角相等或互补的关系用平行线的性质,二者不要混淆.探究点二:先用性质再用判定如图,已知DF∥AC,∠C=∠D,CE与BD有怎样的位置关系?说明理由.解析:由图可知∠ABD和∠ACE是同位角,只要证得同位角相等,则CE∥BD.由平行线的性质结合已知条件,稍作转化即可得到∠BD=∠C.解:CE∥BD.理由如下:∵DF∥AC,∴∠D=∠ABD.∵∠C=∠D,∴∠ABD=∠C,∴CE∥BD.方法总结:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.探究点三:平行线性质与判定中的探究型问题如图,AB∥CD,E,F分别是AB,CD之间的两点,且∠BAF=2∠EAF,∠CDF=2∠EDF.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并说明理由;(2)∠AFD与∠AED之间有怎样数量关系?解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:如图,过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+错误!∠CDF=错误!(∠BAF+∠CDF)=错误!∠AFD,∴∠AED=32∠AFD.方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三板书设计错误!错误!两直线平行本节内容的重点是平行线的性质及判定的综合,直接运用了“∵”“∴”的推理形式,为学生创设了一个学习推理的环境,逐步培养生的逻辑推理能力.因此,这一节课有着承上启下的作用,比较重要.本节内容的难点是理解平行线的性质和判定的区别,并在推理中正确地应用.由于学生还没有学习命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,所以在教学中,应让学生通过应用和讨论,体会到如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果两直线平行,得出角的关系,就是平行线的性质【素材积累】1、冬天,一层薄薄的白雪,像巨大的轻软的羊毛毯子,覆盖摘摘这广漠的荒原上,闪着寒冷的银光。
5.2.1 平行线[教学目标]1.理解平行线的意义,了解同一平面内两条直线的位置关系;2.理解并掌握平行公理及其推论的内容;3.会根据几何语句画图,会用直尺和三角板画平行线;4.了解“三线八角”并能在具体图形中找出同位角、内错角与同旁内角;4.了解平行线在实际生活中的应用,能举例加以说明.[教学重点与难点]1.教学重点:平行线的概念与平行公理;2.教学难点:对平行公理的理解.[教学过程]一、复习提问相交线是如何定义的?二、新课引入平面内两条直线的位置关系除平行外,还有哪些呢?制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念.三、同一平面内两条直线的位置关系1.平行线概念:在同一平面内,不相交的两条直线叫做平行线.直线a与b平行,记作a∥b.(画出图形)2.同一平面内两条直线的位置关系有两种:(1)相交;(2)平行.3.对平行线概念的理解:两个关键:一是“在同一个平面内”(举例说明);二是“不相交”.一个前提:对两条直线而言.4.平行线的画法平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线).四、平行公理1.利用前面的教具,说明“过直线外一点有且只有一条直线与已知直线平行”.2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.提问垂线的性质,并进行比较.3.平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c.五、三线八角由前面的教具演示引出.如图,直线a,b被直线c所截,形成的8个角中,其中同位角有4对,内错角有2对,同旁内角有2对.六、课堂练习1.在同一平面内,两条直线可能的位置关系是.2.在同一平面内,三条直线的交点个数可能是.3.下列说法正确的是()A.经过一点有且只有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行4.若∠α与∠β是同旁内角,且∠α=50°,则∠β的度数是()A.50° B.130° C.50°或130° D.不能确定5.下列命题:(1)长方形的对边所在的直线平行;(2)经过一点可作一条直线与已知直线平行;(3)在同一平面内,如果两条直线不平行,那么这两条直线相交;(4)经过一点可作一条直线与已知直线垂直.其中正确的个数是()A.1 B.2 C.3 D.46.如图,直线AB,CD被DE所截,则∠1和是同位角,∠1和是内错角,∠1和是同旁内角.如果∠5=∠1,那么∠1 ∠3.七、小结让学生独立总结本节内容,叙述本节的概念和结论.八、课后作业1.教材P19第7题;2.画图说明在同一平面内三条直线的位置关系及交点情况.[补充内容]1.试说明,如果两条直线都和第三条直线平行,那么这两条直线也互相平行.2.在同一平面内,两条直线的位置关系仅有两种:相交或平行.但现实空间是立体的,试想一想在空间中,两条直线会有哪些位置关系呢?(用长方体来说明)[教学反思]本节课我们研究了平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
5.2.2 平行线的判定第1课时平行线的判定1.掌握两直线平行的判定方法;(重点)2.了解两直线平行的判定方法的证明过程;3.灵活运用两直线平行的判定方法证明直线平行.(难点)一、情境导入怎样用一个三角板和一把直尺画平行线呢?动手画一画.二、合作探究探究点一:应用同位角相等,判断两直线平行如图,∠1=∠2=55°,∠3等于多少度?直线AB,CD平行吗?说明理由.解析:利用对顶角相等得到∠3=∠2,再由已知∠1=∠2,等量代换得到同位角相等,利用“同位角相等,两直线平行”即可得到AB与CD平行.解:∠3=55°,AB∥CD.理由如下:∵∠3=∠2,∠1=∠2=55°,∴∠1=∠3=55°,∴AB∥CD(同位角相等,两直线平行).方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同位角(“F”型)相等,从而可以应用“同位角相等,两直线平行”.探究点二:应用内错角相等,判断两直线平行如图,已知BC平分∠ACD,且∠1=∠2,AB与CD平行吗?为什么?解析:根据BC平分∠ACD,∠1=∠2,可得∠2=∠BCD,然后利用“内错角相等,两直线平行”即可得到AB∥CD.解:AB∥CD.理由如下:∵BC平分∠ACD,∴∠1=∠BCD.∵∠1=∠2,∴∠2=∠BCD,∴AB∥CD(内错角相等,两直线平行).方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到内错角(“Z”型)相等,从而可以应用“内错角相等,两直线平行”.探究点三:应用同旁内角互补,判断两直线平行如图,∠1=25°,∠B=65°,AB⊥AC.AD与BC有怎样的位置关系?为什么?错误!未找到引用源。
解析:先根据∠1=25°,∠B=65°,AB⊥AC得出∠B与∠BAD的关系,进而得出结论.解:AD∥BC.理由如下:∵∠1=25°,∠B=65°,AB⊥AC,∴∠BAD=90°+25°=115°.∵∠BAD+∠B=115°+65°=180°,∴AD∥BC.方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同旁内角(“U”型)相等,从而可以应用“同旁内角互补,两直线平行”.探究点四:平行线的判定方法的运用【类型一利用平行线判定方法的推理格式判断如图,下列说法错误的是( )A.若a∥b,b∥c,则a∥cB.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥cD.若∠3+∠4=180°,则a∥c解析:根据平行线的判定方法进行推理论证.A选项中,若a∥b,b∥c,则a ∥c ,用了平行公理,正确;B 选项中,若∠1=∠2,则a ∥c ,利用了“内错角相等,两直线平行”,正确;C 选项中,∠3=∠2不能判断b ∥c ,错误;D 选项中,若∠3+∠4=180°,则a ∥c ,利用了“同旁内角互补,两直线平行”,正确.故选C.方法总结:解决此类问题的关键是识别截线和被截线,找准同位角、内错角和同旁内角,从而判断出哪两条直线是平行的.【类型二】 根据平行线的判定方法,加合适的条件错误!未找到引用源。
人教版七年级数学下册《平行线判定》教学反思作为一位到岗不久的教师,我们要在教学中快速成长,通过教学反思可以有效提升自己的教学能力,来参考自己需要的教学反思吧!以下是小编精心整理的人教版七年级数学下册《平行线判定》教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。
人教版七年级数学下册《平行线判定》教学反思1在课程设计中,我注重了以下几个方面:1、突出学生是学习的主体,把问题尽量抛给学生解决。
这节课中,我除了作必要的引导和示范外,问题的发现,解决,练习题的'讲解尽可能让学生自己完成。
2、形式多样,求实务本。
从生活问题引入,发现第一种识别方法,然后解决实际问题;在巩固练习中发现新的问题,激发学生再次探索,形成结论;练习题中注重图形的变化,在图形中为学生设置易错点再及时纠错;用几何画板设计游戏“米奇走迷宫”,在游戏中检验学生运用知识的熟练程度。
而每一个环节的设计都是围绕着需要解决的问题展开,不是单纯地追求形式的变化。
5、有意识地对学生渗透“转化”思想;有意识地将数学学习与生活实际联系起来。
本节课对初一学生而言,本是又一个艰难的起步。
但这一堂课,学生学得比较轻松,课后作业效果也很好,基本达到“轻负荷,高质量”的教学要求。
一堂课下来,遗憾也有不少。
比如一个提问的不到位,上台展示的学生误解了我的意思,竟去书写推证过程(这超出了他们此时的能力范围)。
在这堂课上,部分同学没有展示自己的勇气,一方面与教学内容的难度有关,另一方面也与我没能让他们完全放松下来有关。
人教版七年级数学下册《平行线判定》教学反思2平行线的画法入手,引入平行线的判定方法1。
在此基础上提出:两条直线线被第三条直线所截形成的内错角相等时,是否两直线也平行?同旁内角之间又分别有怎样的关系时两直线平行呢?由此激发学生求知的欲望,也给学生提供了探索所学内容的平台,鼓励学生大胆猜想、积极思考,培养学生主动参与的热情。
在整个教学过程中,充分发挥学生的主体作用,使学生在探索和合作交流的过程中发现知识、巩固知识、形成能力,教师在此过程中扮演了参与者、合作者、引导启迪者的角色。
5.3平行线的性质物以类聚,人以群分。
《易经》原创不容易,【关注】,不迷路!5.3.1平行线的性质【知识与技能】1.掌握平行线的性质定理.2.综合运用平行线的判定及性质进行简单的证明或计算.【过程与方法】1.经历猜想、实践、探究不难得到平行线的性质定理.在此基础上,结合前节的知识,进行简单的证明或计算.2.培养学生逆向思维的能力.【情感态度】培养学生逆向思维的能力.【教学重点】掌握平行线的性质定理,综合运用平行线的判定及性质进行简单的证明或计算.【教学难点】综合运用平行线的判定及性质进行简单的证明或计算.一、情境导入,初步认识问题利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢?二、思考探究,获取新知可将上述问题细化:1.如图,直线a∥b,直线a,b被直线c所截.(1)请填表:(2)如果a与b不平行,∠1与∠2还有以上关系吗?(3)通过(1)(2)的探究,你能得到什么结论?2.如图,直线a∥b,则∠3与∠2相等吗?为什么?∠3与∠4互补吗?思考1.你能根据以上探究,归纳出平行线的三个性质定理吗?2.平行线的性质定理与相应的判定定理是怎样的关系?【归纳结论】1.平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.性质2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.性质3:两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.2.平行线的性质定理与相应的判定定理的已知部分和结论部分正好相反,它们是互逆关系.三、运用新知,深化理解1.如图,已知AB∥CD,AD∥BC,∠A与∠C有怎样的大小关系,为什么?2.已知AB∥CD,直线EF分别交AB,CD于M,N,MP平分∠EMA,NQ平分∠MNC,那么MP∥NQ,为什么?3.将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=_____.第3题图第4题图4.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠CD=_____.5.(江西中考)一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=_____度.【教学说明】题1、2可让学生独立思考完成.题3、4可让同学们分组讨论、交流,有困难时,教师给予提示指导,如何作辅助线.题5与生活实际联系,让学生拓展思维.【答案】1.解:∠A=∠C,理由如下:AB∥CD,∠A与∠D为同旁内角,即∠A+∠D=180°;AD∥BC,∠D与∠C为同旁内角,即∠D+∠C=180°.所以∠A+∠D=∠D+∠C,即∠A∠C.2.解:AB∥CD,∠EMA与∠MNC为同位角,即∠EMA=∠MNC.MP平分∠EMA,NQ平分∠MNC,则∠EMP=12∠EMA,∠MNQ=12∠MNC.所以∠EMP=∠MNQ,则MP∥NQ.3.90°解析:如图,经点F作AB的平行线,则∠1与∠3,∠2与∠4为内错角.据平行线的性质得∠1=∠3,∠2=∠4,所以∠1+∠2=∠3+∠4=∠EFH=90°.4.40°解析:如图,过点作GH∥DE.所以∠DCH+∠CDE=180°(两直线平行,同旁内角互补).因为∠CDE=140°(已知),所以∠DCH=180°-∠CDE=40°.又因为AB∥DE(已知),所以AB∥GH(如果两条直线都与第三条直线平行,那么这两条直线也互相平行.所以∠ABC=∠CH(两直线平行,内错角相等).因为∠ABC=80°(已知),所以∠BCH=80°(等量代换).所以∠BCD=∠BCH-∠DCH=40°.5.270解析:如图,过B作BG∥CD,则∠CBG+∠BCD=180°,∠ABG=90°,于是可得∠ABC+∠BCD=90°+180°=270°.四、师生互动,课堂小结平行线的性质:1.两直线平行,同角相等.2.两直线平行,内错角相等.3.两直线平行,同旁内角互补.在有关图形的计算和推理中,常见一类“折线”“拐角”型问题,解决这类问题的方法是:经过拐点作平行线,沟通已知角和未知角的联系,从而化“未知”为“可知”,这种方法应熟练掌握,如“”“”“”型要引起注意.1.布置作业:从教材“习题5.3”中选取.2.完成练习册中本课时的练习.这节课比较成功的地方是:①对教学的方式进行了一定的尝试,注重学生的分析能力,启发学生用不同方法解决问题.②尽量锻炼学生使用规范性的几何语言.不足的是师生之间的互动配合和默契程度有待加强.【素材积累】指豁出性命,进行激烈的搏斗。
第1课时平行线的判定原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!师者,所以传道,授业,解惑也。
韩愈教学目标1、通过操作、观察、想象、推理、交流等活动推演出平行线的判定方法;2、会运用转化的思想将新问题转化为已知或者已解决的问题,体会数学的转化思维;3、会运用数学语言描述并证明平行线的判定方法,认识证明的必要性和证明过程的严密性,深刻理解直线平行的判定方法;4、灵活应用判定方法进行直线是否平行或者其它结论的推理判断。
重点:理解直线平行的判定方法,并会根据判定方法进行简单的推理应用。
难点:平行线判定方法的灵活运用和其推导过程中的转化思想的认识。
教学过程一、创设情境,引入课题一个长方形工件,如果需要检验它是否符合设计要求,除了度量它的长和宽的尺寸外,还要检查各面的长宽是否分别平行,而这些实际问题如果根据平行线的定义去判断是不可能的,但又如何判断它们是否平行呢?二、目标导学,探索新知目标导学1:平行的判定方法活动1:如图,三根木条相交成∠1,∠2,固定木条b、c,转动木条a , 观察∠1,∠2满足什么条件时直线a与b平行。
【教学备注】【教师提示】引导学生去发现,两直线之所以平行,是因为同位角相等,进而引导学生用文字述叙概括出判定两直线平行的方法。
直线a和b不平行直线a∥b得出结论:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.活动2图中,如果∠1=∠7,能得出AB∥CD吗?写出你的推理过程。
由此你又得出怎样的平行判定?结论:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.活动3下图中,如果∠4+∠7=180°,能得出AB∥CD?结论:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行学习目标2:平行判定方法的灵活应用【教提示】引导学生利用判定1:同位角相等,两直线平行和对顶角相等得出结论。
【教学提示】引导学生利用判定1:同位角相等,两直线平行和邻补角互补得出结论。
《平行线》教学设计及反思《平行线》教学设计及反思教学要求:1.使学生认识平行线,能用三角尺和直尺画平行线和检验两条直线是否平行。
2.使学生初步学会利用画平行线和垂线的方法画长方形和正方形。
3.培养学生关于平行的空间观念。
教具学具准备:投影仪、直尺和三角尺,一张纸和两根铁丝,长方体;学生每人准备直尺、三角尺、一张白纸和两根铁丝。
教学过程:一、复习引新1.下面哪几组的直线是互相垂直的?(投影显示)指出:在这里的相交直线里,有两组直线相交成直角,所以是互相垂直的。
2.引入新课。
在同一平面内,两条直线除了像上面这样有相交的关系之外,还有不相交的情况。
我们今天就研究两条不相交的直线的关系,这就是平行线。
(板书课题)二、教学新课1.认识平行线。
(1)在投影仪上出示画的长方形。
老师把长方形的两条长边分别向相反方向延长,成为两条直线。
请同学们看一看,这两条直线会相交吗?指出:长方形两条长边延长后,这两条直线不会相交。
请同学们打开练习本看一看,(老师出示练习本说明)如果延长练习本上的两条横线,得到的两条直线会相交吗?指出:练习本上横格线所在的两条直线也不会相交。
追问:长方形两条对边、练习本两条横格线所在的两条直线,都有怎样的特点?请同学们看一看第120页上的三组直线,哪个图中的两条直线不相交呢?(注意以“直线”的概念说明第二组是相交的)指出:第三组的两条直线是不相交的。
(2)提问:我们刚才看到的,长方形对边延长成的直线、横格线所在的两条直线、书上第三组图中的两条直线,都有什么共同的特点?指出:它们都是不相交的两条直线。
(板书:不相交的两条直线)追问:再来看一看,长方形对边延长成的直线在同一个平面内吗?(用手势在黑板上表示)练习本横格线所在的两条直线和书上第三组中的两条直线呢?(用手势表示)指出:这里都是同一平面内不相交的两条直线。
(板书:在同一平面内)提问:现在你能说出上面每一组的两条直线是怎样的两条直线吗?小结:在同一平面内不相交的两条直线,叫做平行线。
教案七年级下册平行线的课后反思教学目标:1. 让学生理解平行线的概念和性质。
2. 培养学生的观察、分析和推理能力。
3. 引导学生进行自我反思,提高学习效率。
教学内容:1. 平行线的定义和性质。
2. 生活中的平行线实例。
3. 平行线习题的解答与反思。
教学过程:第一阶段:导入利用PPT展示生活中常见的平行线实例,如铁轨、斑马线等,引导学生观察并提问:“你们在生活中还见过哪些平行线的例子?”第二阶段:习题解答分发习题,要求学生在规定时间内完成。
学生完成后,教师挑选几道典型题目进行讲解,引导学生注意解题方法和技巧。
第三阶段:课后反思每组派代表分享反思结果,其他小组进行评价和补充。
教学活动:活动一:观察生活中的平行线学生分组,每组寻找生活中的平行线实例,并拍照记录。
每组选择一张照片进行展示,并解释为什么这些线是平行的。
活动二:平行线习题竞赛分发习题,要求学生在规定时间内完成。
完成后,教师挑选几道典型题目进行讲解,引导学生注意解题方法和技巧。
活动三:课后反思分享会每组派代表分享反思结果,其他小组进行评价和补充。
教学评价:通过观察学生的课堂表现和作业完成情况,评价学生对平行线概念和性质的理解程度。
通过课后反思分享会,评价学生的自我反思能力和团队合作能力。
教案七年级下册比例线段的课后反思教学目标:1. 让学生理解比例线段的概念和性质。
2. 培养学生的观察、分析和推理能力。
3. 引导学生进行自我反思,提高学习效率。
教学内容:1. 比例线段的定义和性质。
2. 生活中的比例线段实例。
3. 比例线段习题的解答与反思。
教学过程:第一阶段:导入利用PPT展示生活中常见的比例线段实例,如建筑设计中的比例关系、音乐乐谱中的音符间隔等,引导学生观察并提问:“你们在生活中还见过哪些比例线段的例子?”第二阶段:习题解答分发习题,要求学生在规定时间内完成。
学生完成后,教师挑选几道典型题目进行讲解,引导学生注意解题方法和技巧。
第三阶段:课后反思每组派代表分享反思结果,其他小组进行评价和补充。
《平行线的性质》教学反思一、学生情况分析:学生已经学习了平行线的定义、平行公理及推论,对相应的知识有了一定的了解,但教学中要注重几何语言、表达式的规范性。
教学中我采用逐步引导、小组讨论、互相合作的学习方式,调动学生学习的积极性,使不同层次的学生在学习上获得成功的体验。
二、教学目标:1、知识目标:①学生理解平行线的性质②会利用平行线的性质解决简单的问题2、能力目标:①经历探索直线平行的性质的过程,掌握平行线的三条性质,②能用它们进行简单的推理和计算3、情感态度目标:经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。
激发学生乐于探究的热情4、教学重点:探索并掌握平行线的性质5、教学难点:能区分平行线的性质和判定三、教学反思:1、这节课我比较满意的是:①对教学的方式进行了一定的尝试,注重学生的自己分析,启发学生用不同方法解决问题。
②尽量有意识地锻炼学生使用规范性的几何语言。
2、我觉得不足的地方有:①自身对课程内容的讲解时缺乏灵活性;②逻辑语言的表述有时还不够明确,引导学生时,语言不够到位;③师生之间的互动配合默契程度还需加强;课后评定(王老师首先不要紧张,放松点,教学方式有突破,但推理证明的能力还要加强,学生的课堂练习题字号小投影讲解不够清楚,学生展示要发现其亮点,并给予及时鼓励表扬。
师生之间的互动热情要高,思路明确,但讲授过程中表述给学生的内容结构要清晰。
在课程设计中,解决问题的灵活程度还要加强,利用预案加强学生的学习效果。
不要因为两节课连堂就忽略小结,要节节有小结。
)。
5.2.2平行线的判定第2课时一、教学目标【知识与技能】1.进一步掌握平行线的判定方法,并会运用平行线的判定解决问题.2.掌握垂直于同一条直线的两条直线互相平行.3.经历例题的分析过程,从中体会转化的思想和分析问题的方法,进一步培养推理能力.【过程与方法】通过学生自学、讨论、教师点拔完成本节内容。
培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力。
【情感态度与价值观】培养学生自学能力,增强学生合作意识和勇于探索的精神。
二、课型新授课三、课时第2课时共2课时四、教学重难点【教学重点】1.直线平行条件的应用;2.平行线的判定方法(3),并能准确运用证明两条直线平行.【教学难点】选取适当判定直线平行的方法进行说理.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)在铺设铁轨时,两条直轨必须是互相平行的,如图:已经知道,∠2是直角,那么再度量图中哪个角,就可以判定两条直轨是否平行,为什么?(二)探索新知1.出示课件4-9,探究平行线判定方法的灵活应用考点1:平行线判定方法的灵活应用例1:如图,直线EF与∠ABC的一边BA相交于D,∠B+∠ADE=180°,EF与BC平行吗?为什么?(出示课件4)师生共同讨论解答如下:解: EF//BC. 理由如下:∵∠B+ ∠1=180°(已知),∠1= ∠2(对顶角相等),∴∠B+ ∠2=180°(等量代换).∴EF∥BC(同旁内角互补,两直线平行).出示课件5,学生自主练习后口答,教师订正.例2:已知:如图,ABC、CDE都是直线,且∠1=∠2,∠1=∠C,求证:AC∥FD.学生独立思考后,师生共同解答.证明:∵∠1 = ∠2,∠1 = ∠C (已知),∴∠2=∠C (等量代换).∴AC∥FD (同位角相等,两直线平行).出示课件7,学生自主练习后口答,教师订正.例3:已知:如图,四边形ABCD中,AC平分∠BAD,∠1=∠2,AB与CD平行吗?为什么?(出示课件8)学生独立思考后,师生共同解答.解:AB∥CD .理由如下:∵ AC平分∠BAD,∴ ∠1=∠3 .∵∠1=∠2,∵ ∠2和∠3是内错角,∴ AB∥CD(内错角相等,两直线平行).出示课件9,学生自主练习后口答,教师订正.2.出示课件10-13,探究在同一平面内,垂直于同一直线的两直线平行。
《平行线的判定》教学反思
通过上一节课的学习,学生对平行线的意义已有了较深的认识,但这种认识仅是直观的、感性的认识,而要来说明两直线平行,只有两个途径:平行线的定义及平行公理的推论,其中平行公理的推论对条件要求较强,要有三条平行线,且其中的两条分别与第三条平行。
如果用平行线定义更难以说明两条直线没有交点,因而,需要通过其他途径寻找判定两条直线平行的更普遍的方法。
本节的主要内容是平行线的一个判定公理和两个判定定理,先由画平行线的过程得出,画平行线实际上是画相等的同位角。
由此得到平行线的判定公理,再以判定公理为基础推导出两个判定定理。
在教学过程中,我的课堂亮点有:
1.学生书写和叙述推理过程很好,有基础;
2.完成了教学目标;
3.课堂引入直接用黑板上的三线八角;
4.复习巩固引出了平行公理;
5.一题多用,学生活动多;
6.几何语言的应用,学生书写很规范;
不足点有:
1.板书用了表格就更好了;
2.课堂小结太笼统;
3.中间学生的证明过程出错了,老师没有及时指正;
4.老师说得多,学生思考时间少;
5.导学案的应用,应该让学生更加思考;
6.重点是三线八角中的哪两条直线被第三条直线所截的。
5.3 平行线的性质原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!灵师不挂怀,冒涉道转延。
——韩愈《送灵师》5.3.1 平行线的性质第1课时平行线的性质1.理解平行线的性质;(重点)2.能运用平行线的性质进行推理证明.(重点、难点)一、情境导入窗户内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?二、合作探究探究点一:平行线的性质如图,AB∥CD,BE∥DF,∠B=65°,求∠D的度数.解析:利用“两直线平行,内错角相等,同旁内角互补”的性质可求出结论.解:∵AB∥CD,∴∠BED=∠B=65°.∵BE∥FD,∴∠BED+∠D=180°,∴∠D=180°-∠BED=180°-65°=115°.方法总结:已知平行线求角度,应根据平行线的性质得出同位角相等,内错角相等,同旁内角互补.再结合已知条件进行转化.探究点二:平行线与角平分线的综合运用如图,DB∥FG∥EC,∠ACE=36°,AP平分∠BAC,∠PAG=12°,求∠ABD的度数.解析:先利用GF∥CE,易求∠CAG,而∠PAG=12°,可求得∠PAC=48°.由AP是∠BAC的角平分线,可求得∠BAP=48°,从而可求得∠BAG=∠BAP+∠PAG=48°+12°=60°,即可求得∠ABD的度数.解:∵FG∥EC,∴∠CAG=∠ACE=36°.∴∠PAC=∠CAG+∠PAG=36°+12°=48°.∵AP平分∠BAC,∴∠BAP=∠PAC=48°.∵DB∥FG,∴∠ABD=∠BAG=∠BAP+∠PAG=48°+12°=60°.方法总结:(1)利用平行线的性质可以得出角之间的相等或互补关系,利用角平线的定义,可以得出角之间的倍分关系;(2)求角的度数,可把一个角转化为一个与它相等的角或转化为已知角的和差.探究点三:平行线性质的探究应用如图,已知∠ABC.请你再画一个∠DEF,使DE∥AB,EF∥BC,且DE交BC边与点P.探究:∠ABC与∠DEF有怎样的数量关系?并说明理由.解析:先根据题意画出图形,再根据平行线的性质进行解答即可.解:∠ABC与∠DEF的数量关是相等或互补.理由如下:如图①,因为DE∥AB,所以∠ABC=∠DPC.又因为EF∥BC,所以∠DEF=∠DPC,所以∠ABC=∠DEF.如图②,因为DE∥AB,所以∠ABC+∠DPB=180°.又因为EF∥BC,所以∠DEF =∠DPB,所以∠ABC+∠DEF=180°.故∠ABC与∠DEF的数量关系是相等或互补.方法总结画出满足条件的图形时,必须注意分情况讨论,即把所有满足条件的图形都要作出来.三、板书设计错误!错误!错误!错误!未指定书签。
5.2.2平行线的判定知己知彼,百战不殆。
《孙子兵法·谋攻》原创不容易,【关注】店铺,不迷路!【知识与技能】1.平行线的三个判定定理的理解.2.平行线的三个判定定理的简单运用.【过程与方法】经历实验过程得到判定方法1,再结合前面已学的知识推导出判定方法2和判定方法3.【情感态度】经历推导过程,初步形成严密的逻辑思维习惯.【教学重点】平行线的三个判定定理的理解与简单运用.【教学难点】推理的基本格式及方法.一、情境导入,初步认识问题1用实际操作或多媒体课件演示画平行线的过程,想一想,在这个过程中,∠1与∠2的大小关系怎样,∠1与∠2是什么关系的角?问题1问题2问题2如图,如果,∠2=∠3,能否得到a∥b;如果∠2+∠4=180°,能否得到a∥b?【教学说明】对问题1,可由教师亲自操作,也可事先制好课件进行放映,不难得到判定方法1.对问题2,可由已知条件,结合前面学过的知识,利用“同位角相等,两条直线平行”得到a∥b,从而得到判定方法2和判定方法3.二、思考探究,获取新知思考遇到一个新的问题时,常常怎样去解决呢?【归纳结论】1.平行线的判定:判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单的说,就是同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等.那么这两条直线平行,简单地说,就是内错角相等,两直线平行.判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简单地说,就是同旁内角互补,两直线平行.2.遇到一个新问题时,常常把它转化为已知的(或已解决的)问题去解决.三、运用新知,深化理解1.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?2.如图,根据下列条件,可推得哪两条直线平行,并说明根据.(1)∠ABD=∠CDB;(2)∠CBA+∠BAD=180°;(3)∠CAD=ACB.3.如图,写出所有能推得直线AB∥CD的条件.【教学说明】问题1、2可以让同学们抢答来完成.问题3可让学生充分讨论,一般来说,要找到几个条件不难,但要找出所有的条件却并非易事,本题旨在考查学生的逆向思维能力.【答案】略.四、师生互动,课堂小结平线的判定方法:1.平行于同一条直线的两条直线互相平行.2.同位角相等,两直线平行.3.内错角相等,两直线平行.4.同旁内角互补,两直线平行.5.同一平面内,垂直于同一条直线的两条直线互相平行.1.布置作业:从教材“习题5.2”中选取.2.完成练习册中本课时的练习.本节课通过“问题情境—合作探究—建立模型—求解—应用”的基本过程,使学生体会到了数学知识之间的内在联系;通过对问题的探究,获得了一些研究问题的方法和经验;发展了思维能力,加深了对相关知识的理解,通过获得成功的体和克服困难的经历,增强了学生学习数学应用数学的自信心.【素材积累】指豁出性命,进行激烈的搏斗。
5.2 平行线及其判定古之学者必严其师,师严然后道尊。
欧阳修铁山学校何逸春5.2.1 平行线【知识与技能】1.掌握平行线的概念.2.理解平行公理及其推论.【过程与方法】1.通过实验,体验两条直线的平行关系,进而掌握平行线的概念.2.通过画图,体验过直线外一点画已知直线直线平行线的情形,从而总结出平行公理进而体验并理解平行公理的推论.【情感态度】经历实验、画图、观察归纳的过程,体会数学学习的方法与技巧.【教学重点】平行公理及其推论的理解.【教学难点】平行公理及其推论的归纳、理解与运用.一、情境导入,初步认识问题1 教具:如图,分别将木条a,b与木条c钉在一起,并将它们想象成在同一平面内两端成无限延伸的三条直线,将b,c不动,转动a,直线a从在c的左侧与直线b相交逐步变为在c的右侧与b相交,相象一下,在这个过程中,有没有直线a与直线b不相交的位置呢?问题2 如图,已知直线a和它之外两点B、C,过B、C作直线b、c与直线a平行.过点B可作几条直线与直线a平行?过点C可作几条直线与直线a平行?直线b与c平行吗?【教学说明】对问题1,可由教师演示,也可制成多媒体课件进行放映,不难得出平行的定义.对问题2,可先由学生独立完成,然后再互相交流,最后将学生的成果进行归纳总结.二、思考探究,获取新知思考 1.在同一平面内,两条直线的位置关系有几种?2.平行公理与垂直公理非常类似,请问已知条件中的点的位置有什么不同之处,为什么?【归纳结论】1.平行线的定义:同一平面内,不相交的两条直线叫做平行线.2.平行公理及其推论:(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(2)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.3.在同一平面内,两条直线的位置关系只有两种:(1)平行;(2)相交.[注意:这里不考察重合的情况或将重合理解为同一条直线.]4.平行公理中,已知条件中的点必须在已知直线外,而垂直公理中,已知条件中的点可在直线外,也可在直线上,这是因为如果点在已知直线上,那么经过这一点不可能画已知直线的平行线,但可以画已知直线的垂线.5.在理解平行的定义时,必须注意以下两点:(1)必须在同一平面内;(2必须是不相交的直线.三、运用新知,深化理解1.如图,是一个正三棱柱,请找出图中所有的平行线2.如果直线a1∥l,直线a2∥l,……,an∥l(n为正整数)则a1,a2,……,an的位置关系如何?【教学说明】本环节可让同学们分组完成,再进行交流.【答案】略.四、师生互动,课堂小结平行公理及其推论.1.布置作业:从教材“习题5.2”中选取.2.完成练习册中本课时的练习.本节课的重点是平行线的概念和平行公理及其推论.在本课中学生动手、动脑,独立思考,完全参与到知识的探索中,是知识的探索者,教师也不再是满堂灌式的教学,而是学习的引导者,符合新的课堂理念.【素材积累】1、人生只有创造才能前进;只有适应才能生存。
5.2.1 平行线原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!玉壶存冰心,朱笔写师魂。
——冰心《冰心》
教学任务分析
教学流程安排
教学过程设计
一、创设情境,探究平行线的概念
活动1
观察,分别将木条a、b、c钉在一起,并把它们想象成两端可以无限延伸的三条直线.转动直线a,直线a从在直线c的下侧与直线b相交逐步变为在上侧与b相交,想象一下在这个过程中,有没有直线a与直线b不相交的位置?
学生活动设计:充分发挥学生的想象能力,把三个木条想象成三条直线,想象在转动过程中不相交的情况,进而描述两直线平行的定义.
教师活动设计:在学生想象、描述的基础上引导学生进行归纳.
在同一平面内,若直线a和b不相交,那么就称直线a和b平行,记作a//b.活动2
你能举出生活中平行的例子吗?
学生活动设计:学生进行想象,在生活中可以看做平行的生活实例,可能举出下列例子:
滑雪板、正方体中的一些棱、运动跑道,等等.
教师活动计:本环节主要关注学生的举例,从举例中巩固学生对平行线的认识和理解.
二、分组探究,探索平行公理和推论,培养学生的探究能力、合作、交流能力.
活动3
(1)在活动木条a的过程中,有几个位置使得a与b平行;
(2)如图,经过点B画直线a的平行线,你能有几种方法?可以画几条?
经过点C呢?
C
B
a
(3)经过上述问题的解决,你能得到什么结论?
学生活动设计:
学生自主探索,动手操作,观察猜想,对于问题(1),可以发现在木条在转动的过程中,只有一个位置使得a与b平行;对于问题(2),可以考虑用小学中
学过的画平行线的方——使用三角板和直尺,如图所示:
对于问题(3),经过画图操作,观察归纳,可以发现一个基本事实(平行公理):
经过直线外一点,有且只有一条直线与已知直线平行.
教师活动设计:
教师在本环节主要关注学生:
(1)学生参与讨论的程度;
(2)学生遇到问题时,对待问题的态度;
(3)学生进行总结归纳时,语言的准确性和简洁性.
主要培养学生的动手能力、观察能力、合情推理的能力与探究能力、合作、交流能力等.
动4
问题:
如图,若a//b,b//c,你能得到a//c吗?说明你的理由,从中你能得到什么?
a
b
c
学生活动设计:学生独立思考,完成结论的探索和理由的说明,然后进行交流,在交流中发现问题,解决问题.
教师活动设计:引导学生用几何语言进行说明,适时引入反证法(仅仅介绍,
让学生认识到用这样的方法可以说明道理,而不要求会用这样的方法).
假设a 与c 不平行,则可以设a 与c 相交于点O 又a //b ,b //c 于是过O 点有两条直线a 和c 都与b 平行,于是和平行公理矛盾,所以假设不正确,因此a 和c 一定平行.
在此环节主要培养学生的逻辑推理能力.
三、拓展创新、应用提高,培养学生的应用意识,解决问题的能力. 活动5
问题探究
问题1:如下图,AD ∥BC ,在AB 上取一点M ,过M 画MN ∥BC 交CD 于N ,并说明MN 与AD 的位置关系,为什么?
D C B
学生活动设计:
学生动手操,观察猜测,得出平行的结论,然后对平行的原因进行交流,发现AD //BC ,MN //DC ,根据平行于同一直线的两直线平行,可以得到AD //MN .
教师活动设计:主要关注学生说理过程中语言的准确性,若学生感觉到困难可以适当提醒.
〔解答〕略.
问题2:在同一平面内有4条直线,问可以把这个平面分成几部分?
学生活动设计:分组探究,小组讨论,发现问题,小组讨论解决,在学生研究结束后,每小组派一名代表进行交流,交流完成后完善自己的结果.
学生经过探究可以发现:
(1) 当4条直线两两平行时,可以把平面分成5部分;
d c
b
a
(2) 当4条直线中只有三条两两平行时,可以把平面分成8部分;
c
b
a
(3) 当4条直线仅有两条互相平行时,可以把整个平面分成9部分或10部分;
d
a
a
(4) 当4条直线中其中两条平行,另两条也平行时,可以把平面分成9部分;
d
c
b
a
(5) 当4条直线任意两条都不平行时,可以把平面分成8或10或11部分;
d
c
b
a
d
c
b
a
d
c
b
a
教师活动设计:
本环节主要考察学生探究问题的能力,同时培养学生的合作与交流意识,在探究的过程中教师可以适当引导学生按一定的条件分类,比如按平行线的条数分或按交点的个数分类,让学生养成有序考虑问题的习惯.
〔解答〕略
四、小结与作业.
小结:
1.平行线的定义;
2.平行公理以及推论;
3.平行公理及推论的应用.
作业:
4.探究同一平面内n条直线最多可以把平面分成几部分;
5.习题5.2第6、7、9题.
【素材积累】
你可以选择这样的三心二意:信心、恒心、决心;创意、乐意。
摘一个崇高的目的支持下,不停地工作,即使慢,也一定会获得成功。
大部分人往往对已经失去的机遇捶胸顿足,却对眼前的机遇熟视无睹。
这个世界不符合所有人的梦想、只是有人学会遗忘,有人却一直坚持。
如果你盼望明天,那必须先脚踏现实;如果你希望辉煌,那么你须脚不停步。