(完整版)概率论第六章答案
- 格式:doc
- 大小:262.01 KB
- 文档页数:5
第六章参数估计6.1 点估计问题概述习题1总体X在区间[0,θ]上均匀分布,X1,X2,⋯,Xn是它的样本,则下列估计量θ̂是θ的一致估计是().(A)θ̂=Xn; (B)θ̂=2Xn;(C)θ̂=X¯=1n∑i=1nXi; (D)θ̂=Max{X1,X2,⋯,Xn}.解答:应选(D).由一致估计的定义,对任意ɛ>0,P(∣Max{X1,X2,⋯,Xn}-θ∣<ɛ)=P(-ɛ+θ<Max{X1,X2,⋯,Xn}<ɛ+θ)=F(ɛ+θ)-F(-ɛ+θ).因为FX(x)={0,x<0xθ,0≤x≤θ1,x>θ,及F(x)=FMax{X1,X2,⋯,Xn}(x)=FX1(x)FX2(x)⋯FXn(x),所以F(ɛ+θ)=1, F(-ɛ+θ)=P(Max{X1,X2,⋯,Xn}<-ɛ+θ)=(1-xθ)n,故P(∣Max{X1,X2,⋯,Xn}-θ∣<ɛ)=1-(1-xθ)n→1(n→+∞).习题2设σ是总体X的标准差,X1,X2,⋯,Xn是它的样本,则样本标准差S是总体标准差σ的().(A)矩估计量; (B)最大似然估计量; (C)无偏估计量; (D)相合估计量.解答:应选(D).因为,总体标准差σ的矩估计量和最大似然估计量都是未修正的样本标准差;样本方差是总体方差的无偏估计,但是样本标准差不是总体标准差的无偏估计.可见,样本标准差S是总体标准差σ的相合估计量.习题3设总体X的数学期望为μ,X1,X2,⋯,Xn是来自X的样本,a1,a2,⋯,an是任意常数,验证(∑i=1naiXi)/∑i=1nai(∑i=1nai≠0)是μ的无偏估计量.解答:E(X)=μ,E(∑i=1naiXi∑i=1nai)=1∑i=1nai⋅∑i=1naiE(Xi)(E(Xi)=E(X)=μ)=μ∑i=1nai∑i=1n=μ,综上所证,可知∑i=1naiXi∑i=1nai是μ的无偏估计量.习题4设θ̂是参数θ的无偏估计,且有D(θ̂)>0, 试证θ̂2=(θ̂)2不是θ2的无偏估计.解答:因为D(θ̂)=E(θ̂2)-[E(θ̂)]2, 所以E(θ̂2)=D(θ̂)+[E(θ̂)]2=θ2+D(θ̂)>θ2,故(θ̂)2不是θ2的无偏估计.习题5设X1,X2,⋯,Xn是来自参数为λ的泊松分布的简单随机样本,试求λ2的无偏估计量.解答:因X服从参数为λ的泊松分布,故D(X)=λ,E(X2)=D(X)+[E(X)]2=λ+λ2=E(X)+λ2,于是E(X2)-E(X)=λ2,即E(X2-X)=λ2.用样本矩A2=1n∑i=1nXi2,A1=X¯代替相应的总体矩E(X2),E(X), 便得λ2的无偏估计量λ̂2=A2-A1=1n∑i=1nXi2-X¯.习题6设X1,X2,⋯,Xn为来自参数为n,p的二项分布总体,试求p2的无偏估计量.解答:因总体X∼b(n,p), 故E(X)=np,E(X2)=D(X)+[E(X)]2=np(1-p)+n2p2=np+n(n-1)p2=E(X)+n(n-1)p2,E(X2)-E(X)n(-1)=E[1n(n-1)(X2-X)]=p2,于是,用样本矩A2,A1分别代替相应的总体矩E(X2),E(X),便得p2的无偏估计量p̂2=A2-A1n(n-1)=1n2(n-1)∑i=1n(Xi2-Xi).习题7设总体X服从均值为θ的指数分布,其概率密度为f(x;θ)={1θe-xθ,x>00,x≤0,其中参数θ>0未知. 又设X1,X2,⋯,Xn是来自该总体的样本,试证:X¯和n(min(X1,X2,⋯,Xn))都是θ的无偏估计量,并比较哪个更有效.解答:因为E(X)=θ,而E(X¯)=E(X),所以E(X¯)=θ,X¯是θ的无偏估计量.设Z=min(X1,X2,⋯,Xn),因为FX(x)={0,x≤01-e-xθ,x>0,FZ(x)=1-[1-FX(x)]n={1-e-nxθ,x>00,x≤0,所以fZ(x)={nθe-nxθ,x>00,x≤0,这是参数为nθ的指数分布,故知E(Z)=θn,而E(nZ)=E[n(min(X1,X2,⋯,Xn)]=θ,所以nZ也是θ的无偏估计.现比较它们的方差大小.由于D(X)=θ2,故D(X¯)=θ2n.又由于D(Z)=(θn)2,故有D(nZ)=n2D(Z)=n2⋅θ2n2=θ2.当n>1时,D(nZ)>D(X¯),故X¯较nZ有效.习题8设总体X服从正态分布N(m,1),X1,X2是总体X的子样,试验证m1̂=23X1+13X2, m2̂=14X1+34X2, m3̂=12X1+12X2,都是m的无偏估计量;并问哪一个估计量的方差最小?解答:因为X服从N(m,1), 有E(Xi)=m,D(Xi)=1(i=1,2),得E(m1̂)=E(23X1+13X2)=23E(X1)+13E(X2)=23m+13m=m,D(m1̂)=D(23X1+13X2)=49D(X1)+19D(X2)=49+19=59,同理可得:E(m2̂)=m,D(m2̂)=58, E(m3̂)=m,D(m3̂)=12.所以,m1̂,m2̂,m3̂都是m的无偏估计量,并且在m1̂,m2̂,m3̂中,以m3̂的方差为最小.习题9设有k台仪器. 已知用第i台仪器测量时,测定值总体的标准差为σi(i=1,2,⋯,k), 用这些仪器独立地对某一物理量θ各观察一次,分别得到X1,X2,⋯,Xk. 设仪器都没有系统误差,即E(Xi)=θ(i=1,2,⋯,k), 问a1,a2,⋯,ak应取何值,方能使用θ̂=∑i=1kaiXi估计θ时,θ̂是无偏的,并且D(θ̂)最小?解答:因为E(Xi)=θ(i=1,2,⋯,k), 故E(θ̂)=E(∑i=1kaiXi)=∑i=1kaiE(Xi)=θ∑i=1kai,欲使E(θ̂)=θ,则要∑i=1kai=1.因此,当∑i=1kai=1时,θ̂=∑i=1kaiXi为θ的无偏估计, D(θ̂)=∑i=1kai2σi2, 要在∑i=1kai=1的条件下D(θ̂)最小,采用拉格朗日乘数法.令L(a1,a2,⋯,ak)=D(θ̂)+λ(1-∑i=1kai)=∑i=1kai2σi2+λ(1-∑i=1kai),{∂L∂ai=0,i=1,2,⋯,k∑i=1kai=1,即2aiσi2-λ=0,ai=λ2i2;又因∑i=1kai=1,所以λ∑i=1k12σi2=1,记∑i=1k1σi2=1σ02,所以λ=2σ02,于是ai=σ02σi2 (i=1,2,⋯,k),故当ai=σ02σi2(i=1,2,⋯,k)时,θ̂=∑i=1kaiXi是θ的无偏估计,且方差最小.习题6.2 点估计的常用方法习题1设X1,X2,⋯,Xn为总体的一个样本,x1,x2,⋯,xn为一相应的样本值,求下述各总体的密度函数或分布律中的未知参数的矩估计量和估计值及最大似然估计量.(1)f(x)={θcθx-(θ+1),x>c0,其它, 其中c>0为已知,θ>1,θ为未知参数.(2)f(x)={θxθ-1,0≤x≤10,其它, 其中θ>0,θ为未知参数.(3)P{X=x}=(mx)px(1-p)m-x, 其中x=0,1,2,⋯,m,0<p<1,p为未知参数.解答:(1)E(X)=∫c+∞x⋅θcθx-(θ+1)dx=θcθ∫c+∞x-θdx=θcθ-1,解出θ=E(X)E(X)-c,令X¯=E(X),于是θ̂=X¯X¯-c为矩估计量,θ的矩估计值为θ̂=x¯x¯-c,其中x¯=1n∑i=1nxi.另外,似然函数为L(θ)=∏i=1nf(xi;θ)=θncnθ(∏i=1nxi)-(θ+1),xi>c,对数似然函数为lnL(θ)=nlnθ+nθlnc-(θ+1)∑i=1nlnxi,对lnL(θ)求导,并令其为零,得dlnL(θ)dθ=nθ+nlnc-∑i=1nlnxi=0,解方程得θ=n∑i=1nlnxi-nlnc,故参数的最大似然估计量为θ̂=n∑i=1nlnXi-nlnc.(2)E(X)=∫01x⋅θxθ-1dx=θθ+1,以X¯作为E(X)的矩估计,则θ的矩估计由X¯=θθ+1解出,得θ̂=(X¯1-X¯)2,θ的矩估计值为θ̂=(x¯1-x¯)2,其中x¯=1n∑i=1nxi为样本均值的观测值.另外,似然函数为L(θ)=∏i=1nf(xi;θ)=θn/2(∏i=1nxi)θ-1,0≤xi≤1,对数似然函数为lnL(θ)=n2lnθ+(θ-1)∑i=1nlnxi,对lnL(θ)求导,并令其为零,得dlnL(θ)dθ=n2θ+12θ∑i=1nlnxi=0,解方程得θ=(-n∑i=1nlnxi)2,故参数的最大似然估计量为θ̂=(n∑i=1nlnXi)2.(3)X∼b(m,p),E(X)=mp,以X¯作为E(X)的矩估计,即X¯=E(X),则参数p的矩估计为p̂=1mX¯=1m⋅1n∑i=1nXi,p的矩估计值为p̂=1mx¯=1m⋅1n∑i=1nxi.另外,似然函数为L(θ)=∏i=1nf(xi;θ)=(∏i=1nCmxi)p∑i=1nxi(1-p)∑i=1n(m-xi),xi=0,1,⋯,m,对数似然函数为lnL(θ)=∑i=1nlnCmxi+(∑i=1nxi)lnp+(∑i=1n(m-xi))ln(1-p),对lnL(θ)求导,并令其为零,得dlnL(θ)dθ=1p∑i=1nxi-11-p∑i=1n(m-xi)=0,解方程得p=1mn∑i=1nxi,故参数的最大似然估计量为p̂=1mn∑i=1nXi=1mX¯.习题2设总体X服从均匀分布U[0,θ],它的密度函数为f(x;θ)={1θ,0≤x≤θ0,其它,(1)求未知参数θ的矩估计量;(2)当样本观察值为0.3,0.8,0.27,0.35,0.62,0.55时,求θ的矩估计值.解答:(1)因为E(X)=∫-∞+∞xf(x;θ)dx=1θ∫0θxdx=θ2,令E(X)=1n∑i=1nXi,即θ2=X¯,所以θ̂=2X¯.(2)由所给样本的观察值算得x¯=16∑i=16xi=16(0.3+0.8+0.27+0.35+0.62+0.55)=0.4817,所以θ̂=2x¯=0.9634.习题3设总体X以等概率1θ取值1,2,⋯,θ,求未知参数θ的矩估计量.解答:其中θ(0<θ<1)为未知参数. 已知取得了样本值x1=1,x2=2,x3=1, 试求θ的矩估计值和最大似然估计值.解答:E(X)=1×θ2+2×2θ(1-θ)+3×(1-θ)2=3-2θ,x¯=1/3×(1+2+1)=4/3.因为E(X)=X¯,所以θ̂=(3-x¯)/2=5/6为矩估计值,L(θ)=∏i=13P{Xi=xi}=P{X1=1}P{X2=2}P{X3=1}=θ4⋅2θ⋅(1-θ)=2θ5(1-θ),lnL(θ)=ln2+5lnθ+ln(1-θ),对θ求导,并令导数为零dlnLdθ=5θ-11-θ=0,得θL̂=56.习题6(1)设X1,X2,⋯,Xn来自总体X的一个样本, 且X∼π(λ),求P{X=0}的最大似然估计.(2)某铁路局证实一个扳道员五年内所引起的严重事故的次数服从泊松分布,求一个扳道员在五年内未引起严重事故的概率 p的最大似然估计,使用下面122个观察值统计情况. 下表中,r表示一扳道员某五年中引起严重事故的次数,s表示观察到的扳道员人数.解答:(1)已知,λ的最大似然估计为λ̂L=X¯.因此⌢P{X=0}=e-λL̂=e-X¯.(2)设X为一个扳道员在五年内引起的严重事故的次数,X服从参数为λ的泊松分布,样本容量n=122.算得样本均值为x¯=1122×∑r=05r⋯r=1122×(0×44+1×42+2×21+3×9+4×4+5×2)≈1.123,因此P̂{X=0}=e-x¯=e-1.123≈0.3253.习题6.3 置信区间习题1对参数的一种区间估计及一组观察值(x1,x2,⋯,xn)来说,下列结论中正确的是().(A)置信度越大,对参数取值范围估计越准确;(B)置信度越大,置信区间越长;(C)置信度越大,置信区间越短;(D)置信度大小与置信区间有长度无关.解答:应选(B).置信度越大,置信区间包含真值的概率就越大,置信区间的长度就越大,对未知参数的估计精度越低.反之,对参数的估计精度越高,置信区间的长度越小,它包含真值的概率就越低,置信度就越小.习题2设(θ1,θ2)是参数θ的置信度为1-α的区间估计,则以下结论正确的是().(A)参数θ落在区间(θ1,θ2)之内的概率为1-α;(B)参数θ落在区间(θ1,θ2)之外的概率为α;(C)区间(θ1,θ2)包含参数θ的概率为1-α;(D)对不同的样本观察值,区间(θ1,θ2)的长度相同.解答:应先(C).由于θ1,θ2都是统计量,即(θ1,θ2)是随机区间,而θ是一个客观存在的未知常数,故(A),(B)不正确.习题3设总体的期望μ和方差σ2均存在,如何求μ的置信度为1-α的置信区间?解答:先从总体中抽取一容量为n的样本X1,X2,⋯,Xn.根据中心极限定理,知U=X¯-μσ/n→N(0,1)(n→∞).(1)当σ2已知时,则近似得到μ的置信度为1-α的置信区间为(X¯-uα/2σn,X¯+uα/2σn).(2)当σ2未知时,用σ2的无偏估计S2代替σ2,这里仍有X¯-μS/n→N(0,1)(n→∞),于是得到μ的1-α的置信区间为(X¯-uα/2Sn,X¯+uα/2Sn),一般要求n≥30才能使用上述公式,称为大样本区间估计.习题4某总体的标准差σ=3cm,从中抽取40个个体,其样本平均数x¯=642cm,试给出总体期望值μ的95%的置信上、下限(即置信区间的上、下限).解答:因为n=40属于大样本情形,所以X¯近似服从N(μ,σ2n)的正态分布,于是μ的95%的置信区间近似为(X¯±σnuα/2),这里x¯=642,σ=3,n=40≈6.32,uα/2=1.96,从而(x¯±σnuα/2)=(642±340×1.96)≈(642±0.93),故μ的95%的置信上限为642.93, 下限为641.07.习题5某商店为了了解居民对某种商品的需要,调查了100家住户,得出每户每月平均需求量为10kg, 方差为9,如果这个商店供应10000户,试就居民对该种商品的平均需求量进行区间估计(α=0.01),并依此考虑最少要准备多少这种商品才能以0.99的概率满足需求?解答:因为n=100属于大样本问题,所以X¯近似服从N(μ,σ2/n),于是μ的99%的置信区间近似为(X¯±Snuα/2),而x¯=10,s=3,n=100, uα/2=2.58,所以(x¯±snuα/2)=(10±3100×2.58)=(10±0.774)=(9.226,10.774).试以95%的置信度,求出该品种玉米平均穗位的置信区间.解答:因为n=100属于大样本情形,所以μ的置信度为95%的置信区间上、下限近似为X¯±snuα/2,这里n=100,uα/2=1.96,还需计算出x¯和s.取a=115,c=10, 令zi=(xi-a)/c=(xi-115)/10, 用简单算公式,(1)x¯=a+cz¯; (2)sx2=c2sz2.z¯=1100∑i=19mizi=1100×(-27)=-0.27,x¯=10×(-27)+115=112.3,sz2=199∑i=19mizi2=199×313≈3.161616,sx2=102×3.161616=316.1616, sx≈17.78.于是(x¯±snuα)≈(112.3±17.7810×1.96)≈(112.3±3.485)=(108.815,115.785).习题7某城镇抽样调查的500名应就业的人中,有13名待业者,试求该城镇的待业率p的置信度为0.95置信区间.解答:这是(0-1)分布参数的区间估计问题. 待业率p的0.95置信区间为(p1̂,p2̂)=(-b-b2-4ac2a,-b+b2-4ac2a).其中a=n+uα/22,b=-2nX¯-(uα/2)2,c=nX¯2,n=500,x¯=13500,uα/2=1.96.则(p1̂,p2̂)=(0.015,0.044).习题8设X1,X2,⋯,Xn为来自正态总体N(μ,σ2)的一个样本,求μ的置信度为1-α的单侧置信限.解答:这是一个正态总体在方差未知的条件下,对μ的区间估计问题,应选取统计量:T=X¯-μS/n∼t(n-1).因为只需作单边估计,注意到t分布的对称性,故令P{T<tα(n-1)}=1-α和P{T>tα(n-1)}=1-α.由给定的置信度1-α,查自由度为n-1的t分布表可得单侧临界值tα(n-1). 将不等式T<tα(n-1)和T>tα(n-1), 即X¯-μS/n<tα(n-1)和X¯-μS/n>tα(n-1)分别变形,求出μ即得μ的1-α的置信下限为X¯-tα(n-1)Sn.μ的1-α的置信上限为X¯+tα(n-1)Sn,μ的1-α的双侧置信限(X¯-tα/2(n-1)Sn,X¯+tα/2(n-1)Sn).习题6.4 正态总体的置信区间习题1已知灯泡寿命的标准差σ=50小时,抽出25个灯泡检验,得平均寿命x¯=500小时,试以95%的可靠性对灯泡的平均寿命进行区间估计(假设灯泡寿命服从正态分布).解答:由于X∼N(μ,502),所以μ的置信度为95%的置信区间为(X¯±uα/2σn),这里x¯=500,n=25,σ=50,uα/2=1.96,所以灯泡的平均寿命的置信区间为(x¯±uα/2σn)=(500±5025×1.96)=(500±19.6)=(480.4,519.6).习题2一个随机样本来自正态总体X,总体标准差σ=1.5,抽样前希望有95%的置信水平使得μ的估计的置信区间长度为L=1.7, 试问应抽取多大的一个样本?解答:因方差已知,μ的置信区间长度为L=2uα/2⋅σn,于是n=(2σLuα/2)2.由题设知,1-α=0.95,α=0.05,α2=0.025.查标准正态分布表得u0.025=1.96,σ=1.5,L=1.7,所以,样本容量n=(2×1.5×1.961.7)2≈11.96.向上取整数得n=12, 于是欲使估计的区间长度为1.7的置信水平为95%, 所以需样本容量为n=12.习题3设某种电子管的使用寿命服从正态分布. 从中随机抽取15个进行检验,得平均使用寿命为1950小时,标准差s为300小时,以95%的可靠性估计整批电子管平均使用寿命的置信上、下限.解答:由X∼N(μ,σ2),知μ的95%的置信区间为(X¯±Sntα/2(n-1)),这里x¯=1950,s=300,n=15,tα/2(14)=2.145,于是(x¯±sntα/2(n-1))=(1950±30015×2.145)≈(1950±166.151)=(1783.85,2116.15).即整批电子管平均使用寿命的置信上限为2116.15, 下限为1783.85.习题4人的身高服从正态分布,从初一女生中随机抽取6名,测其身高如下(单位:cm):149 158.5 152.5 165 157 142求初一女生平均身高的置信区间(α=0.05).解答:X∼N(μ,σ2),μ的置信度为95%的置信区间为(X¯±Sntα/2(n-1)),这里x¯=154, s=8.0187, t0.025(5)=2.571, 于是(x¯±sntα/2(n-1))=(154±8.01876×2.571)≈(154±8.416)≈(145.58,162.42).习题5某大学数学测验,抽得20个学生的分数平均数x¯=72,样本方差s2=16, 假设分数服从正态分布,求σ2的置信度为98%的置信区间.解答:先取χ2分布变量,构造出1-α的σ2的置信区间为((n-1)S2χα/22(n-1),(n-1)S2χ1-α/22(n-1)).已知1-α=0.98,α=0.02,α2=0.01,n=20, S2=16.查χ2分布表得χ0.012(19)=36.191,χ0.992(19)=7.633,于是得σ2的98%的置信区间为(19×1636.191,19×167.633),即(8.400,39.827).习题6随机地取某种炮弹9发做试验,得炮口速度的样本标准差s=11(m/s).设炮口速度服从正态分布,求这种炮弹的炮口速度的标准差σ的置信度为0.95的置信区间.解答:已知n=9,s=11(m/s),1-α=0.95.查表得χ0.0252(8)=17.535,χ0.9752(8)=2.180,σ的0.95的置信区间为(8sχ0.0252(8),8sχ0.9752(8)),即(7.4,21.1).习题7设来自总体N(μ1,16)的一容量为15的样本,其样本均值x1¯=14.6;来自总体N(μ2,9)的一容量为20的样本,其样本均值x2¯=13.2;并且两样本是相互独立的,试求μ1-μ2的90%的置信区间.解答:1-α=0.9,α=0.1,由Φ(uα/2)=1-α2=0.95,查表,得uα/2=1.645,再由n1=15,n2=20, 得σ12n1+σ22n2=1615+920=9160≈1.232,uα/2σ12n1+σ22n2=1.645×1.232≈2.03,x¯1-x¯2=14.6-13.2=1.4,所以,μ1-μ2的90%的置信区间为(1.4-2.03,1.4+2.03)=(-0.63,3.43).习题8物理系学生可选择一学期3学分没有实验课,也可选一学期4学分有实验的课. 期未考试每一章节都考得一样,若有上实验课的12个学生平均考分为84,标准差为4,没上实验课的18个学生平均考分为77,标准差为6,假设总体均为正态分布且其方差相等,求两种课程平均分数差的置信度为99%的置信区间.解答:设有实验课的考分总体X1∼N(μ1,σ2),无实验课的考分总体X2∼N(μ2,σ2).两方差相等设测定数据分别来自分布N(μ1,σ2),N(μ2,σ2),且两样本相互独立,又μ1,μ2,σ2均为未知,试求μ1-μ2的置信水平为0.95的置信区间.对于1-α=0.95,查表得t0.025(7)=2.3646, 算得x¯=0.141,y¯=0.139; s12=8.25×10-6, s1≈0.0029.s22=5.2×10-6, s2=0.0023, sW≈0.0026, 15+14=0.6708,故得μ1-μ2的0.95置信区间为(0.141-0.139±2.3646×0.0026×0.6708),即(-0.002,0.006).习题10设两位化验员A,B独立地对某种聚合物含氯量用相同的方法各作10次测定,其测定值的样本方差依次为sA2=0.5419,sB2=0.6065. 设σA2,σB2分别为A,B所测定的测定值的总体方差,又设总体均为正态的,两样本独立,求方差比σA2/σB2的置信水平为0.95的置信区间.解答:选用随机变量F=SA2σA2/SB2σB2∼F(n1-1,n2-1),依题意,已知sA2=0.5419, sB2=0.6065, n1=n2=10.对于1-α=0.95, 查F分布表得F0.025(9,9)=1F0.025(9,9)=14.03, 于是得σA2σB2的0.95的置信区间为(sA2sB21Fα/2(9,9),sA2sB2Fα/2(9,9))≈(0.222,3.601).总习题解答习题1设总体X服从参数为λ(λ>0)的指数分布,X1,X2,⋯,Xn为一随机样本,令Y=min{X1,X2,⋯,Xn}, 问常数c为何值时,才能使cY是λ的无偏估计量.关键是求出E(Y). 为此要求Y的密度fY(y).因Xi的密度函数为fX(x)={λe-λx,x>00,x<0;Xi的分布函数为FX(x)={1-e-λx,x>00,x≤0,于是FY(y)=1-[1-FX(y)]n={1-e-nλy,y>00,y≤0.两边对y求导得fY(y)=ddyFY(y)={nλe-nλy,y>00,y≤0,即Y服从参数为nλ的指数分布,故E(Y)=nλ.为使cY成为λ的无偏估计量,需且只需E(cY)=λ,即cnλ=λ,故c=1n.习题2设X1,X2,⋯,Xn是来自总体X的一个样本,已知E(X)=μ, D(X)=σ2.(1)确定常数c, 使c∑i=1n-1(Xi+1-Xi)2为σ2的无偏估计;(2)确定常数c, 使(X¯)2-cS2是μ2的无偏估计(X¯,S2分别是样本均值和样本方差).解答:(1)E(c∑i=1n-1(Xi+1-Xi)2)=c∑i=1n-1E(Xi+12-2XiXi+1+Xi2)=c∑i=1n-1{D(Xi+1)+[E(Xi+1)]2-2E(Xi)E(Xi+1)+D(Xi)+[E(Xi)+[E(Xi)]2}=c(n-1)(σ2+μ2-2μ2+σ2+μ2)=2(n-1)σ2c.令2(n-1)σ2c=σ2, 所以c=12(n-1).(2)E[(X¯)2-cS2]=E(X¯2)-cE(S2)=D(X¯)+[E(X¯)]2-cσ2=σ2n+μ2-cσ2.令σ2n+μ2-cσ2=μ2, 则得c=1n.习题3设X1,X2,X3,X4是来自均值为θ的指数分布总体的样本,其中θ未知. 设有估计量T1=16(X1+X2)+13(X3+X4),T2=X1+2X2+3X3+4X45,T3=X1+X2+X3+X44.(1)指出T1,T2,T3中哪几个是θ的无偏估计量;(2)在上述θ的无偏估计中指出一个较为有效的.解答:(1)θ=E(X),E(Xi)=E(X)=θ,D(X)=θ2=D(Xi),i=1,2,3,4.E(T1)=E(16(X1+X2)+13(X3+X4))=(26+23)θ=θ,E(T2)=15E(X1+2X2+3X3+4X4)=15(1+2+3+4)θ=2θ,E(T3)=14E(X1+X2+X3+X4)=θ,因此,T1,T3是θ的无偏估计量.(2)D(T1)=236θ2+29θ2=1036θ2, D(T3)=116⋅4θ2=14θ2=936θ2,所以D(T3)<D(T1), 作为θ的无偏估计量,T3更为有效.习题4设从均值为μ, 方差为σ2(σ>0)的总体中,分别抽取容量为n1,n2的两独立样本,X1¯和X2¯分别是两样本的均值,试证:对于任意常数a,b(a+b=1),Y=aX1¯+bX2¯都是μ的无偏估计;并确定常数a,b, 使D(Y)达到最小.解答:E(Y)=E(aX1¯+bX2¯)=aE(X1¯)+bE(X2¯)=(a+b)μ.因为a+b=1, 所以E(Y)=μ.因此,对于常数a,b(a+b=1),Y都是μ的无偏估计,D(Y)=a2D(X1¯)+b2D(X2¯)=a2σ2n1+b2σ2n2.因a+b=1, 所以D(Y)=σ2[a2n1+1n2(1-a)2], 令dD(Y)da=0, 即2σ2(an1-1-an2)=0, 解得a=n1n1+n2,b=n2n1+n2是惟一驻点.又因为d2D(Y)da2=2σ2(1n1+1n2)>0, 故取此a,b二值时,D(Y)达到最小.习题5设有一批产品,为估计其废品率p, 随机取一样本X1,X2,⋯,Xn, 其中Xi={1,取得废品0,取得合格品, i=1,2,⋯,n,证明:p̂=X¯=1n∑i=1nXi是p的一致无偏估计量.解答:由题设条件E(Xi)=p⋅1+(1-p)⋅0=p,D(Xi)=E(Xi2)-[E(Xi)]2=p⋅12+(1-p)02-p2=p(1-p),E(p̂)=E(X¯)=E(1n∑i=1nE(Xi))=1n∑i=1nE(Xi)=1n∑i=1np=p.由定义,p̂是p的无偏估计量,又D(p̂)=D(X¯)=D(1n∑i=1nXi)=1n2∑i=1nD(Xi)=1n2∑i=1np(1-p)=1n2np(1-p)=pqn.由切比雪夫不等式,任给ɛ>0P{∣p̂-p∣≥ɛ}=P{∣X¯-p∣≥ɛ}≤1ɛ2D(X¯)=1ɛ2p(1-p)n→0,n→∞所以limn→∞P{∣p̂-p∣≥ɛ}=0, 故p̂=X¯是废品率p的一致无偏估计量.习题6设总体X∼b(k,p), k是正整数,0<p<1,k,p都未知,X1,X2,⋯,Xn是一样本,试求k和p的矩估计.解答:因总体X服从二项分布b(k,p), 故{a1=E(X)=kpa2=E(X2)=D(X)+[E(X)]2=kp(1-p)+(kp)2,解此方程组得p=a1+a12-a2a1,k=a12a1+a12-a2.用A1=1n∑i=1nXi=X¯,A2=1n∑i=1nXi2分别代替a1,a2, 即得p,k的矩估计为p̂=X¯-S2X¯,k̂=[X¯2X¯-S2],其中S2=1n∑i=1n(Xi-X¯)2,[x]表示x的最大整数部分.习题7求泊松分布中参数λ的最大似然估计.解答:总体的概率函数为P{X=k}=λkk!e-λ,k=0,1,2,⋯.设x1,x2,⋯,xn为从总体中抽取的容量为n的样本,则似然函数为L(x1,x2,⋯,xn;λ)=∏i=1nf(x i;λ)=∏i=1nλxixi!e-λ=λ∑i=1nxi∏i=1nxi!e-nλ,lnL=(∑i=1nxi)lnλ-nλ-∑i=1nlnxi!,令dlnLdλ=1λ∑i=1nxi-n=0, 得λ的最大是然估计为λ̂=1n∑i=1nxi=x¯,即x¯=1n∑i=1nxi就是参数λ的最大似然估计.习题8已知总体X的概率分布P{X=k}=C2k(1-θ)kθ2-k,k=0,1,2,求参数的矩估计.解答:总体X为离散型分布,且只含一个未知参数θ,因此,只要先求离散型随机变量的数学期望E(X), 然后解出θ并用样本均值X¯代替E(X)即可得θ的矩估计θ̂.由E(X)=∑k=02kC2k(1-θ)kθ2-k=1×2(1-θ)θ+2(1-θ)2=2-2θ,即有θ=1-E(X)2.用样本均值X¯代替上式的E(X), 得矩估计为θ̂=1-X¯2.习题9设总体X的概率密度为f(x)={(θ+1)xθ,0<x<10,其它,其中θ>-1是未知参数,X1,X2,⋯,Xn为一个样本,试求参数θ的矩估计和最大似然估计量.解答:因E(X)=∫01(θ+1)xθ+1dx=θ+1θ+2. 令E(X)=1n∑i=1nXi=X¯, 得θ+1θ+2=X¯, 解得θ的矩估计量为θ̂=2X¯-11-X¯.设x1,x2,⋯,xn是样本X1,X2,⋯,Xn的观察值,则似然函数L(x1,x2,⋯,xn,θ)=∏i=1n(θ+1)xiθ=(θ+1)n(x1x2⋯xn)θ(0<xi<1,i=1,2,⋯,n),取对数得lnL=nln(θ+1)+θ∑i=1nlnxi, 从而得对数似然方程dlnLdθ=nθ+1+∑i=1nlnxi=0,解出θ, 得θ的最大似然估计量为θ̂=-n∑i=1nlnXi.由此可知,θ的矩估计和最大似然估计是不相同的.习题10设X具有分布密度f(x,θ)={θxe-θx!,x=0,1,2,⋯0,其它,0<θ<+∞,X1,X2,⋯,Xn是X的一个样本,求θ的最大似然估计量.解答:似然函数L(θ)=∏i=1nθxie-θxi!=e-nθ∏i=1nθxixi!,lnL(θ)=-nθ+∑i=1nxilnθ-∑i=1nln(xi!),ddθ(lnL(θ))=-n+1θ∑i=1nxi,令ddθ(lnL(θ))=0, 即-n+1θ∑i=1nxi=0⇒θ=1n∑i=1nxi,故θ最大似然估计量为θ̂=X¯=1n∑i=1nXi.习题11设使用了某种仪器对同一量进行了12次独立的测量,其数据(单位:毫米)如下: 232.50 232.48 232.15 232.53 232.45 232.30232.48 232.05 232.45 232.60 232.47 232.30试用矩估计法估计测量值的均值与方差(设仪器无系统误差).解答:设测量值的均值与方差分别为μ与σ2,因为仪器无系统误差,所以θ=μ̂=X¯=1n∑i=1nXi=232+112∑i=1n(Xi-232)=232+1/12×4.76≈232.3967.用样本二阶中心矩B2估计方差σ2, 有σ̂2=1n∑i=1n(Xi-X¯)2=1n∑i=1n(Xi-a)2-(X¯-a)2=112∑i=112(Xi-232)2-(232.3967-232)2=0.1819-0.1574=0.0245.习题12设随机变量X服从二项分布P{X=k}=Cnkpk(1-p)n-k,k=0,1,2,⋯,n,X1为其一个样本,试求p2的无偏估计量.解答:\becauseX∼b(n,p),∴E(X)=np, D(X)=np(1-p)=E(X)-np2⇒p2=1n[E(X)-D(X)]=1n[E(X)-E(X2)+(EX)2]⇒p2=1n[E(X(1-X))]+1nn2p2=1nE(X(1-X))]+np2⇒p2=E[X(X-1)]n(n-1), 由于E[X(X-1)]=E[X1(X1-1)],故p̂2=X1(X1-1)n(n-1).习题13设X1,X2,⋯,Xn是来自总体X的随机样本,试证估计量X¯=1n∑i=1nXi和Y=∑i=1nCiXi(Ci≥0为常数,∑i=1nCi=1)都是总体期望E(X)的无偏估计,但X¯比Y有效.解答:依题设可得E(X¯)=1n∑i=1nE(Xi)=1n×nE(X)=E(X),E(Y)=∑i=1nCiE(Xi)=E(X)∑i=1nCi=E(X).从而X¯,Y均为E(X)的无偏估计量,由于D(X¯)=1n2∑i=1nD(Xi)=1nD(X),D(Y)=D(∑i=1nCiXi)=∑i=1nCi2D(Xi)=D(X)∑i=1nCi2.应用柯西—施瓦茨不等式可知1=(∑i=1nCi)2≤(∑i=1nCi2)(∑i=1n12)=n∑i=1nCi2, ⇒1n≤∑i=1nCi2,所以D(Y)≥D(X¯), 故X¯比Y有效.习题14设X1,X2,⋯,Xn是总体X∼U(0,θ)的一个样本,证明:θ1̂=2X¯和θ2̂=n+1nX(n)是θ的一致估计.解答:因E(θ1̂)=θ, D(θ1̂)=θ23n; E(θ2̂)=θ,D(θ2̂)=θn(n+2),X(n)=max{Xi}.依切比雪夫不等式,对任给的ɛ>0, 当n→∞时,有P{∣θ1̂-θ∣≥ɛ}≤D(θ1̂)ɛ2=θ23nɛ2→0,(n→∞)P{∣θ2̂-θ∣≥ɛ}≤D(θ2̂)ɛ2=θ2n(n+1)ɛ2→0,(n→∞)所以,θ1̂和θ2̂都是θ的一致估计量.习题15某面粉厂接到许多顾客的订货,厂内采用自动流水线灌装面粉,按每袋25千克出售. 现从中随机地抽取50袋,其结果如下:25.8, 24.7, 25.0, 24.9, 25.1, 25.0, 25.2,24.8, 25.4, 25.3, 23.1, 25.4, 24.9, 25.0,24.6, 25.0, 25.1, 25.3, 24.9, 24.8, 24.6,21.1, 25.4, 24.9, 24.8, 25.3, 25.0, 25.1,24.7, 25.0, 24.7, 25.3, 25.2, 24.8, 25.1,25.1, 24.7, 25.0, 25.3, 24.9, 25.0, 25.3,25.0, 25.1, 24.7, 25.3, 25.1, 24.9, 25.2,25.1,试求该厂自动流水线灌装袋重总体X的期望的点估计值和期望的置信区间(置信度为0.95).解答:设X为袋重总体,则E(X)的点估计为E(X̂)=X¯=150(25.8+24.7+⋯+25.1)=24.92kg.因为样本容量n=50, 可作为大样本处理,由样本值算得x¯=24.92, s2≈0.4376, s=0.6615, 则E(X)的置信度为0.95的置信区间近似为(X¯-uα/2Sn,X¯+uα/2Sn),查标准正态分布表得uα/2=u0.025=1.96, 故所求之置信区间为(24.92-1.96×0.661550,24.92+1.96×0.661550)=(24.737,25.103),即有95%的把握,保证该厂生产的面粉平均每袋重量在24.737千克至25.103千克之间.习题16在一批货物的容量为100的样本中,经检验发现有16只次品,试求这批货物次品率的置信度为0.95的置信区间.解答:这是(0-1)分布参数区间的估计问题.这批货物次品率p的1-α的置信区间为(p1̂,p2̂)=(12a(-b-b2-4ac),12a(-b+b2-4ac)).其中a=n+uα/22,b=-(2nX¯+uα/22), c=nX¯2.由题意,x¯=16100=0.16,n=100,1-α=0.95,u0.025=1.96. 算得a=100+1.962=103.842,b=-(2×100×0.16+1.962)=-35.842,c=100×0.162=2.56.p的0.95的置信区间为(p1̂,p2̂)=(12a(-b±b2-4ac)), 即(12×103.842(35.8416±221.2823)),亦即(0.101,0.244).习题17在某校的一个班体检记录中,随意抄录25名男生的身高数据,测得平均身高为170厘米,标准差为12厘米,试求该班男生的平均身高μ和身高的标准差σ的置信度为0.95的置信区间(假设测身高近似服从正态分布).解答:由题设身高X∼N(μ,σ2), n=25, x¯=170, s=12,α=0.05.(1)先求μ置信区间(σ2未知),取U=X¯-μS/n∼t(n-1),tα/2(n-1)=t0.025(24)=2.06.故μ的0.95的置信区间为(170-1225×2.06,170+1225×2.06)=(170-4.94,170+4.94)=(165.06,174,94).(2)σ2的置信区间(μ未知),取U=(n-1)S2σ2∼χ2(n-1),χα/22(n-1)=χ0.0252(24)=39.364, χ1-α/22(n-1)=χ0.9752(24)=12.401,故σ2的0.95的置信区间为(24×12239.364,24×12212.401)≈(87.80,278.69), σ的0.95的置信区间为(87.80,278.69)≈(9.34,16.69).习题18为研究某种汽车轮胎的磨损特性,随机地选择16只轮胎,每只轮胎行驶到磨坏为止. 记录所行驶的路程(以千米计)如下:41250 40187 43175 41010 39265 41872 42654 4128738970 40200 42550 41095 40680 43500 39775 40440假设这些数据来自正态总体N(μ,σ2). 其中μ,σ2未知,试求μ的置信水平为0.95的单侧置信下限.解答:由P{μ>X¯-Sntα(n-1)=1-α, 得μ的1-α的单侧置信下限为μ¯=X¯-Sntα(n-1).由所给数据算得x¯≈41119.38,s≈1345.46,n=16.查t分布表得t0.05(15)=1.7531, 则有μ的0.95的单侧置信下限为μ¯=41119.38-1345.464×1.7531≈40529.73.习题19某车间生产钢丝,设钢丝折断力服从正态分布,现随机在抽取10根,检查折断力,得数据如下(单位:N):578,572,570,568,572,570,570,572,596,584.试求钢丝折断力方差的置信区间和置信上限(置信度为0.95).解答:(1)这是一个正态总体,期望未知,对方差作双侧置信限的估计问题,应选统计量χ2=(n-1)S2σ2∼χ2(n-1).σ2的1-α的置信区间是((n-1)S2χα/22(n-1),(n-1)S2χ1-α/22(n-1)).由所给样本值得x¯=575.2, (n-1)s2=∑1=110(xi-x¯)2=681.6;根据给定的置信度1-α=0.95(即α=0.05).查自由度为10-1=9的χ2分布表,得双侧临界值χα/22(n-1)=χ0.0252(9)=19.0, χ1-α/22(n-1)=χ0.9752(9)=2.7,代入上公式得σ2的95%的置信区间为(681.619.0,681,62.70)=(35.87,232.44),即区间(35.87,232.44)包含σ2的可靠程度为0.95.(2)这是一个正态总体期望未知时,σ2的单侧区间估计问题,σ2的置信度为1-α=95%(α=0.05)的单侧置信上限为(n-1)S2χ1-α2(n-1)=∑i=110(xi-x¯)2χ1-α2(n-1),已算得(n-1)S2=∑i=110(xi-x¯)2=681.6, 根据自由度1-α=0.95.查自由度10-1=9的χ2分布表得单侧临界值χ1-α2(n-1)=χ0.952(9)=3.325,代入上式便得σ2的0.95的置信上限为681.63.325=205, 即有95%的把握,保证σ2包含在区间(0,205)之内,当然也可能碰上σ2超过上限值205的情形,但出现这种情况的可能性很小,不超过5%.习题20设某批铝材料比重X服从正态分布N(μ,σ2),现测量它的比重16次,算得x¯=2.705,s=0.029,分别求μ和σ2的置信度为0.95的置信区间。
《概率论与数理统计》第六章习题exe6-1解:10()0x b f x b ⎧<<⎪=⎨⎪⎩其他01()()2bb E X xf x dx x dx b +∞-∞==⋅=⎰⎰ 令11μ=A ,即2b X =,解得b 的矩估计量为ˆ2b X = 2ˆ2(0.50.60.1 1.30.9 1.60.70.9 1.0) 1.6899bx ==++++++++= exe6-2解:202()()()3x E X xf x dx x dx θθθθ+∞-∞-==⋅=⎰⎰令11μ=A ,即,3θ=X 解得θ的矩估计量为ˆ3X θ= Exe6-3解:(1)由于12222()()()()(1)()E X mpE X D X E X mp p mp μμ==⎧⎨==+=-+⎩ 令 ⎩⎨⎧==.2211μμA A求解得221111p m p μμμμ⎧-=-⎪⎪⎨⎪=⎪⎩,p, m 的矩估计量为22211(1)ˆ11ˆˆA A n S pA nX X m p ⎧--=-=-⎪⎪⎨⎪=⎪⎩Exe6-4解:(1)()E X λ= 令11μ=A ,即,λ=X 解得λ的矩估计量为ˆX λ= {}),2,1,0(!===-x e x x X P xλλ{}),2,1,0(!===-i i xi x e x x X P iλλ似然函数11111(){}()!!niii x n nx n i ni i i ii eL P X x e x x λλλλλ=--===∑====∏∏∏11ln ()()ln ln(!)nni i i i L n x x λλλ===-+-∑∑1ln ()0nii x d L n d λλλ==-+=∑解得λ的最大似然估计值为 11ˆni i x x n λ===∑ (2)由(1)知1ˆ(6496101163710)7.210x λ==+++++++++= Exe6-5解:(1)似然函数1(1)111(){}(1)(1)ni i i nnx x ni i i L p P X x p p p p =--==∑===-=-∏∏∑-==-ni i nx np p 1)1(1ln ()ln (1)ln ni i L p n p x p ==+-⋅∑)1ln()(ln 1p n x p n ni i --+=∑=1(1)ln ()01ni i x d L p n dp p p =-=-=-∑01)(ln 1=---=∑=pn x p ndp p L d ni i 解得p 的最大似然估计值为 11ˆnii npxx===∑ (2)155ˆ5174926px ===++++ Exe6-6解:由2()2()x f x μσ--=(1)2σ已知,似然函数221()()2211()(,)ni i i x nx n nii i L f x eμμσσμμ=----==∑===∏2211ln ())()2nii L n x μμσ==---∑21ln ()1(22)02nii d L x d μμμσ==--=∑即11()0nniii i x n xμμ==-=-=∑∑解得μ的最大似然估计值 1ˆnii xx nμ===∑(2)μ已知,似然函数为212222)(222)(12122121),()(σμσμπσσπσσ∑⎪⎭⎫ ⎝⎛====----==∏∏ni i i x nx ni n i i e ex f L21222)(21)ln(2)2ln(2)(ln μσσπσ-∑---==n i ix n n L 0)()(212)(ln 2122222=-+-=∑=μσσσσni i x n L d d 解得∑=-=n i i x x n 122)(1ˆσ,故2σ的最大似然估计值为 .)(1ˆ122∑=-=n i i i x x n σ Exe6-7解:(1)矩估计量2220()()()(3)2xt x xt xx E X xf x dx x e dx e dx t e dt θθθθθθθθ=--+∞+∞+∞+∞--∞==⋅===Γ=⎰⎰⎰⎰令2X θ=,得ˆ/2X θ= 似然函数211()(,)ix n nii i i x L f x eθθθθ-====∏∏1111ln ()(ln 2ln )ln 2ln nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑ 令21ln ()210ni i d L n x d θθθθ==-+=∑解得θ的最大似然估计值为111ˆ22n ii x x n θ===∑ (2)2311()(,)2ixnni i i i x L f x e θθθθ-====∏∏331111ln ()[2ln ln(2)]2ln ln(2)nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑令2321ln ()1602nii d L n xd θθθθθ==-⋅-=∑013)(ln 1223=+⋅-=∑=ni ixn d L d θθθθθ解得θ的最大似然估计值为 111ˆ33ni i x x n θ===∑ (3) ),(~p m B X ,m 已知{}∏∏=-=-===ni x m x x m ni i i i ip p C x X P p L 11)1()(1111ln ()[ln ln ()ln(1)]ln ln ln(1)()i inx m i i i nnnx m i i i i i L p C x p m x p C p x p nm x =====++--=++--∑∑∑∑令 11ln ()01n ni ii i x nm x d L p dp p p==-=-=-∑∑即1111(1)1n nniiii i i x xxnmppp p p===+==---∑∑∑ 解得p 的最大似然估计值为 1ˆnii xxpmnm===∑ Exe6-8解:(1)似然函数为{}{}{})1(2)1(2121)(522θθθθθθθ-=⋅-⋅==⋅=⋅==X P X P X P L)1ln(ln 52ln )(ln θθθ-++=L 令 0115)(ln =--=θθθθL d d 解得θ的最大似然估计值为.65ˆ=θ Exe6-9解:2121222222)()(22)(12)(111212121),,(),,(),(σβαβασβασβασπσπσπβαβαβα∑∑⎪⎪⎭⎫⎝⎛=====+-+---+--=---===∏∏∏∏ni i n i i i i i i y x ny ni x ni n i i Y n i i X e eey f x f L))()((21ln 2)2ln(),(ln 21212βαβασσπβα+-∑+--∑---===ni i ni i y x n n L0))()((22),(ln 112=+-+--=∂∂∑∑==βαβασβααni i n i i y x L 0)()((22),(ln 112=+----=∂∂∑∑==βαβασβαβn i i n i i x x L 联立 解得,2ˆ,2ˆyx y x -=+=βα故βα,的最大似然估计量为 .2ˆ,2ˆYX Y X -=+=βαExe6-10解:(1)由1/2EX μθ==,得θ的矩估计量ˆ2X θ= ˆ()2()2()22E E X E X θθθ===⋅= 故θ的矩估计量ˆ2X θ=是θ的无偏估计量。
概率论第六章课后习题答案概率论第六章课后习题答案概率论是一门研究随机现象的数学分支,它在解决实际问题中具有广泛的应用。
第六章是概率论中的重要章节,主要涉及随机变量及其概率分布、数学期望和方差等内容。
在课后习题中,我们将通过解答一些典型问题,进一步加深对这些概念的理解。
1. 随机变量X的概率分布函数为F(x) ={ 0, x < 0{ 1/4, 0 ≤ x < 1{ 1/2, 1 ≤ x < 2{ 3/4, 2 ≤ x < 3{ 1, x ≥ 3(1) 求随机变量X的概率密度函数f(x)。
(2) 求P(0.5 ≤ X ≤ 2.5)。
解:(1) 概率密度函数f(x)是概率分布函数F(x)的导数。
根据导数的定义,我们可以得到:f(x) ={ 0, x < 0{ 1/4, 0 ≤ x < 1{ 1/2, 1 ≤ x < 2{ 1/4, 2 ≤ x < 3{ 0, x ≥ 3(2) P(0.5 ≤ X ≤ 2.5) = F(2.5) - F(0.5) = 3/4 - 1/4 = 1/2 2. 设随机变量X的概率密度函数为f(x) ={ c(1 - x^2), -1 ≤ x ≤ 1{ 0, 其他(1) 求常数c的值。
(2) 求P(|X| > 0.5)。
解:(1) 概率密度函数f(x)的积分值等于1。
我们可以计算:∫[-1,1] c(1 - x^2) dx = 1解这个积分方程,可得c = 3/4。
(2) P(|X| > 0.5) = 1 - P(|X| ≤ 0.5)= 1 - ∫[-0.5,0.5] c(1 - x^2) dx= 1 - 3/4 ∫[-0.5,0.5] (1 - x^2) dx= 1 - 3/4 [x - x^3/3] |[-0.5,0.5]= 1 - 3/4 [(0.5 - 0.5^3/3) - (-0.5 + 0.5^3/3)] = 1 - 3/4 [0.5 - 0.5/3 - (-0.5 + 0.5/3)]= 1 - 3/4 [1/3]= 1 - 1/4= 3/43. 设随机变量X的概率密度函数为f(x) ={ kx^2, 0 ≤ x ≤ 2{ 0, 其他(1) 求常数k的值。
《概率论与数理统计》习题及答案第 六 章1.某厂生产玻璃板,以每块玻璃上的泡疵点个数为数量指标,已知它服从均值为λ的泊松分布,从产品中抽一个容量为n 的样本12,,,n X X X L ,求样本的分布.解 样本12(,,,)n X X X L 的分量独立且均服从与总体相同的分布,故样本的分布为11221(,,,)()nn n ii i P X k X k X k P Xk ======∏L 1!ikni i e k λλ-==∏112!!!ni i n k n e k k k λλ=-∑=L 0,1,i k =L ,1,2,,,i n =L 2.加工某种零件时,每一件需要的时间服从均值为1/λ的指数分布,今以加工时间为零件的数量指标,任取n 件零件构成一个容量为n 的样本,求样本分布。
解 零件的加工时间为总体X ,则~()X E λ,其概率密度为,0,()0,0.x e x f x x λλ-⎧>=⎨≤⎩于是样本12(,,,)n X X X L 的密度为1121,0(,,,)0,.nii ix nnx i n i e x f x x x e λλλλ=--=⎧∑⎪>==⎨⎪⎩∏K 其它 1,2,,i n =L 3.一批产品中有成品L 个,次品M 个,总计N L M =+个。
今从中取容量为2的样本(非简单样本),求样本分布,并验证:当,/N M N p →∞→时样本分布为(6.1)式中2n =的情况。
解 总体~(01)X -,即(0),(1)L MP X P X N N==== 于是样本12(,)X X 的分布如下 121(0,0)1L L P X X N N -===⋅-,12(0,1)1L M P X X N N ===⋅-12(1,0)1M L P X X N N ===⋅-,121(1,1)1M M P X X N N -===⋅- 若N →∞时M p N →,则1Lp N→-,所以2002012(0,0)(1)(1)P X X p p p +-==→-=-012112(0,1)(1)(1)P X X p p p p +-==→-=-102112(1,0)(1)(1)P X X p p p p +-==→-=-2112212(1,1)(1)P X X p p p +-==→=-以上恰好是(6.1)式中2n =的情况.4.设总体X 的容量为100的样本观察值如下:15 20 15 20 25 25 30 15 30 25 15 30 25 35 30 35 20 35 30 25 20 30 20 25 35 30 25 20 30 25 35 25 15 25 35 25 25 30 35 25 35 20 30 30 15 30 40 30 40 15 25 40 20 25 20 15 20 25 25 40 25 25 40 35 25 30 20 35 20 15 35 25 25 30 25 30 25 30 43 25 43 22 20 23 20 25 15 25 20 25 30433545304530454535作总体X 的直方图解 样本值的最小值为15,最大值为45取14.5a =,45.5b =,为保证每个小区间内都包含若干个观察值,将区间[14.5,45.5]分成8个相等的区间。
第六章大数定理和中心极限定理一、大纲要求(1)了解契比雪夫不等式;(2)了解辛钦大数定律,伯努利大数定律成立的条件及结论;(3)了解独立同分布的中心极限定理和棣莫佛—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)的条件和结论,并会用相关定理近似计算有关随机事件的概率.二、重点知识结构图三、基本知识1. 马尔科夫不等式若X 为只取非负值的随机变量,则对任意常数0ε>,有{}EXP X εε≥≤.2. 契比雪夫不等式若DX 存在,则{}2DXP X EX εε-≥≤.3. 辛钦大数定律定理 1 设12,,,,n X X X 是独立同分布的随机变量序列,且具有有限的数学期望()a X E n =,则对任意的0ε>,有{}lim 0n n P X a ε→∞-≥=4. 伯努利大数定律定理2 设()p n B X n ,~,其中n=1,2, …,0<p<1 。
则对任意ε>0,有5.独立同分布的中心极限定理定理3 (林德伯格-列维定理) 设12,,,,n X X X 为独立同分布的随机变量,22,,0,i i EX a DX σσ==<<∞则对任意实数x 有12lim )()n n P X X X na x x →∞⎫++-≤=Φ⎬⎭式中, ()x Φ是标准正态分布(0,1)N 的分布函数,即2/2()t x e dt +∞--∞Φ=6. 棣莫佛-拉普拉斯中心极限定理定理3(棣莫佛-拉普拉斯定理) 设12,,,,n X X X 独立同分布,i X 的分布是{}{}1,01,(01)i i P X p P X p p ====-<<则对任意实数x ,有12lim )()n n P X X X np x x →∞⎧⎫⎪++-≤=Φ⎬⎪⎭0lim =⎭⎬⎫⎩⎨⎧≥-∞→εp n X P n n四、典型例题例1 设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据契比雪夫不等式{}6_____P X Y +≥≤.解 因为 ()0E X Y E X E Y +=+= ()2c o v (,D X Y D X D Y X Y +=++2DX DY ρ=++ 1420.52=+-⨯⨯= 根据契比雪夫不等式{}2DXP X EX εε-≥≤所以 {}3163612P X Y +≥≤= 例2 某保险公司经多年资料统计表明,在索赔户中被盗户占20%,在随意抽查的100家索赔户中以被盗的索赔户数为随机变量,利用中心极限定理,求被盗的索赔户大于14户且小于30户的概率近似值.[分析]本题的随机变量服从参数100,0.2n p ==的二项分布.如果要精确计算,就要用伯努利二项公式:{}291001001514300.20.8kk k k P X C -=<<=∑.如果求近似值,可用契比雪夫不等式估计.解 由于~(100,0.2)X N ,所以1000.220EX np ==⨯=168.02.0100)1(=⨯⨯=-=p np DX{}1430P X P <<=<<=Φ(2.5)-Φ(-1.5)()927.0)5.1(5.2=-Φ+Φ因此被盗的索赔户大于14户且小于30户的概率近似值为0.927.例3 某车间有200台机床,它们彼此工作独立,开工率都为0.6,工作时耗电都为1kW,问供电所至少给这个车间多少度电,才能以99.9%的概率保证这个车间不会因供电不足而影响生产.解 用X 表示工作的机床台数,则~(200,0.6)X B .设要向车间供电a kW,则有由棣莫佛-拉普拉斯定理得{}P o X a P ⎧⎫<≤=<≤020p q ⎛⎫⎛⎫⎫⎫≈Φ-≈⎪⎪⎪⎪⎪⎪⎭⎭⎭⎭()0.999 3.1≈Φ≥=Φ即3.1≥ 因此120 3.48141a ≥+= 例4 用契比雪夫不等式确定当掷一均匀硬币时,需掷多少次,才能保证使得出现正面的频率在0.4~0.6之间的概率不小于90%,并用正态逼近计算同一个问题.解 设需掷n 次,用n S 表示出现正面的次数,则1~(,)2n S B n ,有契比雪夫不等式得0.40.60.50.1n n S S P P n n ⎧⎫⎧⎫<<=-<⎨⎬⎨⎬⎩⎭⎩⎭211110022110.900.014n n n⨯⨯≥-=-≥ 所以10002504n ≥=. 由棣莫佛-拉普拉斯定理得0.40.6n S P P n ⎧⎫<<=<⎨⎬⎩⎭(((0.2210.90=Φ-Φ-=Φ-≥即(Φ≥0.95,查表得 1.645>,故68n ≥.例5 假设12,,,n X X X 是独立同分布的随机变量,且()k k i a X E =(1,2,3,4)k =,证明当n 充分大时,随机变量211n n i i Z X n ==∑近似服从正态分布,并指出其分布参数.证 由12,,,n X X X 是独立同分布的随机变量序列可知, 22212,,,nX X X 独立同分布,且有()22a X E i =, 2242i DX a a =-2211n n i i EZ EX a n ===∑, 2242211n n i i a a DZ DX n n=-==∑由林德伯格-列维定理可知,对任意x 有⎰∞--∞→=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧<--x t n n dte x n a a a Z P 22242221lim π即n Z 近似服从正态分布2422(,)a a N a n-. 例6 有一批建筑房屋用的木柱,其中80%的长度超过3m ,现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少?解 设10i X ⎧=⎨⎩()31,2,,1003i m i i m = 当所取的第根木柱短于当所取的第根木柱不短于 则()~1,0.2i X B ,记1001i i X X ==∑,则()~100,0.2X B .由棣莫佛-拉普拉斯定理得{}{}30130P X P X ≥=-<1P =-≤()302011 2.50.0062100.4-⎛⎫≈-Φ=-Φ= ⎪⨯⎝⎭例7 假设男婴的出生率为2243,某地区有7000多名产妇,试估计她们的生育情况.[分析] n 重伯努利实验中A 出现的频率nu n依概率收敛于它的概率p ,当n 很大时,有n u np ≈.解 设10i X ⎧=⎨⎩()1,2,,7000i i = 第名产妇生男婴否则显然, 12,,,n X X X 独立同分布且均服从01-分布2243p ⎛⎫= ⎪⎝⎭,1nn i i u X ==∑表示7000名产妇中生男婴的人数,有伯努利大数定理得()2243n u n n →→∞ 由于7000n =已是足够大,因此227000358143n u ≈⨯≈即该地区估计有3581名男婴出生.例8 某电视机厂每月生产10000台电视机,但它的显像管车间的正品率为0.8,为了以0.997的概率保证出厂的电视机都装上正品的显像管,该车间每月应生产多少只显像管?解 设显像管正品数为X ,月总产量为n ,则有()~,0.8X B n ,从而 0.8E X n =, ()n p np DX 16.01=-=为了使电视机都装上正品的显像管,则每月至少生产10000只正品显像管,即所求为{}100000.997P X n ≤<=由棣莫佛-拉普拉斯定理得{}100000.997P X n P ≤<=≤<=即997.05.016.08.016.08.010000=⎭⎬⎫⎩⎨⎧<-≤-n n n X n n P(0.997Φ-Φ=由题意可知,0<,且n 较大,即(1Φ≈,所以0.997Φ=2.75=,故)(1027.14只⨯≈n因此,每月至少要生产41027.1⨯只显像管才能以0.997的概率保证出厂的10000台电视机都能装上正品的显像管.例9 一养鸡场购进1万个良种鸡蛋,已知每个鸡蛋孵化成雏鸡的概率为0.84,每只雏鸡发育成种鸡的概率为0.90,试计算这批鸡蛋得到种鸡不少于7500只的概率.解 设{}k A k =第只鸡蛋孵化成雏鸡, {}k B k =第只鸡蛋育成种鸡,令 ()11,2,,100000k k k B X k B ⎧==⎨⎩ 当发生当不发生 则诸k A 独立同分布,且{}{}{}{}{}{}1k k k k k k k k P X P B P A P B A P A P B A ===+0.840.900.756=⨯+={}{}244.00===k k B P X P显然, 100001kk X X==∑表示10000个鸡蛋育成的种鸡数,则()~10000,0.756X B ,而64.1844244.07560)1(,7560756.010000=⨯=-=⨯=p np np根据棣莫佛-拉普拉斯定理可得()~0,1nkXnpN -=∑于是,所求概率为{}10000756075001k X P X P ⎧⎫-⎪⎪≥=≥≈-Φ⎪⎪⎩⎭∑()1.400.92=Φ= 因此,由这批鸡蛋得到的种鸡不少于7500只的概率为92%.五、课本习题全解6-1 设11nn i i Y X n ==∑,再对n Y 利用契比雪夫不等式:{}12222220n i i n n n n D X DY n P Y EY n n εεεε=→∞⎛⎫ ⎪⎝⎭-≥≤=≤−−−→∑ 故{}n X 服从大数定理. 6-2 设出现7的次数为X ,则有 ()~10000,0.1,1000,900X B E X n p D X === 由棣莫佛-拉普拉斯定理可得{}100096810001696810.14303015X P X P --⎧⎫⎛⎫<=<=-Φ=⎨⎬ ⎪⎩⎭⎝⎭6-3 11,212i i EX DX ==由中心极限定理可知,10110i X -⨯∑,所以101011616110.136i i i i P X P X ==⎧⎫⎧⎫>=-≤=-Φ=-Φ=⎨⎬⎨⎬⎩⎭⎩⎭∑∑6-4 设报各人数为X ,则.100,100==DX EX . 由棣莫佛-拉普拉斯定理可得()0228.021*********}120{=Φ-=⎭⎬⎫⎩⎨⎧-≥-=≥DX EX X P X P6-5 设()11,2,,100000i i X i i ⎧==⎨⎩ 第个人死亡第个人没有死亡,则{}{}10.006,00.994i i P X P X ====总保险费为51210000 1.210⨯=⨯(万元)(1) 当死亡人数在达到51.210/1000120⨯=人时,保险公司无收入.4100.00660,0.1295np =⨯==所以保险公司赚钱概率为)()12100000.129512060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()7.771=Φ=因而亏本的概率为10P P '=-=.(2)若利润不少于40000,即死亡人数少于80人时,)()12100000.12958060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()2.590.9952=Φ= 若利润不少于60000,即死亡人数少于60人时,)()12100000.12956060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()00.5=Φ=若利润不少于80000,即死亡人数少于40人时,)()12100000.12954060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()2.5920.0048=Φ-=6-6 设总机需备Y 条外线才能有95%的把握保证每个分机外线不必等候,设随机变量()11,2,,2600i i X i i ⎧==⎨⎩ 第架电话分机用外线第架电话分机不用外线,则{}{}10.04,00.96P X P X ====0.04,0.040.00160.0384i i EX DX ==-=由中心极限定理可得16%950384.026004.02602601≈=⎪⎭⎫⎝⎛⨯⨯-Φ=⎭⎬⎫⎩⎨⎧≤∑=Y Y Y X P i i6-7 密度函数为 ()10.50.50x f x -<<⎧=⎨⎩当其他故数学期望为 0.50.50E X x d x -==⎰()0.52220.5112DX EX EX x dx -=-==⎰(1)设i X 为第i 个数的误差,则9973.01)3(251515300130013001=-Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤=⎭⎬⎫⎩⎨⎧≤∑∑∑===i i i i i i DX X P X P30030011151150.0027i i i i P X P X ==⎧⎫⎧⎫>=-≤=⎨⎬⎨⎬⎩⎭⎩⎭∑∑(2)110210.9440.77n i i P X n =⎧⎫≤=Φ-≥⇒≤⎨⎬⎩⎭∑ (3)3001210.99714.855i i Y P X Y Y =⎧⎫⎛⎫≤=Φ-≥⇒≤⎨⎬ ⎪⎝⎭⎩⎭∑6-8 kg kg EX 32105,105--⨯=⨯=σ (1)设i X 为第i 个螺钉的重量,则23100510,5100.05nEX --=⨯⨯⨯=0228.0)2(105.051.51.510011001=Φ-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->-=⎭⎬⎫⎩⎨⎧>∑∑==σn nEX X P X P i i i i(2)设()1.11,2,,5000.1i i Y i i ⎧==⎨⎩ 第个螺钉的重量超过5kg第个螺钉的重量不超过5kg,则33.3)1(4.11=-=p np np9951.0)58.2(33.34.1120)1(450050015001=Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->--=⎭⎬⎫⎩⎨⎧⨯<∑∑==p np np Y P Y P i i i i %6-9 设随机变量()11,2,,10000i i X i ⎧==⎨⎩ 第个人按时进入掩体其他,按时进入掩体的人数为Y ,则()1,~10000,0.9ni i Y X Y B ==∑,所以有10000.9900,9000.190EY DY =⨯==⨯=设有k 人按时进入掩体,则916884645.19090095.090900===-=⎪⎪⎭⎫⎝⎛-Φk k k k 或所以至少有884人,至多有916.六、自测题及答案1.设随机变量X 服从(),B n p ,则对区间(),a b ,恒有lim _______.n P a b →∞⎧⎫⎪⎪<≤=⎨⎬⎪⎪⎩⎭2.一大批产品中优质品占一半,现每次抽取一个,看后放回再抽,问在100次抽 取中取到优质品次数不超过45的概率等于_______.3. 129,,X X X 相互独立, ()1,11,2,9i i EX DX i === ,则对任意给定的0ε>,有( ).9922119922111(A)11(B)119(C)91(D)919i i i i i i i i P X P X P X P X εεεεεεεε--==--==⎧⎫⎧⎫-<≥--<≥-⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫-<≥--<≥-⎨⎬⎨⎬⎩⎭⎩⎭∑∑∑∑4.设12,,,,n X X X 为独立随机变量序列,且()1,2,i X i = 服从参数为λ的泊松分布,则有().()()()()111(A)lim (B)0,1(C),(D)n i n ni i n i i n i i X n P x x n X N n X N n n n P X x x λλλ→∞===⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭⎧⎫≤=Φ⎨⎬⎩⎭∑∑∑∑当充分大的时,近似服从当充分大的时,近似服从当充分大的时,5.设12,,X X 为独立随机变量序列,且服从服从参数为λ的指数分布,则( ).()()()()112211(A)lim (B)lim 1(C)lim (D)lim n n i i i i n n nni i i n n n X X P x x P x x n X n X n P x x P x x n λλλλλλ==→∞→∞=→∞→∞⎧⎫⎧⎫--⎪⎪⎪⎪⎪⎪⎪⎪≤=Φ≤=Φ⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭⎧⎫⎧⎫--⎪⎪⎪⎪⎪⎪⎪≤=Φ≤=Φ⎬⎨⎬⎪⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭∑∑∑∑6.设随机变量12,,,n X X X 相互独立, 12n X X X X =+++ ,根据林德伯格-列维定理,当n 充分大时, X 近似服从正态分布,只要12,,,n X X X ( )(A)(B)(C)(D)有相同的数学期望有相同的方差服从同一指数分布服从同一离散型分布7.某校有1000名学生,每人以80%的概率去图书馆自习,问图书馆至少应设多少个座位,才能以99%的概率保证去上自习的同学都有座位坐?8.某种电子器件的寿命(小时)具有数学期望μ(未知),方差2400σ=.为了估计μ,随机地取n 只这种器件,在时刻0t =投入测试(设测试是相互独立的)直到失败,测得寿命为12,,,nX X X ,以11ni i X X n ==∑作为μ的估计,为了使{}10.95P X μ-<≥,问n 至少为多少?9.利用中心极限定理证明11lim !2i n n n i n e i -→∞=⎡⎤=⎢⎥⎣⎦∑ [答案]1. 由棣莫佛-拉普拉斯定理可得22lim t b a n P a b dt -→∞⎧⎫⎪⎪<≤=⎨⎬⎪⎪⎩⎭⎰2. 令Y 表示100次抽取中取得优质品的次数()11,2,,1000i i X i i ⎧==⎨⎩ 当第次取到优质品当第次没有取到优质品则 ()1001,~100,0.5i i Y X Y B ==∑那么 1000.5,1000.50.E Y D Y =⨯=⨯⨯=由棣莫佛-拉普拉斯定理可得{}504515Y P Y P P -⎧⎫≤=≤=≤-⎨⎬⎩⎭()()11110.84130.1587≈Φ-=-Φ=-=3.由题意可得 99119,9i i i i EX EX DX DX ======∑∑又因为 9211i i DXP X EX εε=⎧⎫-<≥-⎨⎬⎩⎭∑故(D)项正确.4.因为()1,2,i X i = 服从参数为λ的泊松分布,故,i i EX DX λλ==,由林德伯格-列维定理得()lim n i n X n P x x λ→∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑ 当n 充分大时,1nii X=∑近似服从(),N n n λλ分布,故C 项正确.5.由题意可知 211,i i EX DX λλ==由林德伯格-列维定理可得()22limntixnX nP x dt xμ-→∞⎧⎫-⎪⎪⎪≤==Φ⎬⎪⎪⎪⎩⎭∑⎰即()l i mninX nP x xλ→∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑6.由于林德伯格-列维定理要求12,,,nX X X独立同分布,且具有有限的数学期望与方差.因此C项正确.7.设X表示同时去图书馆上自习的人数,并设图书馆至少有n个座位,才能以99%的概率保证去上自习的同学都有座位,即n满足{}0.99P X n≤≥.因为()~1000,0.8X B,所以{}⎪⎭⎫⎝⎛⨯⨯⨯-Φ-⎪⎭⎫⎝⎛⨯⨯⨯-Φ≈≤2.08.010008.01000`2.08.010008.01000`nnXP8000.9912.65n-⎛⎫=Φ≥⎪⎝⎭查表得8002.3312.65n-≥,故829.5n≥.因此图书馆至少应有830个座位.8.由于12,,,nX X X独立同分布,且2,400i iEX DXμσ===.由林德伯格-列维定理得{}1P X Pμ⎫⎛-<=<≈Φ-Φ⎝⎭⎝⎭21210.95=Φ-=Φ-≥⎝⎭⎝⎭即0.975Φ≥⎝⎭,查表得 1.9620≥,故2400 1.961536.64n≥⨯=.因此n至少为1537.9.设{}n X为独立同服从参数为1的泊松分布的随机变量序列,则1nkkX=∑服从参数为n的泊松分布,因此有101!!k k n n nn nn k k k k n n P X n e e e k k ---===⎧⎫≤==+⎨⎬⎩⎭∑∑∑由林德伯格-列维定理可得()11lim lim 02n k n k n n k X n P X n P →∞→∞=⎧⎫-⎪⎪⎧⎫≤=≤=Φ=⎨⎬⎩⎭⎪⎪⎩⎭∑∑ 所以11lim lim !k n n n n k n n k k n e P X n e k --→∞→∞==⎧⎫⎡⎤⎧⎫=≤-⎨⎨⎬⎬⎢⎥⎩⎭⎣⎦⎩⎭∑∑ 11lim lim 2n n k n n k P X n e -→∞→∞=⎧⎫=≤-=⎨⎬⎩⎭∑第7章数理统计的基础知识一、大纲要求(1)理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,了解直方图和样本分布函数的意义和作用.(2)了解2χ分布、t分布、F分布的概念和性质,了解分位数的概念并掌握查表计算.(3)了解正态总体的抽样分布.二、重点知识结构图三、基本知识1.总体和个体在数理统计中,把研究对象的全体称为总体或母体,把组成总体的每一个研究对象(元素或单元)称为个体.总体分为有限总体和无限总体.有限总体是指其总体中的成员只有有限个.相应的,无限总体是指其总体中的成员有无限个.2.样本在一个总体中,抽取n 个个体12,,,n X X X ,这n 个个体总称为总体X 的样本或子样, n 称为样本容量.样本特性:① 代表性,样本中的每一个分量()1,2,i X i n = 与总体X 有相同的分布。
第六章习题6-11、由一致估计的定义,对0ε∀>{}{}{}()1212max ,,,max ,,,n n P X X X P X X X θεεθεθ-<=-+<<+()()F F εθεθ=+--+()0, 0, 01, X x xF x x x θθθ<⎧⎪=≤≤⎨⎪>⎩及(){}()()()()1212max ,,,n n X X X X X X F x F x F x F x F x ==⋅⋅⋅()1F εθ∴+=(){}()12max ,,,1nn x F P X X X εθεθθ⎫⎛-+=<-+≈- ⎪⎝⎭{}()12max ,,,111()nn x P X X X n θεθ⎫⎛∴-<=--→→∞ ⎪⎝⎭2、证明:EX μ=()1111111ni i n n i i i i nn n i i i i i i i i a X E a E X a a a a μμ======⎫⎛⎪ ⎪ ==⋅=⎪ ⎪⎝⎭∑∑∑∑∑∑ 11niii nii a Xa==∴∑∑是μ的无偏估计量3、证明: ()() ()()22D E E θθθ=-()() ()()()2222E D E D θθθθθθ∴=+=+> 2θ∴不是2θ的无偏估计量4、证明:()~X P λEX λ∴=,()()222E X DX EX λλ=+=+()22E X EX λ∴-=,即()22E X X λ-=用样本矩2211n i i A X n ==∑,1A X =代替相应的总体矩()2E X 、EX所以得2λ的无偏估计量: 22111n i i A A X X n λ==-=-∑ 5、()~,X B n p ,EX np ∴=()()()()22222111E X np p n p np n n p EX n n p =-+=+-=+-()()()()222111E X EX E X X p n n n n -⎫⎛∴=-=⎪ --⎝⎭所以用样本矩2211n i i A X n ==∑,1A X =分别代替总体矩()2E X 、EX得2p 的无偏估计量: ()()()222121111ni i i A A p X X n n n n =-==---∑6、()~,1X N m ,()i E X m ∴=,()1i D X =,(1,2)i =()()()11212212121333333E m E X X E X E X m m m ⎫⎛∴=+=+=+= ⎪⎝⎭()()()1121221414153399999D m D X X D X D X ⎫⎛=+=+=+= ⎪⎝⎭同理可得: ()2E m m =, ()258D m =, ()3E m m =, ()212D m =123,,m m m ∴都是m 的无偏估计量,且在 123,,m m m 中, 3m 的方差最小习题6-21、(1)()11cccEX x c xdx cx dx θθθθθθθθ+∞+∞-+-=⋅==-⎰⎰EXEX cθ∴=-,令X EX =X X c θ∴=-为矩估计量,θ的矩估计值为 x x cθ=-,其中11n i i x x n ==∑似然函数为:()()11211,,,;nnn n n ii i i L x x x c xcx θθθθθθθ-+-====∏∏ ,i x c > 对数似然函数:()()()1ln ln ln 1ln nii L n n c x θθθθ==+-+∑求导,并令其为0,得:1ln ln ln 0ni i d L nn c x d θθ==+-=∑ 1ln ln Lnii nx n cθ=∴=-∑,即θ的最大似然估计量为 1ln ln Lnii nXn cθ==-∑(2)21111EX EX x x dx EX θθθθθ-⎫⎛=⋅=⇒= ⎪--⎝⎭⎰ 以X EX =,得: 21X X θ⎫⎛=⎪ -⎝⎭为θ的矩估计量θ的矩估计值为: 21x x θ⎫⎛=⎪ -⎝⎭,其中11ni i x x n ==∑ 而()1121211,,,;n nnn i i i i L x x x x x θθθθθ--==⎫⎛==⎪⎝⎭∏∏ ,01i x ≤≤()()1ln ln 1ln 2nii nL x θθθ=∴=+-∑令1ln 11ln 022ni i d L n x d θθθ==+⋅⋅=∑, 21ln L ni i n x θ=⎫⎛⎪ ⎪ ∴=⎪⎪⎝⎭∑ 所以θ的最大似然估计量 21ln L ni i n x θ=⎫⎛⎪ ⎪ =⎪ ⎪⎝⎭∑ (3)()~,X B m p ,EXEX mp p m∴=⇒=p ∴的矩估计量: 111n i i X p X X m mn m====∑p ∴的矩估计值为: 11n i i p x mn ==∑ 而()()()111211,,,;11nniii i ii i i nnx m x m x x x x n mm i i L x x x p Cpp C pp ==--==∑∑=-=⋅⋅-∏∏ ,0,1,,ix m = ()()()111ln ln ln ln 1i nnn x mi i i i i L p C x p m x p ====+⋅+-⋅-∑∑∑令() 111ln 111101n n n i i L ii i i d L x m x p x x dp p p mn m ====⋅--⋅=⇒==-∑∑∑ p ∴的最大似然估计量为: 1L p X m=2、(1)()01;2EX xf x dx xdx θθθθ+∞-∞===⎰⎰令11n i i EX X X n ===∑,22X X θθ∴=⇒=2X θ∴= (2)由观测的样本值得:6111(0.30.80.270.350.620.55)0.481766i i x x ===+++++≈∑20.9634x θ∴== 3、由1111122EX X θθθθθ+=⨯+⨯++⨯== 21X θ∴=-为θ的矩估计量 4、设p :抽得废品的概率;1p -:抽得正品的概率 引入{1, i i X i =第次抽到废品0,第次抽到正品,1,2,,60i =()1i P X p ∴==,()01i P X p ==-,且i EX p =所以对样本1260,,,X X X 的一个观测值1260,,,x x x由矩估计法得,p 的估计值为: 601141606015ii p x ====∑,即这批产品的废品率为1155、()()2212213132EX θθθθθ=⨯+⨯-+⨯-=-,()1412133x =⨯++=EX x = , 3526x θ-∴==为矩估计值 ()()()()()()()34511223312121i i i L P X x P X x P X x P X x θθθθθθ========⋅⋅-=-∏()()ln ln25ln ln 1L θθθ=++-令() ln 1155016Ld L d θθθθθ=⨯-=⇒=- 6、(1)λ的最大似然估计 LX λ=, ()0LX P X e e λ--∴=== (2)设X :一个扳道员在五年内引起的严重事故的次数()~X P λ∴,122n =得样本均值:5011(044142221394452) 1.123122122r r x r s ==⨯⋅=⨯⨯+⨯+⨯+⨯+⨯+⨯=∑()1.12300.3253x P X e e --∴====习题6-33、从总体中抽取容量为n 的样本12,,,n X X X 由中心极限定理:()~0,1,/X U N n nμσ-=→∞(1)当2σ已知时,近似得到μ的置信度为1α-的置信区间为:22,X u X u n n αασσ⎫⎛-⋅+⋅⎪ ⎝⎭ (2)当2σ未知时,用2σ的无偏点估计2s 代替2σ:~(0,1),/X N n s nμ-→∞于是得到μ的置信度为1α-的置信区间为:22,s s X u X u n n αα⎫⎛-⋅+⋅⎪ ⎝⎭一般要求30n ≥才能使用上述公式,称为大样本区间估计 4、40n = 属于大样本,2,X N n σμ⎫⎛∴⎪ ⎝⎭ 近似μ∴的95%的置信区间近似为:2x u n ασ⎫⎛±⋅⎪ ⎝⎭其中642x =,3σ=,40 6.32n =≈,21.96u α=()23642 1.966420.9340x u n ασ⎫⎛⎫⎛∴±⋅=±⨯≈±⎪ ⎪⎝⎭⎝⎭故μ的95%的置信区间上限为642.93,下限为641.075、100n =属于大样本,2~,X N n σμ⎛⎫∴ ⎪⎝⎭近似μ∴的99%的置信区间近似为:2x u n ασ⎫⎛±⋅⎪ ⎝⎭其中10x =,3σ=,100n =,22.58u α=()()2310 2.58100.7749.226,10.774100x u n ασ⎛⎫⎛⎫∴±⋅=±⨯=±= ⎪ ⎪⎝⎭⎝⎭由此可知最少要准备10.77410000107740()kg ⨯=这种商品,才能以0.99的概率满足要求。
第六章 数理统计基本概念与抽样分布第一节 数理统计基本概念Page2031、 设总体ξ分布为下述情形(1)(,)B k p ξ;(2)ξ服从参数为λ的指数分布;(3)(,1)N ξμ,14,ξξ为取自总体4n =的样本,分别写出它们的样本空间和样本的联合分布律(或联合密度)。
解答:(1)因(,)B k p ξ,所以{}(1),0,1,l l k l k P l C p p l k ξ-==-=,故样本空间为1414{(,,)|,,0,1,,}X k k k k k ==,11441144{,,}{}{}P k k P k P k ξξξξ=====111444(1)(1)k k k k k k k k k k C p p C p p --=-⋅⋅-,14,,0,1,,k k k =;(2)因()ξπλ,所以{},0,1,!kP k e k k λλξ-===,故样本空间1414{(,,)|0,1,}X k k k k ==,11441144{,,}{}{}P k k P k P k ξξξξ=====141414,,,0,1,!!kke e k k k k λλλλ--=⋅⋅=;(3)因(,1)N ξμ,所以2()()ex p ()2x f x μ-=-()x -∞<<∞,故样本空间1414{(,,)|,,}X k k k k R =∈,2114()(,,)exp()22x f x x μπ-=-⋅⋅24())2x μ--14(,,)x x -∞<<∞。
2、 设样本观察值12,,,n x x x 中有些值是相同的,把它们按小到大排列,分别取值为(1)(2)()k x x x <<<,取(1)(2)(),,,k x x x 得频数分别为12,,k n n n ,1()ki i n n ==∑,显然有样本均值_()11k i i i x n x n ==∑,样本方差_22()11()1k i i i S n x x n ==--∑。
习题6-1
1. 若总体(2,9)X N :
, 从总体X 中抽出样本X 1, X 2, 问3X 1-2X 2服从什么分布?
解 3X 1-2X 2~N(2, 117).
2. 设X 1, X 2, …, X n 是取自参数为p 的两点分布的总体X 的样本, 问X 1, X 2, …, X n 的联合分布是什么?
解 因为总体X 的分布律为
P {X =k }= p k (1-p )1-k , k =0,1,…,
所以样本X 1, X 2, …, X n 的联合分布为
112211
11111{,}(1)(1)(1)(1).
n n
n
n
i
i
i i x x x x x x n n X n X P X x X x p p p p p p p p ==----
==⋅-⋅-⋅⋅-∑
∑=⋅-…,=…
习题6-2
1. 选择题
(1) 下面关于统计量的说法不正确的是( ).
(A) 统计量与总体同分布. (B) 统计量是随机变量. (C) 统计量是样本的函数. (D) 统计量不含未知参数.
解 选(A).
(2) 已知X 1,X 2,…,X n 是来自总体2(,)X N μσ:的样本, 则下列关系中正确的是
( ).
(A) ().E X n μ= (B) 2().D X σ=
(C)
22().E S σ= (D) 22().E B σ=
解 选(C).
(3) 设随机变量X 与Y 都服从标准正态分布, 则( ).
(A) X +Y 服从正态分布.
(B) X 2+Y 2服从2
χ分布.
(C)
X 2和Y 2都服从2
χ分布. (D)
22
X Y
服从F 分布.
解因为随机变量X 与Y 都服从标准正态分布, 但X 与Y 不一定相互独立,所以(A),(B),(D)都不对, 故选(C).
2. 设X 1,X 2,…,X n 是来自总体X 的样本, 总体X 的均值μ已知,方差σ2未知. 在样本函数
1
n
i
i X
=∑,
1
n
i
i X
μ
σ=-∑,
1
n
i
i X
S
μ
=-∑, n μ(2
1X +2
2X +…+2
n X )中, 哪些不是统计量?
解
1
n
i
i X
μ
σ
=-∑不是统计量.
3. 设总体X 服从正态分布2
1(,)N μσ, 总体Y 服从正态分布
22(,)N μσ,1
12,,,n X X X L 和 2
12,,,n Y Y Y L 分别是来自总体X 和Y 的简单随机样本, 求
1
2
221
112()()2.n n i j i j X X Y Y E n n ==-+-+-⎡⎤⎢⎥
⎢⎥⎢⎥⎢⎥⎣⎦
∑∑
解 因为 1
22
111[()]1n
i i E X X n σ=-=-∑, 2
221
21[()]1n j j E Y Y n σ=-=-∑ 习题6-3
1.填空题 (1) 设总体~(2,25)X
N ,12100,,,X X X L 是从该总体中抽取的容量为n 的样本, 则()E X = ; ()D X = ; 统计量~X .
解 因为总体
~(2,25)X N , 而12100,,,X X X L 是从该总体中抽出的简单随机样
本, 由正态分布的性质知, 样本均值也服从正态分布, 又因为
100
1
1
11
((
)22100)n
i
i i E E X n
X =====∑∑,
而
100
2
1
1
11
25((
)25100
1
)1004
n
i i i D D X n
X ====
=
=
∑∑. 所以
1
~(2,)4N X .
(2) 设总体X 服从正态分布2
(,)N μσ,12,,,n X X X L 是来自X 的简单随机样本, 则
统计量
服从 分布
;
服从 分布;
2
2
2
=1
2
(1)()n
i
i n S
X
X σ
σ--=
∑服从 分布;
2
1
2
()n
i
i X
μσ
=-∑服从 分布.
解 由抽样分布定理知,
2
~(,
)X N n
σμ. 再由正态分布的标准化公式
,
服
从标准正态分布.
由抽样分布定理知
,
服从自由度为n -1的t 分布.
由抽样分布定理知,
2
2
(1)n S σ-服从自由度为n -1的2
χ分布.
由题设, 2
~(,),1,2,,i X N i μσ=L 所以
~(0,1),1,2,.i X N i μ
σ
-=L
再由2
χ分布的定义知, 2
1
2
()n
i
i X
μσ=-∑服从自由度为n 的2
χ分布.
(3) 设12,,,n X X X L
,1,,n n m X X ++L 是来自正态总体2(0,)N σ的容量为n +m 的样
本, 则统计量
2
12
1
n
i i n m
i i n m X n X =+=+∑∑服从的分布是 .
解 因为
2121
n
i
i n m
i
i n m X
n X
=+=+∑∑=
21
21
n
i
i n m
i
i n X
n
X
m
=+=+∑∑, 而
221
2
~()n
i
i X
n χσ=∑,2212
~()n m
i
i n X
m χσ
+=+∑.
由F 分布的定义, 得到
212
1~(,)n
i i n m
i i n m X F n m n X =+=+∑∑.
2. 选择题
(1) 设随机变量2
1
~()(1),X t n n Y X >=
, 则下列关系中正确的是( ).
(A) 2~()Y n χ. (B) 2
~(1)Y n χ-. (C) ~(,1)Y F n . (D) ~(1,)Y F n
解 由题设知
,X =, 其中2
~(0,1),~()U N V n χ, 于是
21
Y X ==22
1
U
V V n n U =,
这里2
2~(1)U
χ, 根据F 分布的定义知2
1~(,1).Y F n X
=
故应选(C).
(2) 设z α,2
αχ(n ),()t n α,12(,)F n n α分别是标准正态分布N (0,1)、2
χ(n )分布、t 分布和F 分布的上α分位点, 在下列结论中错误的是( ).
(A)
1z z αα-=-. (B) 2αχ(n )=1-2
1αχ-(n ).
(C) 1()()t n t n αα-=-. (D) 121211
(,)(,)
F n n F n n αα-=
.
解 应选(B).
3. 在总体2
(52,6.3)N 中随机抽取一个容量为36的样本, 求样本均值X
落在50.8到
53.8 之间的概率.
解 因为2
~(,)X N n σμ,所以2
6.3~(52,)36
X N .于是, 标准化随机变量
52
~(0,1)6.3X N -.
因此
(50.852)6
(52)6
(53.852)6
{50.853.8}{
}6.3 6.3
6.3
X P X P -⨯-⨯-⨯=≤≤
剟
10.87.2(
)(
)0.82936.3
6.3
ΦΦ-=-=.
4. 已知
1210,,,X X X L 是来自正态总体2(0,)X N σ:的样本, 求概率
{<2.82}P X S .
解 由定理1知,
2
22
9(0,1),
(9),X
S N χσ
σ::
因此
(9)X
X
t S
=
:, 所以 { 2.82}{
2.82}1{ 2.82}10.010.99.X X
P X
S P P S S
<=<=->=-=。