平面直角坐标系与几何图形相结合
- 格式:doc
- 大小:115.50 KB
- 文档页数:3
专题06平面直角坐标系与几何结合的点坐标问题选题介绍本题型在河南省近五年的中招试卷中考了3次,分别为2021年第9题,2020年第9题,2018年第9题。
该题一般为选择题型,分值3分,平面直角坐标系与几何相结合的题型每年中招试题中均有涉及,规律型问题(2022年真题第9题、2019年真题第10题,专题均已归纳总结)、尺规作图相结合问题。
本题属于几何题型,侧重于对题意的几何理解,难度系数中等,得分率偏高。
本专题主要归纳总结几何中的平移、旋转、折叠中设计到的求点坐标问题。
根据已有的图像与文字提供的信息,按照以下思维过程解题:①对平面直角系相关知识点充分了解,判定所求点位置坐标;②运用平移、旋转、折叠等相关性质求解对应量;③利用点的坐标表示出相应线段的长度和利用线段的长度表示相应点的坐标。
真题展现2021年河南中招填空题第9题9.(3分)如图,▱OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D.将△ODA绕点O顺时针旋转得到△OD′A′,当点D的对应点D′落在OA上时,D′A′的延长线恰好经过点C,则点C的坐标为()A.(2,0)B.(2,0)C.(2+1,0)D.(2+1,0)2020年河南中招填空题第9题9.(3分)如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B的坐标分别为(﹣2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为()A.(,2)B.(2,2)C.(,2)D.(4,2)2019年河南中招填空题第9题9.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4C.3D.2018年河南中招填空题第9题9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D ,E 为圆心,大于DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G ,则点G 的坐标为()A .(﹣1,2)B .(,2)C .(3﹣,2)D .(﹣2,2)模拟演练1.如图,在平面直角坐标系中,//AB DC ,AC BC ⊥,5CD AD ==,6AC =,将四边形ABCD 向左平移m 个单位后,点B 恰好和原点O 重合,则m 的值是()A .11.4B .11.6C .12.4D .12.62.如图,将ABC 绕点(0,2)C -旋转180︒得到DEC ,设点D 的坐标为(,)a b ,则点A 的坐标为()A.(,)a b --B.(,2)a b ---C.(,2)a b --D.(,2)a b --3.如图,在平面直角坐标系xOy 中,等边AOB 的顶点O 在原点上,OA 在x 轴上,4OA =,C 为AB 边的中点,将等边AOB 向右平移,当点C 落在直线MN :4y x =-+上时,点C 的对应点'C 的坐标为()A.(B.(1+C.D.(4-4.如图,在平面直角坐标系中,已知()20A -,,()04B ,,点C 与坐标原点O 关于直线AB 对称.将ABC 沿x 轴向右平移,当线段AB 扫过的面积为20时,此时点C 的对应点1C 的坐标为()A.7855⎛⎫ ⎪⎝⎭,B.9855⎛⎫ ⎪⎝⎭,C.1855⎛⎫- ⎪⎝⎭,D.1655⎛⎫- ⎪⎝⎭,5.如图,在平面直角坐标系中,四边形ABCD 为正方形,点A 的坐标为()0,2,点B 的坐标为()4,0,点E 为对角线的交点,点F 与点E 关于y 轴对称,则点F 的坐标为()A.()2,3-B.()3,3-C.()3,2-D.()3,3-6.如图,△OAB 与△OCD 是以点O 为位似中心的位似图形,相似比为1:2,CO CD =,=90OCD ∠︒,若()10B ,,则点C 的坐标为()A.()1,2-B.()2,1-C.D.()1,1-7.如图,在△AOB 中,顶点O 与原点重合,90∠=︒ABO ,AB OB =,()2,4A -,点C 为边OA 上一点,且4OA OC =.将△AOB 向右平移,当点C 的对应点C '恰好落在直线4y x =-+上时,点B 的对应点B '的坐标为()A.()2,1B.1,12⎛⎫ ⎪⎝⎭C.()4,2D.1,22⎛⎫ ⎪⎝⎭8.在平面直角坐标系中,已知两点()75A ,,()43B ,,先将线段AB 向右平移1个单位,再向上平移1个单位,然后以原点O 为位似中心,将其缩小为原来的12,得到线段CD ,则点A 的对应点C 的坐标为()A.()4,3 B.()4,3或()4,3-- C.()4,3-- D.()3,2或()3,2--9.如图,在平面直角坐标系中Rt △ABC 的斜边BC 在x 轴上,点B 坐标为(1,0),AC =2,∠ABC =30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为()A.(﹣4,﹣2B.(﹣4,﹣) C.(﹣2,﹣ D.(﹣2,﹣210.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D 落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1)C.(1,)D.(2,)。
《平面直角坐标系》说课稿《平面直角坐标系》说课稿1一、教材分析“平面直角坐标系”是“数轴”的发展,它的建立,使代数的基本元素(数对)与几何的基本元素(点)之间产生一一对应,数发展成式、方程与函数,点运动而成直线、曲线等几何图形,于是实现了认识上从一维空间到二维空间的发展,构成更广阔的范围内的数形结合、互相转化的理论基础。
因此,平面直角坐标系是沟通代数和几何的桥梁,是非常重要的数学工具。
直角坐标系的基本知识是学习全章及至以后数学学习的基础,在后面学习如何画函数图象以及研究一些具体函数图象的性质时,都要应用这些知识;注意到这种知识前后的关系,适当把握好本小节的教学要求,是教好、学好本小节的关键。
如果没有透彻理解这部分知识,就很难学好整个一章内容。
二、教学目标1、理解平面直角坐标系,以及横轴、纵轴、原点、坐标等的概念。
2、认识并能画出平面直角坐标系。
3、能在给定直角坐标系中,由点的位置确定点的坐标,由点的坐标确定点的位置。
4、理解各个象限内的点的坐标的符号特点以及坐标轴上的点的坐标特点。
1637年,笛卡尔在他写的《更好地指导推理和寻求科学真理的方法论》一书中,用运动着的点的坐标概念,引进了变数。
恩格斯在《自然辩证法》高度评价笛卡尔,称其将辩证法引入了数学。
因此,在讲授平面直角坐标系这一部分内容时,应对学生进行运动观点、坐标思想和数形结合思想等唯物辩证观方面的适当教育。
三、重点难点1、教学重点能在平面直角坐标系中,由点求坐标,由坐标描点。
2、教学难点:⑴平面直角坐标系产生的过程及其必要性;⑵教材中概念多,较为琐碎。
如平面直角坐标系、坐标轴、坐标原点、坐标平面、象限、点在平面内的坐标等概念及其特征等等。
四、教法学法本节课以“问题情境──建立模型──巩固训练──拓展延伸”的模式展开,引导学生从已有的知识和生活经验出发,提出问题与学生共同探索、讨论解决问题的方法,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义。
初中数学中的几何与代数问题如何结合?在初中数学的学习中,几何与代数是两个重要的分支。
几何主要研究图形的性质和关系,而代数则侧重于用符号和算式来表达数量关系和变化规律。
然而,这两者并非孤立存在,而是相互关联、相互渗透的。
将几何与代数问题有机结合,对于提高我们解决数学问题的能力、培养数学思维具有重要意义。
几何与代数的结合,首先体现在建立坐标系上。
通过建立平面直角坐标系,我们可以将几何图形中的点用坐标表示出来,从而将几何问题转化为代数问题。
例如,对于一个三角形,我们可以通过三个顶点的坐标,计算出三角形的边长、面积等。
反过来,代数中的方程和函数,也可以用几何图形来直观地表示。
比如,一次函数 y = kx + b 的图象就是一条直线,二次函数 y = ax²+ bx + c 的图象是一条抛物线。
通过观察这些图形的特点,我们可以更深入地理解函数的性质。
在解决几何问题时,常常需要运用代数中的方程思想。
比如,在求三角形的边长、角度或者图形的面积时,如果已知条件和所求问题之间存在数量关系,我们就可以设未知数,根据几何定理和公式列出方程,然后解方程求出未知数的值。
例如,在一个等腰三角形中,已知腰长和底边上的高,求底边的长度。
我们可以设底边的一半为 x,利用勾股定理列出方程,从而求解。
代数式的恒等变形在几何证明中也有广泛的应用。
比如,完全平方公式、平方差公式等,在证明几何等式时经常会用到。
此外,代数中的不等式知识也可以用于解决几何中的最值问题。
例如,在一个矩形中,要在周长一定的条件下,求出面积的最大值,就可以通过设矩形的长和宽,利用周长公式表示出一个变量,然后根据面积公式列出函数,再利用不等式求出面积的最大值。
函数与几何的综合应用是初中数学中的难点和重点。
例如,在一个动态几何问题中,图形的位置或形状随着时间或某个参数的变化而变化,我们可以通过建立函数关系来描述这种变化。
比如,一个动点在一个几何图形上运动,我们可以设动点的坐标为(x, y),然后根据几何条件列出 x 和 y 之间的函数关系式,进而研究函数的性质,求出动点运动的轨迹、最值等问题。
平面直角坐标系与形的位置关系在数学中,平面直角坐标系是一种常用的坐标系统,用于描述平面上点的位置。
它是由两条互相垂直的直线所构成,它们被称为x轴和y 轴。
平面直角坐标系不仅可以用于描述点的位置,还可以用于研究形的位置关系。
下面将介绍一些常见的形及其与平面直角坐标系的位置关系。
1. 点与平面直角坐标系的位置关系在平面直角坐标系中,点的位置由其在x轴和y轴上的坐标确定。
假设给定一个点P(x, y),其中x为点P在x轴上的坐标,y为点P在y轴上的坐标。
点与平面直角坐标系的位置关系可以分为四种不同情况:1.1 点位于第一象限当点P的x坐标和y坐标均为正数时,点P位于第一象限。
在平面直角坐标系中,第一象限是x轴和y轴的正方向所在的区域。
以点P为中心,可以画一个半径为r的圆,其中r为点P到原点的距离。
1.2 点位于第二象限当点P的x坐标为负数,y坐标为正数时,点P位于第二象限。
在平面直角坐标系中,第二象限是x轴的负方向和y轴的正方向所在的区域。
1.3 点位于第三象限当点P的x坐标和y坐标均为负数时,点P位于第三象限。
在平面直角坐标系中,第三象限是x轴和y轴的负方向所在的区域。
1.4 点位于第四象限当点P的x坐标为正数,y坐标为负数时,点P位于第四象限。
在平面直角坐标系中,第四象限是x轴的正方向和y轴的负方向所在的区域。
2. 线段与平面直角坐标系的位置关系线段是由两个端点确定的一段连续的直线。
在平面直角坐标系中,线段与坐标系的位置关系可以分为以下几种情况:2.1 线段与x轴平行当线段与x轴平行时,表示线段的两个端点具有相同的y坐标。
这种情况下,线段在平面直角坐标系中水平延伸。
2.2 线段与y轴平行当线段与y轴平行时,表示线段的两个端点具有相同的x坐标。
这种情况下,线段在平面直角坐标系中垂直延伸。
2.3 斜线段斜线段既不与x轴平行,也不与y轴平行。
这种情况下,线段在平面直角坐标系中呈现斜线倾斜的状态。
3. 矩形与平面直角坐标系的位置关系矩形是一种常见的四边形,其四个内角均为直角。
平面直角坐标系数形结合思想平面直角坐标系是一种常用的坐标系,它由一条水平的x轴和一条垂直的y轴组成,以原点O(0,0)为中心,x轴和y轴上的点可以用坐标(x,y)来表示。
在平面直角坐标系中,任意一点P(x,y)的坐标可以用下面的公式表示:P(x,y)=(x,y)其中,x表示点P在x轴上的横坐标,y表示点P在y轴上的纵坐标。
在平面直角坐标系中,任意一点P(x,y)到原点O(0,0)的距离可以用下面的公式表示:d=√(x^2+y^2)其中,d表示点P到原点O的距离,x表示点P在x轴上的横坐标,y表示点P在y轴上的纵坐标。
此外,在平面直角坐标系中,任意一点P(x,y)到x轴的距离可以用下面的公式表示:d_x=|x|其中,d_x表示点P到x轴的距离,x表示点P在x轴上的横坐标。
同理,在平面直角坐标系中,任意一点P(x,y)到y轴的距离可以用下面的公式表示:d_y=|y|其中,d_y表示点P到y轴的距离,y表示点P在y轴上的纵坐标。
此外,在平面直角坐标系中,任意一点P(x,y)的坐标可以用极坐标表示,极坐标由极轴和极角组成,极轴表示点P到原点O的距离,极角表示点P到x轴正半轴的角度,极坐标可以用下面的公式表示:P(r,θ)=(r,θ)其中,r表示点P到原点O的距离,θ表示点P到x轴正半轴的角度,θ的取值范围为[0,2π]。
由于平面直角坐标系中的点可以用直角坐标和极坐标表示,因此,可以用下面的公式将直角坐标转换为极坐标:r=√(x^2+y^2)θ=tan^-1(y/x)其中,r表示点P到原点O的距离,θ表示点P到x轴正半轴的角度,x表示点P在x轴上的横坐标,y表示点P在y轴上的纵坐标。
反之,也可以用下面的公式将极坐标转换为直角坐标:x=r*cosθy=r*sinθ其中,x表示点P在x轴上的横坐标,y表示点P在y轴上的纵坐标,r表示点P到原点O的距离,θ表示点P到x轴正半轴的角度。
总之,平面直角坐标系是一种常用的坐标系,它可以用直角坐标和极坐标表示,可以用公式将直角坐标和极坐标相互转换,可以用公式计算点到原点和点到坐标轴的距离,为研究几何图形提供了有效的方法。
平面直角坐标系与几何关系解析在数学中,平面直角坐标系是一种常见的坐标系,用于描述平面上的点的位置。
它由两条互相垂直的直线所构成,其中一条被称为x轴,另一条被称为y轴。
本文将通过解析平面直角坐标系与几何关系的方式来探讨其特点和应用。
一、平面直角坐标系的定义在平面直角坐标系中,每个点的位置都可以用一个有序对 (x, y) 来表示,其中x代表该点在x轴上的坐标,y代表该点在y轴上的坐标。
x轴和y轴的交点称为原点,表示为 (0, 0)。
二、直线在平面直角坐标系中的表示直线在平面直角坐标系中可以用线性方程来表示。
一般形式为 y = mx + c,其中m代表直线的斜率,c代表直线与y轴的交点(即截距)。
三、点、线、区域之间的关系在平面直角坐标系中,点可以表示为坐标 (x, y)。
两点间的距离计算使用勾股定理:d = √((x2 - x1)² + (y2 - y1)²)。
线段是连接两个点的线段,在平面直角坐标系中可以表示为有限个点的集合。
由于平面直角坐标系的性质,我们可以进一步探讨点、线、区域之间的关系。
例如,两个点在平面直角坐标系中的位置关系可以通过比较它们的坐标值得出。
同样地,两条直线的位置关系可以通过比较它们的斜率和截距得出。
在平面直角坐标系中,我们还可以定义一个区域,该区域是由一条直线与坐标轴所围成的。
我们可以利用坐标对区域中的点进行分类,从而得到某个点是否在区域内的结论。
四、平面直角坐标系的应用平面直角坐标系在几何学、物理学和工程学等领域有广泛的应用。
在几何学中,通过直线和曲线的表示,我们能够研究各种图形的性质和关系。
在物理学中,平面直角坐标系的运用使得我们能够描述力、速度、加速度等物理量的变化和相互关系。
在工程学中,平面直角坐标系被广泛应用于建筑设计、道路规划、城市规划等各个领域。
五、小结平面直角坐标系是数学中一种常见的坐标系,能够准确描述平面上的点的位置。
通过线性方程,我们能够表示直线在平面直角坐标系中的位置。
一次函数几何综合题解题技巧一次函数是初中数学的重点知识之一,同时也是中考的热点。
它与几何知识的综合应用在中考中主要体现在:利用一次函数求待定系数、一次函数图象与几何图形相结合、一次函数图象的应用等几个方面。
本文将结合实例谈谈一次函数与几何图形综合题的解题技巧。
一、利用一次函数求待定系数解决这类问题的关键是利用已知条件建立方程组,求出待定系数。
具体来说,一般先设出一次函数解析式,利用已知条件得到解析式中的系数,再得到一次函数解析式。
【例1】已知:如图1,在平面直角坐标系中,直线AB与两坐标轴分别交于A、B两点,且与反比例函数的图象在第一象限交于点C。
(1)求该反比例函数的解析式;(2)求直线AB的解析式;(3)根据图像,当C的横坐标在哪个取值范围内时,线段AB不经过第四象限?分析:(1)由点C在反比例函数图象上,可直接求得解析式;(2)由于点C在直线AB上,可设直线AB的解析式为,将点C 的坐标分别代入解析式,可求得A、B两点的坐标,进而可求得直线AB 的解析式;(3)由图象可知,当C点的横坐标小于时,线段AB不经过第四象限。
解:(1)设反比例函数的解析式为,将点C(3,4)代入得,所以该反比例函数的解析式为;(2)设直线AB的解析式为,因为点C(3,4)在直线AB上,所以,解得,所以直线AB与轴交于点D(6,0),又因为点A(-3,-4),所以直线AB的解析式为;(3)由图象可知,当C点的横坐标小于时,线段AB不经过第四象限。
二、一次函数图象与几何图形相结合此类问题主要利用了待定系数法、数形结合的思想以及分类讨论的思想。
解题时要注意数形结合,根据已知条件建立方程或不等式,结合图形加以分析。
【例2】如图2,在平面直角坐标系中,四边形OABC为矩形,点A、C的坐标分别为(4,0)、(0,2),点D是边BC上的一个动点(点D与B、C不重合),过点D的抛物线经过点A、C、E。
(1)求该抛物线的解析式;(2)当AC为何值时,四边形DEOB为平行四边形?请说明理由;(3)设点D的坐标为(x,y),①试求该抛物线的对称轴及点D 到直线AC的距离;②试探究在抛物线上是否存在点M,使四边形AMDE 的面积最大?若存在,请求出点M的坐标;若不存在,请说明理由。
第14讲 平面直角坐标系与几何图形的综合【知识点睛】❖ 平面直角坐标系知识网络系统图各问题归纳总结若点()11y x A ,、()22y x B ,、()b a P ,问题一:若点P 在x 轴上,则b=0; 若点P 在y 轴上,则a=0;若点P 在第一象限,则a >0,b >0; 若点P 在第二象限,则a <0,b >0; 若点P 在第三象限,则a <0,b <0; 若点P 在第四象限,则a >0,b <0;问题二:若点A 、B 在同一水平线上,则21y y =; 若点A 、B 在同一竖直线上,则21x x =; 若点P 在第一、三象限角平分线上,则b a =;若点P 在第二、四象限角平分线上,则b a -=;问题三:点()b a P ,关于x 轴对称的点P 1坐标为()b a P -,1; 点()b a P ,关于y 轴对称的点P 2坐标为()b a P ,-2;点()b a P ,关于原点对称的点P 3坐标为()b a P --,3;问题四:点的平移口诀“左减右加,上加下减”; 问题五:线段AB 的中点公式:⎪⎭⎫⎝⎛++222121y y x x ,; 若点A 、B 在同一水平线上,则AB=21x x -;若点A 、B 在同一竖直线上,则AB=21y y -; 若点A 、B 所在直线是倾斜的,则AB=()()221221y y x x AB -+-=(两点间距离公式)问题六:点()b a P ,到x 轴的距离=|b|;点()b a P ,到y 轴的距离=|a|; 问题七:割补法,优先分割,然后才是补全 问题八:周期型:①判断周期数(一般3到4个);②总数÷周期数=整周期……余数(余数是谁就和每周期的第几个规律一样)注意横纵坐标的规律可能不同。
【类题训练】1.如图,A (8,0),B (0,6),以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点C 的坐标为( )A .(10,0)B .(0,10)C .(﹣2,0)D .(0,﹣2)【分析】根据勾股定理求出AB ,根据坐标与图形性质解答即可. 【解答】解:由题意得,OB =6,OA =8, ∴AB ==10,则AC =10, ∴OC =AC ﹣OA =2, ∴点C 坐标为(﹣2,0), 故选:C .2.在平面直角坐标系中,点A 的坐标为(﹣1,3),点B 的坐标为(5,3),则线段AB 上任意一点的坐标可表示为( )A.(3,x)(﹣1≤x≤5)B.(x,3)(﹣1≤x≤5)C.(3,x)(﹣5≤x≤1)D.(x,3)(﹣5≤x≤1)【分析】根据A、B两点纵坐标相等,可确定AB与x轴平行,即可求解.【解答】解:∵点A的坐标为(﹣1,3),点B的坐标为(5,3),A、B两点纵坐标都为3,∴AB∥x轴,∴线段AB上任意一点的坐标可表示为(x,3)(﹣1≤x≤5),故选:B.3.如图,在四边形ABCD中,AD∥BC∥x轴,下列说法中正确的是()A.点A与点D的纵坐标相同B.点A与点B的横坐标相同C.点A与点C的纵坐标相同D.点B与点D的横坐标相同【分析】根据与x轴平行的直线上点的坐标特征计算判断.【解答】解:∵平行四边形ABCD中,AD∥BC∥x轴,∴点A与D的纵坐标相同,点B与C的纵坐标相同.故选:A.4.如图,已知∠AOB=30°,∠AOC=60°,∠AOD=90°,∠AOE=120°,∠AOF=150°,若点B可表示为点B(2,30),点C可表示为点C(1,60),点E可表示为点E(3,120),点F可表示为点F(4,150),点B可表示为点B(2,30),则D点可表示为()A.D(0,90)B.D(90,0)C.D(90,5)D.D(5,90)【分析】根据题干得出规律,从而得出答案.【解答】解:根据题意知:横坐标表示长度,纵坐标表示角度,从而得出D点可表示为(5,90),故选:D.5.在平面直角坐标系中,若A(m+3,m﹣1),B(1﹣m,3﹣m),且直线AB∥x轴,则m 的值是()A.﹣1B.1C.2D.3【分析】根据平行于x轴的直线上的点的纵坐标相等,建立方程求解即可求得答案.【解答】解:∵直线AB∥x轴,∴m﹣1=3﹣m,解得:m=2,故选:C.6.如图,在平面直角坐标系中,半径均为1个单位长度的半圆组成一条平滑的曲线,点P 从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2022秒时,点P的坐标是()A.(2021,0)B.(2022,﹣1)C.(2021,﹣1)D.(2022,0)【分析】利用坐标与图形的关系,结合路程问题求解.【解答】解:一个半圆的周长是π,速度是每秒,所以走一个半圆需要2秒,2022秒正好可以走1011个半圆,故选:D.7.如图,在平面直角坐标系中,点A(1,1),B(3,1),C(3,3),D(1,3),动点P 从点A出发,以每秒1个单位长度的速度沿AB﹣BC﹣CD﹣DA﹣AB﹣…路线运动,当运动到2022秒时,点P的坐标为()A.(1,1)B.(3,1)C.(3,3)D.(1,3)【分析】利用路程找规律,看最后的路脚点,再求解.【解答】解:由题意得:四边形ABCD是正方形,且边长是2,点P运动一周需要8秒,2022÷8商252余6,结果到点D处,故坐标为(1,3),故选:D.8.如图,在平面直角坐标系中,三角形ABC三个顶点A、B、C的坐标A(0,4),B(﹣1,b),C(2,c),BC经过原点O,且CD⊥AB,垂足为点D,则AB•CD的值为()A.10B.11C.12D.14【分析】AB•CD可以联想到△ABC的面积公式,根据S△ABO+S△ACO=S△ABC即可求解.【解答】解:∵A(0,4),∴OA=4,∵B(﹣1,b),C(2,c),∴点B,C到y轴的距离分别为1,2,∵S△ABO+S△ACO=S△ABC,∴×4×1+×4×2=×AB•CD,∴AB•CD=12,故答案为:C.9.如图,在平面直角坐标系中,A,B,C三点坐标分别为(0,a),(0,3﹣a),(1,2),且点A在点B的下方,连接AC,BC,若在AB,BC,AC若所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为5个,那么a的取值范围是()A.﹣1<a≤0B.﹣1≤a≤1C.1≤a<2D.0<a≤1【分析】根据题意得出除了点C外,其它三个横纵坐标为整数的点落在所围区域的边界上,即线段AB上,从而求出a的取值范围.【解答】解:∵点A(0,a),点B(0,3﹣a),且A在B的下方,∴a<3﹣a,解得:a<1.5,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为5个,∵点A,B,C的坐标分别是(0,a),(0,3﹣a),(1,2),∴区域内部(不含边界)没有横纵坐标都为整数的点,∴已知的5个横纵坐标都为整数的点都在区域的边界上,∵点C(1,2)的横纵坐标都为整数且在区域的边界上,∴其他的4个都在线段AB上,∴3≤3﹣a<4.解得:﹣1<a≤0,故选:A.10.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB 上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B′处,则B′点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)【分析】过点B′作B′D⊥OC,因为∠CPB=60°,CB′=OC=OA=4,所以∠B′CD=30°,B′D=2,根据勾股定理得DC=2,故OD=4﹣2,即B′点的坐标为(2,).【解答】解:过点B′作B′D⊥OC∵∠CPB=60°,CB′=OC=OA=4∴∠B′CD=30°,B′D=2根据勾股定理得DC=2∴OD=4﹣2,即B′点的坐标为(2,)故选:C.11.如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P.若点P的坐标为(a,2a﹣3),则a的值为.【分析】根据作图方法可知点P在∠BOA的角平分线上,由角平分线的性质可知点P到x轴和y轴的距离相等,可得关于a的方程,求解即可.【解答】解:∵OA=OB,分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P,∴点P在∠BOA的角平分线上,∴点P到x轴和y轴的距离相等,又∵点P的坐标为(a,2a﹣3),∴a=2a﹣3,∴a=3.故答案为:3.12.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是.【分析】因为△ABD与△ABC有一条公共边AB,故本题应从点D在AB的上边、点D 在AB的下边两种情况入手进行讨论,计算即可得出答案.【解答】解:△ABD与△ABC有一条公共边AB,当点D在AB的下边时,点D有两种情况:①坐标是(4,﹣1);②坐标为(﹣1,﹣1);当点D在AB的上边时,坐标为(﹣1,3);点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).13.教材上曾让同学们探索过线段的中点坐标:在平面直角坐标系中,有两点A(x1,y1)、B(x2,y2),所连线段AB的中点是M,则M的坐标为(,),如:点A (1,2)、点B(3,6),则线段AB的中点M的坐标为(,),即M(2,4).利用以上结论解决问题:平面直角坐标系中,若E(a﹣1,a),F(b,a﹣b),线段EF的中点G恰好位于y轴上,且到x轴的距离是1,则4a+b的值等于.【分析】根据中点坐标公式求出点G的坐标,根据线段EF的中点G恰好位于y轴上,且到x轴的距离是1,得到点G的横坐标等于0,纵坐标的绝对值为1,列出方程组求解即可.【解答】解:根据题意得:G(,),∵线段EF的中点G恰好位于y轴上,且到x轴的距离是1,∴,解得:4a+b=4或0.故答案为:4或0.14.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|,例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q 的交点).已知点,B为y轴上的一个动点.(1)若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;(2)直接写出点A与点B的“非常距离”的最小值.【分析】(1)根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的定义可以确定|0﹣y|=2,据此可以求得y的值;(2)设点B的坐标为(0,y).因为|﹣﹣0|≥|0﹣y|,所以点A与点B的“非常距离”最小值为|﹣﹣0|=.【解答】解:(1)∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|﹣﹣0|=≠4,∴|0﹣y|=2,解得y=2或y=﹣2;∴点B的坐标是(0,2)或(0,﹣2);故答案为:(0,2)或(0,﹣2);(2)∵|﹣﹣0|≥|0﹣y|,∴点A与点B的“非常距离”最小值为|﹣﹣0|=;∴点A与点B的“非常距离”的最小值为.故答案为:.15.如图,在平面直角坐标系中,已知三点的坐标分别为A(0,4),B(2,0),C(2,5),连接AB,AC,BC.(1)求AC,AB的长;(2)∠CAB是直角吗?请说明理由.【分析】(1 )过点A作AH⊥BC于点H,再利用勾股定理求解即可;(2 )利用勾股定理的逆定理即可得出结论.【解答】解:(1)如图,∵A(0,4),B(2,0),C(2,5),∴OA=4,OB=2,BC=5,过点A作AH⊥BC于点H,∴BH=OA=4,AH=OB=2,∴CH=BC﹣BH=5﹣4=1,在Rt△OAB中,AB=,在Rt△ACH中,AC=;(2)∠CAB是直角,理由:由(1)得,AC=,AB=2,BC=5,∵,∴AC2+AB2=BC2,∴∠CAB是直角.16.对于某些三角形或四边形,我们可以直接用面积公式或者用割补法来求它们的面积.下面我们再研究一种求某些三角形或四边形面积的新方法:如图1,2所示,分别过三角形或四边形的顶点A,C作水平线的铅垂线l1,l2,l1,l2之间的距离d叫做水平宽;如图1所示,过点B作水平线的铅垂线交AC于点D,称线段BD的长叫做这个三角形的铅垂高;如图2所示,分别过四边形的顶点B,D作水平线l3,l4,l3,l4之间的距离h叫做四边形的铅垂高.【结论提炼】容易证明:“三角形的面积等于水平宽与铅垂高乘积的一半”,即“S=dh”【结论应用】为了便于计算水平宽和铅垂高,我们不妨借助平面直角坐标系.已知:如图3,点A(﹣5,2),B(5,0),C(0,5),则△ABC的水平宽为10,铅垂高为,所以△ABC面积的大小为.【再探新知】三角形的面积可以用“水平宽与铅垂高乘积的一半”来求,那四边形的面积是不是也可以这样求呢?带着这个问题,我们进行如下探索:(1)在图4所示的平面直角坐标系中,取A(﹣4,2),B(1,5),C(4,1),D(﹣2,﹣4)四个点,得到四边形ABCD.运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小是;用其它的方法进行计算得到其面积的大小是,由此发现:用“S=dh”这一方法对求图4中四边形的面积.(填“适合”或“不适合”)(2)在图5所示的平面直角坐标系中,取A(﹣5,2),B(1,5),C(4,2),D(﹣2,﹣3)四个点,得到了四边形ABCD.运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小是,用其它的方法进行计算得到面积的大小是,由此发现:用“S=dh”这一方法对求图5中四边形的面积.(“适合”或“不适合”)(3)在图6所示的平面直角坐标系中,取A(﹣4,2),B(1,5),C(5,1),D(﹣1,﹣5)四个点,得到了四边形ABCD.通过计算发现:用“S=dh”这一方法对求图6中四边形的面积.(填“适合”或“不适合”)【归纳总结】我们经历上面的探索过程,通过猜想、归纳,验证,便可得到:当四边形满足某些条件时,可以用“S=dh”来求面积.那么,可以用“S=dh”来求面积的四边形应满足的条件是:.【分析】【结论应用】直接代入公式即可;【再探新知】(1)求出水平宽,铅垂高,代入公式求出面积,再利用矩形面积减去周围四个三角形面积可得答案;(2)(3)与(1)同理;【归纳总结】当四边形满足一条对角线等于水平宽或铅垂高时,四边形可以用“S=dh”来求面积.【解答】解:【结论应用】由图形知,铅垂高为4,S△ABC==20,故答案为:4,20;【再探新知】(1)∵四边形ABCD的水平宽为8,铅垂高为9,∴运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小为36,利用四边形ABCD所在的矩形面积减去周围四个三角形面积为8×9﹣=37.5,∴用“S=dh”这一方法对求图4中四边形的面积不合适,故答案为:36,37.5,不合适;(2)∵四边形ABCD的水平宽为9,铅垂高为8,∴运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小为36,利用四边形ABCD所在的矩形面积减去周围四个三角形面积为8×9﹣=36,∴用“S=dh”这一方法对求图4中四边形的面积,合适,故答案为:36,36,合适;(3)∵四边形ABCD的水平宽为9,铅垂高为10,∴运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小为45,利用四边形ABCD所在的矩形面积减去周围四个三角形面积为10×9﹣=45,∴用“S=dh”这一方法对求图4中四边形的面积,合适,故答案为:合适;【归纳总结】当四边形满足一条对角线等于水平宽或铅垂高时,四边形可以用“S=dh”来求面积,故答案为:一条对角线等于水平宽或铅垂高.17.如图所示,在平面直角坐标系中,P(2,2),(1)点A在x的正半轴运动,点B在y的正半轴上,且P A=PB,①求证:P A⊥PB;②求OA+OB的值;(2)点A在x的正半轴运动,点B在y的负半轴上,且P A=PB,③求OA﹣OB的值;④点A的坐标为(8,0),求点B的坐标.【分析】(1)①过点P作PE⊥x轴于E,作PF⊥y轴于F,根据点P的坐标可得PE=PF=2,然后利用“HL”证明Rt△APE和Rt△BPF全等,根据全等三角形对应角相等可得∠APE=∠BPF,然后求出∠APB=∠EPF=90°,再根据垂直的定义证明;②根据全等三角形对应边相等可得AE=BF,再表示出OA、OB,然后列出方程整理即可得解;(2)③根据全等三角形对应边相等可得AE=BF,再表示出PE、PF,然后列出方程整理即可得解;④求出AE的长度,再根据全等三角形对应边相等可得AE=BF,然后求出OB,再写出点B的坐标即可.【解答】(1)①证明:如图1,过点P作PE⊥x轴于E,作PF⊥y轴于F,∵P(2,2),∴PE=PF=2,在Rt△APE和Rt△BPF中,,∴Rt△APE≌Rt△BPF(HL),∴∠APE=∠BPF,∴∠APB=∠APE+∠BPE=∠BPF+∠BPE=∠EPF=90°,∴P A⊥PB;②解:∵Rt△APE≌Rt△BPF,∴BF=AE,∵OA=OE+AE,OB=OF﹣BF,∴OA+OB=OE+AE+OF﹣BF=OE+OF=2+2=4;(2)解:③如图2,∵Rt△APE≌Rt△BPF,∴AE=BF,∵AE=OA﹣OE=OA﹣2,BF=OB+OF=OB+2,∴OA﹣2=OB+2,∴OA﹣OB=4;④∵PE=PF=2,PE⊥x轴于E,作PF⊥y轴于F,∴四边形OEPF是正方形,∴OE=OF=2,∵A(8,0),∴OA=8,∴AE=OA﹣OE=8﹣2=6,∵Rt△APE≌Rt△BPF,∴AE=BF=6,∴OB=BF﹣OF=6﹣2=4,∴点B的坐标为(0,﹣4).18.如图,在平面直角坐标系xOy中,点B(1,0),点C(5,0),以BC为边在x轴的上方作正方形ABCD,点M(﹣5,0),N(0,5).(1)点A的坐标为;点D的坐标为;(2)将正方形ABCD向左平移m个单位,得到正方形A'B'C'D',记正方形A'B'C'D'与△OMN重叠的区域(不含边界)为W:①当m=3时,区域内整点(横,纵坐标都是整数)的个数为;②若区域W内恰好有3个整点,请直接写出m的取值范围.【分析】(1)先求出正方形的边长为BC=4,再求点的坐标即可;(2)①画出正方形A'B'C'D',结合图形求解即可;②在△OMN中共有6个整数点,在平移正方形ABCD,找到恰好有3个整数解的情况即可.【解答】解:(1)∵点B(1,0),点C(5,0),∴BC=4,∵四边形ABCD是正方形,∴A(1,4),D(5,4),故答案为:(1,4),(5,4);(2)①如图:共有3个,故答案为:3;②在△OMN中共有6个整数点,分别是(﹣1,1),(﹣1,2),(﹣1,3),(﹣2,1),(﹣2,2),(﹣3,1),∵区域W内恰好有3个整点,∴2<m≤3或6≤m<7.19.类比学习是知识内化的有效途径,认真读题是正确审题的第一步:对于平面直角坐标系xOy中的点P(a,b),若点P'的坐标为(其中k为常数,且k≠0),则称点P'为点P的“k系好友点”;例如:P(1,2)的“3系好友点”为即.请完成下列各题.(1)点P(﹣3,1)的“2系好友点”P'的坐标为.(2)若点P在y轴的正半轴上,点P的“k系好友点”为P'点,若在三角形OPP'中,pp′=3OP,求k的值.(3)已知点A(x,y)在第四象限,且满足xy=﹣8;点A是点B(m,n)的“﹣2系好友点”,求m﹣2n的值.【分析】(1)根据“k系好友点”的定义列式计算求解;(2)设P(0,t)(t>0),根据定义得点P′(kt,t),则PP′=|kt|=3OP=3t,即可求解;(3)点A是点B(m,n)的“﹣2系好有点”,可得点A(m﹣2n,n﹣),由xy=﹣8得到(m﹣2n)2=16,即可求解.【解答】解:(1)点P(﹣3,1),根据“k系好友点”的求法可知,k=2,∵﹣3+2×1=﹣1,1+=﹣,∴P′的坐标为(﹣1,﹣),故答案为(﹣1,﹣);(2)设P(0,t)其中t>0,根据“k系好友点”的求法可知,P′(kt,t),∴PP'∥x轴,∴PP'=|kt|,又∵OP=t,PP'=3OP,∴|kt|=3t,∴k=±3;(3)∵B(m,n)的﹣3系好有点A为(m﹣2n,n﹣),∴x=m﹣2n,y=n﹣,又∵xy=﹣8,∴(m﹣2n)•(n﹣)=﹣8,∴m﹣2n=±4,∵点A在第四象限,∴x>0,即m﹣2n=4.20.如图,在以点O为原点的平面直角坐标系中点A,B的坐标分别为(a,0),(a,b),点C在y轴上,且BC∥x轴,a,b满足|a﹣3|+=0.点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线运动(回到O为止).(1)直接写出点A,B,C的坐标;(2)当点P运动3秒时,连接PC,PO,求出点P的坐标,并直接写出∠CPO,∠BCP,∠AOP之间满足的数量关系;(3)点P运动t秒后(t≠0),是否存在点P到x轴的距离为t个单位长度的情况.若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用绝对值和二次根式的非负性即可求得;(2)当P运动3秒时,点P运动了6个单位长度,根据AO=3,即可得点P在线段AB 上且AP=3,写出P的坐标即可;作PE∥AO.利用平行线的性质证明即可;(3)由t≠0得点P可能运动到AB或BC或OC上.再分类讨论列出一元一次方程解得t即可.【解答】解:(1)∵|a﹣3|+=0且|a﹣3|≥0,≥0,∴|a﹣3|=0,=0,∴a=3,b=4,∴A(3,0),B(3,4),C(0,4);(2)如图,当P运动3秒时,点P运动了6个单位长度,∵AO=3,∴点P运动3秒时,点P在线段AB上,且AP=3,∴点P的坐标是(3,3);如图,作PE∥AO.∵CB∥AO,PE∥AO,∴CB∥PE,∴∠BCP=∠EPC,∠AOP=∠EPO,∴∠CPO=∠BCP+∠AOP;(3)存在.∵t≠0,∴点P可能运动到AB或BC或OC上.①当点P运动到AB上时,2t≤7,∵0<t≤,P A=2t﹣OA=2t﹣3,∴2t﹣3=t,解得:t=2,∴P A=2×2﹣3=1,∴点P的坐标为(3,1);②当点P运动到BC上时,7≤2t≤10,即≤t≤5,∵点P到x轴的距离为4,∴t=4,解得t=8,∵≤t≤5,∴此种情况不符合题意;③当点P运动到OC上时,10≤2t≤14,即5≤t≤7,∵PO=OA+AB+BC+OC﹣2t=14﹣2t,∴14﹣2t=t,解得:t=,∴PO=﹣2×+14=,∴点P的坐标为(0,).综上所述,点P运动t秒后,存在点P到x轴的距离为t个单位长度的情况,点P的坐标为(3,1)或(0,).2122。
平面直角坐标系与几何图形综合应用学习目标:1、掌握点到坐标轴的距离以及平行于坐标轴的直线上点的特征2、会在平面直角坐标系中点的坐标表示线段的长3、体会数形结合的思想学习重点:在平面直角坐标系中求几何图形的面积学习难点:掌握并运用平面直角坐标系内点坐标表示线段的长,以及图形的面积学习过程:一、复习巩固(1)若A(-1,0),B(4,0),则线段AB的长为多少(2)若A(0,5),B(0,3),则线段AB的长为多少(3)若A(-3,-2),B(-5,-2),则线段AB的长为多少(4)若A(3,2),B(3,-3),则线段AB的长为多少(5)已知点P在x轴上,且到y轴的距离为2,则点P的坐标为(6)已知点P到x轴的距离为3,到y轴的距离为4,则点P的坐标为二、探究典型例1 已知平面直角坐标系中三个点的坐标A(-1,3),B(3,3),C(2,1),(1)求三角形ABC的面积.(2)A点向下平移一个单位得到点D,求三角形BCD的面积.小结:在平面直角坐标系中求图形的面积,通常需要用到割补法。
然后找到各顶点坐标,再由坐标表示出线段的长度,最后由线段的长度求出图形的面积.例2如图1,点A的坐标为(0,3),将点A向右平移6个单位得到点B,过点B作BC⊥x轴于C(1)求B、C两点坐标及四边形AOCB的面积;(2)点Q自O点以1个单位/秒的速度在y轴上向上运动,同时点P自C点以2个单位/秒的速度在x轴上向左运动,设运动时间为t秒(0<t<3),是否存在一段时间,使得S⊿BOQ<1S⊿BOP,若存在,求出t的取值范围,若不存在,说明2理由.(3)求证:四边形BPOQ的面积是一个定值.。
平面直角坐标系与几何图形相结合
扣庄乡陈官营中学田海凤
教学目标:
(一)知识与技能:使学生进一步复习勾股定理、等腰三角形和平面直角坐标系的基础知识,通过知识的相互联系发展学生的基本技能,发展学生思维的灵活性.
(二)过程与方法:通过学生的自主学习,合作探究等活动,让学生去感受和体会思考问题的正确的思路和方法,建立知识间的相互联系.
(三)情感态度与价值观:体会事物间的相互作用和相互联系.
重点:掌握基础知识发展学生的基本技能
难点:提高学生的解决问题的能力
教学方法:自主探究、合作学习.
教学手段:小篇子
教学过程:
一、复习回顾
1.在R t△ABC中,∠C=90°a=3,b=4,则C=___
2.如图1,等腰△ABC中,AB=AC,∠B=46°,BC=4,AD⊥BC
(1)∠C=______°
(2)∠BAD=______°
(3)BD=______.
3. 等腰△ABC中∠B=60°,则△ABC是____三角形. BC=4,AD⊥BC,则AD=_____
4.点A(1,-4),则点A在第______象限
5.点B(-1,-2),则点B关于x轴的对称点B′的坐标为_______;则点B关于y轴的对称点B〞的坐标为________;点B关于原点的对称点的坐标为_________;点B到x轴的距离是_______;点B到y轴的距离是_________
二、例题讲解
等边△ABC中AB=AC=BC=6,请建一个适当的平面直角坐标系,求个点坐标。
教师总结:在坐标轴上只要有线段长就能求点的坐标,有坐标就会知道一些线段长,当点不在坐标轴上时,过点做两坐标轴的垂线,利用勾股定理也能求点的坐标。
变形:如图9,等边△ABC两个顶点的坐A(-4,0),B(2,0)
(1)求点C的坐标;
(2)求△ABC的面积
变形:如图8,在平面直角坐标系中,Rt△CDO的直角边OD在x轴、的正半轴上,且CD=2,OD=1,将△CDO沿x轴向左平移1个单位再把所得图像绕点O按逆时针旋转90°得到Rt△AOB,,
(1)写出点A
、C的坐标
(2)求点A与点C的距离
四、训练提高
题组一
1.如图2长方形OABC在平面直角坐标系中的位置如图所示,点B的坐标(3,-2),则长方形的面积______.
2.射线OP在直角坐标系的位置如图3所示,若OP=6,∠POX=30°,则点P的坐标是________.
3.在等腰三角形ABC中,腰AB=AC=10
2,底边BC=4.建立如图4所示的直角坐标系,则点A的坐标_____,点B的坐标______、点C的坐标______
4.已知:正方形ABCD在坐标系内的位置如图5所示,边长为2,并按图3答出正方形ABCD 顶点的坐标:
点A______,点B______,点C______,点D_____.
5.已知:如图6所示,正三角形ABC边长为4.按图填空:点A的坐标______,点B的坐标______,点c的坐标______
6. 在6×8网格图中,每个小正方形边长
均为1,点0和△ABC及△A′B′C′的
顶点均为小正方形的顶点.则四边形
AA′C′C的周
题组二
1.如图所示,在直角坐标系中,有一直角三角形OAB且OA=3,OB=4,观察图形回答下列
问题:
(1)写出A、B两点的坐标
(2)求出线段AB的长
(3)在x轴上找一点P,使△ABP
为等腰三角形
2.我市“提出优化市民的居住环境,改
善人们的居住条件”这一利民政策,
经研究决定把县城周边的A、B村冬
天采暖纳入改造日程。
要在主管道上建一个供热分站点,分别向供热热主管道同侧的A、B 两村供热。
经实地勘查后,工程人员设计图纸时,以热力总公司O为坐标原点,以供热主
图5
图6
管道所在的直线为x 轴建立直角坐标系(如图)。
两村的坐标分别为A (2,1),B (7,4)。
(1)若从节约经费考虑,供热分站点建在距热力总公司O 多远的地方可使所用输热管道最短?并求出最短的管道长度?
(2) 请在图2中用尺规作出供热分站点建在什么位置时可使它到A 村、B 村的距离相等?保留作图痕迹。
分析:
五、课堂检测:
1.在直角坐标系中,M(-3,4), M 到x 、y 轴的距离与M /到x 、y 轴的距
离相等,则M 的坐标为…………………………………………( )
A .(-3,-4) B. (3,4) C. (3,-4) D. (3,0).
2. 如图, 点M(-3,4)离原点的距离是( )单位长度.
A. 3
B. 4
C. 5
D. 7.
3.平面直角坐标系中,某正方形ABCD 三个点顶点坐标分别为:
(11)(11)(11)A B C ----,,,,,,
则D 点坐标为………………………( ) A ( 0,1 ) B (1, 1) C (1,0 ) D 无法确定
4.如图,A 、B 、C 三点的位置关系及有关数据如图所示,则
下列对A 、B 、C 三点的相对位置确定正确的有…………( )
①A 在B 的东北方向和C 点的西北方向上;②A 在B 的东北
方向22cm 处;③设B (0,0)C (4,0),则A 的位置为(2,2);
④A 在距BC 2cm 的位置上
A 、1个
B 、2个
C 、3个
D 、4个
5.如图3,平行四边形ABCD 的边长42AB BC ==,,若把它放
在平面直角坐标系中,使AB 在x 轴上,点C 在y 轴上,如果点A
的坐标为(3-,0),求B C D ,,的坐标.
六、课堂总结
本节课你学到哪些知识,让学生自己用语言表述
七、课堂作业
必做题:把本节课所学到知识进行整理
选做题:学案题组二。