苏科版2020年七年级数学上册2.4《绝对值与相反数》 同步练习(含答案)
- 格式:pdf
- 大小:119.52 KB
- 文档页数:5
数轴、相反数、绝对值专题训练1. 若上升5m 记作+5m ,则-8m 表示___________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作5℃,那么零下2℃记作__________;太平洋中的马里亚纳海沟深达11 034m 11 034m(即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.2. 把下列各数填入它所在的集合里:-2,7,32-,0,2 013,0.618,3.14,-1.732,-5,+3①正数集合:{ …}②负数集合:{ …}③整数集合:{ …}④非正数集合:{ …}⑤非负整数集合:{ …}⑥有理数集合:{ …}3. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b 0aA .0<a <bB .a <0<bC .b <0<aD .a <b <04. 00.5121,小.5. 在数轴上大于-4.12的负整数有______________________.6. 到原点的距离等于3的数是____________.7. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.8. 已知数轴上点A 与原点的距离为2,则点A 对应的有理数是____________ 点B 与点A 之间的距离为3,则点B 对应的有理数是________________.9. 在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是_________.10. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西 边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米11. 如图是正方体的表面展开图,请你在其余三个空格内填入适当的数,使折成正方体后相对的面上的两个数互为相反数.0.5-3-1第11题图 第12题图 12. 上图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.13. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-14. 下列化简不正确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+- C .9.4)]9.4([+=-+- D .[( 4.9)] 4.9+-+=+15. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数16. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b 按照从小到大的顺序排列正确的是( )aA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a17. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数18. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.19. 填空:5.3-=______; 21+=_______; 5--=_______;3+=_______; _______=1; _______=-2.20. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________.21. 若|x |=-x ,则x 的取值范围是( )A .x =-1B .x =0C .x ≥0D .x ≤022. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.23. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b , 则a =______.24. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____;(3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____;(6)21433-÷-=____÷____=____×____=_____. 25、化简下列各数的符号: (1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)]26、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;27、若-m>0,|m|=7,求m.28、若|a+b|+|b+z|=0,求a,b的值。
绝对值专题绝对值是初中代数中的一个基本概念,是学习相反数、有理数运算及后续算术根的基础.绝对值又是初中代数中的一个重要概念,在解代数式化简求值、解方程(组)、解不等(组)等问题有着广泛的应用,全面理解、掌握绝对值这一概念,应从以下方面人手:l .去绝对值的符号法则:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a2.绝对值基本性质 ①非负性:0≥a ; ②b a ab ⋅=;③)0(≠=b ba b a; ④222a a a==;⑤b a b a +≤+;⑥b a b a b a +≤-≤-. 3.绝对值的几何意义从数轴上看,a 表示数a 的点到原点的距离(长度,非负);b a -表示数a 、数b 的两点间的距离. 例题讲解【例1】(1)已知1=a ,2=b ,3=c ,且c b a >>,那么c b a -+=.(2)已知d c b a 、、、是有理数,9≤-b a ,16≤-d c ,且25=+--d c b a ,那么=---c d a b .(3)已知5=x ,1=y ,那么=+--y x y x _________.(4)非零整数m 、n 满足05=-+n m ,所有这样的整数组),(n m 共有______组.思路点拨 (1)由已知条件求出c b a 、、的值,注意条件c b a >>的约束;(2)若注意到9+16=25这一条件,结合绝对值的性质,问题可获解;(3)既可以对x ,y 的取值进行分类求解,又可以利用绝对值的几何意义解;(4)从把5拆分成两个正整数的和入手. 【例2】如果c b a 、、是非零有理数,且0=++c b a ,那么abcabcc c b b a a +++的所有可能的值为( ).A .0B . 1或1-C .2或2-D .0或2-思路点拨根据b a 、的符号所有可能情况,脱去绝对值符号,这是解本例的关键. 【例3】已知12--b •ab 与互为相反数,试求代数式:1111(1)(1)(2)(2)(2015)(2015)ab a b a b a b ++++++++++的值.思路点拨运用相反数、绝对值、非负数的概念与性质,先求出b a 、的值.【例4】化简(1)12-x ; (2)31-+-x x ; (3)121++--x x .思路点拨 (1)就012012<-≥-x x ,两种情形去掉绝对值符号;(2)将零点1,3在同一数轴上表示出来,就1<x ,1≤x<3,x ≥3三种情况进行讨论;(3)由02101=--=+x x ,,得3,11==-=x x x ,.【例5】已知a 为有理数,那么代数式4321-+-+-+-a a a a 的取值有没有最小值?如果有,试求出这个最小值;如果没有,请说明理由.思路点拨a 在有理数X 围变化,4321----a a a a 、、、的值的符号也在变化,解本例的关键是把各式的绝对值符号去掉,为此要对a 的取值进行分段讨论,在各种情况中选取式子的最小值.:①我们把大于或等于零的数称为非负数,现阶段a 、na 2是非负数的两种重要形式,非负数有如下常用性质:(1) a ≥0,即非负数有最小值为0;(2)若0=+++h b a ,则0====h b a②形如(2)的问题称为多个绝对值问题,解这类问题的基本步骤是:求零点、分区间、定性质、去符号、即令各绝对值代数式为0,得若干个绝对值为零的点,这些点把数轴分成几个区间,再在各区间内化简求值即可.请读者通过本例的解决,仔细体会上述解题步骤.【例6】已知36)13)(12)(21(=++-++--++z z y y x x ,求z y x 32++的最大值和最小值.思路点拨 解本例的关键是利用绝对值的几何意义确定括号内每个式子的取值X 围.基础训练1.若有理数x 、y 满足22015(1)x -+0112=+-y x ,则=+22y x . 2.已知5=a ,3=b ,且a b b a -=-,那么b a +=. 3.已知有理数c b a 、、在数轴上的对应位置如图所示:则b a c a c -+-+-1化简后的结果是.4.若b a 、为有理数,那么,下列判断中:(1)若b a =,则一定有b a =; (2)若b a >,则一定有b a >; (3)若b a >,则一定有b a >;(4)若b a =,则一定有22)(b a -=.正确的是 (填序号) .5.已知数轴上的三点A 、B 、C 分别表示有理数a ,1,1-,那么1+a 表示( ). A .A 、B 两点的距离B .A 、C 两点的距离C .A 、B 两点到原点的距离之和D .A 、C 两点到原点的距离之和(某某省竞赛题) 6.已知a 是任意有理数,则a a --的值是( ).A .必大于零B .必小于零C 必不大于零D .必不小于零7.若1++b a 与2)1(+-b a 互为相反数,则a 与b 的大小关系是( ). A .b a > B .b a = C .b a < D .b a ≥8.如图,有理数b a 、在数轴上的位置如图所示,则在b a +,a b 2-,a b -,b a -,2+a ,4--b 中,负数共有() A . 1个 B .2个 C .3个 D .4个9.化简:(1)3223++-x x ; (2)1331++--x x . 10.求满足1=+-ab b a 的非负整数对),(b a 的值.11.若2-<x ,则=+-x 11;若a a -=,则=---21a a . 12.能够使不等式0)1)((<+-x x x 成立的x 的取值X 围是. l3.a 与b 互为相反数,且54=-b a ,那么12+++-ab a b ab a =. 14.设c b a 、、分别是一个三位数的百位、十位和个位数字,并且c b a ≤≤,则a c cb b a -+-+-可能取得的最大值是.15.使代数式xx x 43-的值为正整数的x 值是( ).A .正数 B .负数 C .零 D .不存在的16.如果02=+b a ,则21-+-bab a 等于( ). A .2 B .3 C .4 D .5 17.如果150<<p ,那么代数式1515--+-+-p x x p x 在15≤≤x p 的最小值是( ).A .30 B .0 C .15 D .一个与p 有关的代数式 18.设0=++c b a ,0>abc ,则cba b a c a c b +++++的值是( ). A .3- B .1 C .3或1- D .3-或1 19.有理数c b a 、、均不为零,且0=++c b a ,设ba c ac b cb a x +++++=,试求代数式20029919+-x x 的值.ba20.若c b a 、、为整数,且19919=-+-ac b a ,求c b b a a c -+-+-的值.21.已知1,1≤≤y x ,设421--++++=x y y y x M ,求M 的最大值与最小值.22.已知02003200232120032002321=-+-++-+-+-x x x x x , 求代数式20032002212222x x x x+--- 的值.答案: 1.3736-2c 9.(1)原式=351()2325()23251()3x x x x x x ⎧--<-⎪⎪⎪-+-≤<⎨⎪⎪+≥⎪⎩ (2)原式=43(2)121(2)3143(1)325(14)43(4)x x x x x x x x x x --<-⎧⎪⎪-+-≤<-⎪⎪⎪+-≤<⎨⎪+≤<⎪⎪-≥⎪⎪⎩10.(a,b)=(1,0),(0,1),(1,1) 提示:由条件得||10a b ab -=⎧⎨=⎩ 或||01a b ab -=⎧⎨=⎩11.-2-x 、-1 12.x<-1 提示:因│x │≥x,│x │-x ≥0,故1+x<0. 13.425 提示:ab=-b 2=-│b │2=-42514.16 15.D16.B 提示:原式=|2||||||4|2||a a a a a -++19.提示:a 、b 、c 中不能全同号,必一正二负或二正一负,得a=-(b+c),b=-(c+a),c=-(a+b),即a b c +=-1,b c a +=-1,c a b +=-1, 所以||a b c +,||b c a +,||c a b+ 中必有两个同号,另一个符号与其相反,•即其值为两个+1,一个-1或两个-1,一个+1,x=1,原式=1904. 20.提示:a 、b 、c 都为整数,则a-b 、c-a 均为整数,则│a-b │、│c-a•│为两个非负整数,│a-b │19+│c-a │99=1, 只能│a-b │19=0且│c-a │99=1…………① 或│a-b │19=1且│c-•a │99=0……………②, 由①得a=b,且│c-a │=1,│b-c │=│c-a │=1; 由②得c=a,且│a-b │=1,•│b-c │=│a-b │=1, 无论①或②,都有│a-b │+│c-a │=1,且│b-c │=1, 故│c-a │+•│a-b │+│b-c │=2.21.提示:-1≤x ≤1,-1≤y ≤1,│y+1│=y+1,│2y-x-4│=4+x-2y,当x+y ≤0时,•M=5-2y,得3≤M ≤7; 当x+y ≥0时,M=2x+5,得3≤M ≤7;又当x=-1,y=1时,M=3;当x=-1,•y=-1时,M=7, 故M 的最大值为7,最小值为3. 22.由题意得:x 1=1,x 2=2,… ,x 2003=2003, 原式=2-22-23- (22002)+22003=22003-22002-…23-22+2提高训练1.计算:214131412131---+-=______.2.代数式131211++-++x x x 的最小值为______.3.已知c b a <<<0,化简式子:c b a c b a b a -+--++-2得______.4.若a 、b 、c 、d 为互不相等的有理数,且1=-=-=-b d c b c a 那么=-d a ___. 5.设a 是有理数,则a a -的值( ).A .可以是负数B .不可能是负数C .必是正数D .可以是正数,也可以是负数 6.已知m m -=,化简21---m m 所得的结果是________. 7.若3=a ,5=b ,那么b a b a --+的绝对值等于________. 8.有理数a 、b 、c 的大小关系如图,则下列式子中一定成立的是( ). A .0>++c b a B .c b a <+ C .c a c a +=- D .a c c b ->-9.已知abcabc cc bb aa x +++=,且a 、b 、c 都不等于0,求x 的所有可能值.10.已知a 、b 、c 满足0))()((=+++a c c b b a ,且0<abc ,则代数式cc b b a a ++的值为______.11.若有理数m 、n 、p 满足1=++pp nn mm ,则mnpmnp32=______.12.设a 、b 、c 是不为零的有理数,那么ccb b a a x -+=的值有( ). A .3种 B .4种 C .5种 D .6种13.如图,已知数轴上的点A 、B 、C 所对应的数a 、b 、c 都不为零,且C 是AB 的中点.如果0222=-+--+--+c b a c b c a b a ,那么原点O 的位置在( ). A .线段AC 上 B .线段CA 的延长线上 C .线段BC 上 D .线段CB 的延长线上B C A14.若2-<x ,则x y +-=11等于( ). A .x +2 B .x --2 C .x D .x -15.已知a 、b 、c 、d 是有理数,9≤-b a ,16≤-d c ,且25=+--d c b a ,求c d a b ---的值.16.在数轴上把坐标为1,2,3,…,2006的点称为标点,一只青蛙从点1出发,经过2006次跳动,且回到出发点,那么该青蛙所跳过的全部路径的最大长度是多少?说明理由.。
2.4.2绝对值与相反数——绝对值分层练习考察题型一求一个数的绝对值1.下列各对数中,互为相反数的是()A .(5)-+与(5)+-B .12-与(0.5)-+C .|0.01|--与1(100--D .13-与0.3【详解】解:A .(5)5-+=-,(5)5+-=-,不合题意;B .(0.5)0.5-+=-,与12-相等,不合题意;C .|0.01|0.01--=-,11()0.01100100--==,0.01-与0.01互为相反数,符合题意;D .13-与0.3不是相反数,不合题意.故本题选:C .2.若m 、n 互为相反数,则|5|m n -+=.【详解】解:m 、n 互为相反数,|5||5|5m n -+=-=.故本题答案为:5.3.比较大小:3(15--)| 1.35|--.(填“<”、“>”或“=”)【详解】解:3(1) 1.65--=,| 1.35| 1.35--=-,因为1.6 1.35>-,所以3(15--)| 1.35|>--.故本题答案为:>.考察题型二绝对值的代数意义1.最大的负整数是,绝对值最小的数是.【详解】解:最大的负整数是1-,绝对值最小的数是0.故本题答案为:1-,0.2.如果|2|2a a -=-,则a 的取值范围是()A .0a >B .0aC .0aD .0a <【详解】解:|2|2a a -=- ,20a ∴-,解得:0a .故本题选:C .3.如果一个数的绝对值是它的相反数,则这个数是()A .正数B .负数C .正数或零D .负数或零【详解】解: 一个数的绝对值是它的相反数,设这个绝对值是a ,则||0a a =-,0a ∴.故本题选:D .4.已知实数满足|3|3x x -=-,则x 不可能是()A .1-B .0C .4D .3【详解】解:|3|3x x -=- ,30x ∴-,即3x .故本题选:C .5.下列判断正确的是()A .若||||a b =,则a b=B .若||||a b =,则a b =-C .若a b =,则||||a b =D .若a b =-,则||||a b =-【详解】解:若||||a b =,则a b =-或a b =,所以A ,B 选项错误;若a b =,则||||a b =,所以C 选项正确;若a b =-,则||||a b =,所以D 选项错误.故本题选:C .6.在数轴上有A 、B 两点,点A 在原点左侧,点B 在原点右侧,点A 对应整数a ,点B 对应整数b ,若||2022a b -=,当a 取最大值时,b 值是()A .2023B .2021C .1011D .1【详解】解: 点A 在点B 左侧,0a b ∴-<,||2022a b b a ∴-=-=,a 为负整数,则最大值为1-,此时(1)2022b --=,则2021b =.故本题选:B .7.若x 为有理数,||x x -表示的数是()A .正数B .非正数C .负数D .非负数【详解】解:(1)若0x 时,||0x x x x -=-=;(2)若0x <时,||20x x x x x -=+=<;由(1)(2)可得:||x x -表示的数是非正数.故本题选:B .8.如果||||||m n m n +=+,则()A .m 、n 同号B .m 、n 异号C .m 、n 为任意有理数D .m 、n 同号或m 、n 中至少一个为零【详解】解:当m 、n 同号时,有两种情况:①0m >,0n >,此时||m n m n +=+,||||m n m n +=+,故||||||m n m n +=+成立;②0m <,0n <,此时||m n m n +=--,||||m n m n +=--,故||||||m n m n +=+成立;∴当m 、n 同号时,||||||m n m n +=+成立;当m 、n 异号时,则:||||||m n m n +<+,故||||||m n m n +=+不成立;当m 、n 中至少一个为零时,||||||m n m n +=+成立;综上,如果||||||m n m n +=+,则m 、n 同号或m 、n 中至少一个为零.故本题选:D .考察题型三解方程:()0x a a =>,x a =±;0x =,0x =1.若|| 3.2a -=-,则a 是()A .3.2B . 3.2-C . 3.2±D .以上都不对【详解】解:|| 3.2a -=- ,|| 3.2a ∴=,3.2a ∴=±.故本题选:C .2.若0a <,且||4a =,则1a +=.【详解】解:若0a <,且||4a =,所以4a =-,13a +=-.故本题答案为:3-.3.已知||4x =,||5y =且x y >,则2x y -的值为()A .13-B .13+C .3-或13+D .3+或13-【详解】解:||4x = ,||5y =且x y >,y ∴必小于0,5y =-,当4x =或4-时,均大于y ,①当4x =时,5y =-,代入224513x y -=⨯+=;②当4x =-时,5y =-,代入22(4)53x y -=⨯-+=-;综上,23x y -=-或2x y -=13+.故本题选:C .4.已知||4m =,||6n =,且||m n m n +=+,则m n -的值是()A .10-B .2-C .2-或10-D .2【详解】解:||m n m n +=+ ,||4m =,||6n =,4m ∴=,6n =或4m =-,6n =,462m n ∴-=-=-或4610m n -=--=-.故本题选:C .5.若|2|1x -=,则x 等于.【详解】解:根据题意可得:21x -=±,当21x -=时,解得:3x =;当21x -=-时,解得:1x =;综上,3x =或1x =.故本题答案为:1或3.6.小明做这样一道题“计算|2-★|”,其中★表示被墨水染黑看不清的一个数,他翻开后面的答案得知该题的结果为6,那么★表示的数是.【详解】解:设这个数为x ,则|2|6x -=,所以26x -=或26x -=-,①26x -=,62x -=-,4x -=,4x =-;②26x -=-,62x -=--,8x -=-,8x =;综上,4x =-或8.故本题答案为:4-或8.考察题型四绝对值的化简1.若1a <,|1||3|a a -+-=.【详解】解:1a < ,10a ∴->,30a ->,∴原式1342a a a =-+-=-.故本题答案为:42a -.2.若|||4|8x x +-=,则x 的值为.【详解】解:|||4|8x x +-= ,∴当4x >时,48x x +-=,解得:6x =;当0x <时,48x x -+-=,解得:2x =-.故本题选:2-或6.3.已知20212022x =,则|2||1||||1||2|x x x x x ---+++-+的值是.【详解】解:20212022x = ,即01x <<,20x ∴-<,10x -<,10x +>,20x +>,|2||1||||1||2|x x x x x ∴---+++-+2(1)12x x x x x =---+++--2112x x x x x =--++++--x =20212022=.故本题答案为:20212022.4.若a 、b 、c 均为整数,且||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为()A .1B .2C .3D .4【详解】解:a ,b ,c 均为整数,且||||1a b c a -+-=,||1a b ∴-=,||0c a -=或||0a b -=,||1c a -=,①当||1a b -=,||0c a -=时,c a =,1a b =±,所以||||||||||||0112a c c b b a a c a b b a -+-+-=-+-+-=++=;②当||0a b -=,||1c a -=时,a b =,所以||||||||||||1102a c c b b a a c c a b a -+-+-=-+-+-=++=;综上,||||||a c c b b a -+-+-的值为2.故本题选:B .5.用abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,当||||||a b b c c a -+-+-取得最大值时,这个三位数的最小值是.【详解】解:abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,a b c ∴,||||||a b b c c a ∴-+-+-a b b c a c =-+-+-22a c =-2()a c =-,当||||||a b b c c a -+-+-取得最大值时,即a c -取得最大值,而a 、b 、c 是自然数,9a ∴=,0c =,∴这个三位数的最小值为900.故本题答案为:900.【根据数轴上的点的位置化简绝对值】6.已知a 、b 、c 的大致位置如图所示:化简||||a c a b +-+的结果是()A .2a b c ++B .b c -C .c b -D .2a b c--【详解】解:由题意得:0b a c <<<,且||||c a >.0a c ∴+>,0a b +<,∴原式()a c a b =+---a c a b =+++2a b c =++.故本题选:A .7.已知a ,b ,c 的位置如图所示,则||||||a a b c b ++--=.【详解】解:由数轴可知:0b a c <<<,且||||||b c a >>,0a b ∴+<,0c b ->,||||||a abc b ∴++--()()a abc b =--+--a a b c b=----+2a c =--.故本题答案为:2a c --.8.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c -0,a b +0,c a -0.(2)化简:||||||b c a b c a -++--.【详解】解:(1)由图可知:0a <,0b >,0c >且||||||b a c <<,所以0b c -<,0a b +<,0c a ->,故本题答案为:<,<,>;(2)||||||b c a b c a -++--()()()c b a b c a =-+----c b a b c a=----+2b =-.【当0a >,1||aa =,当0a <时,1||aa =-】9.已知0ab ≠,则||||a b a b +的值不可能的是()A .0B .1C .2D .2-【详解】解:①当a 、b 同为正数时,原式112=+=;②当a 、b 同为负数时,原式112=--=-;③当a 、b 异号时,原式110=-+=.故本题选:B .10.已知a ,b 为有理数,0ab ≠,且2||3||a bM a b =+.当a ,b 取不同的值时,M 的值等于()A .5±B .0或1±C .0或5±D .1±或5±【详解】解:由于a ,b 为有理数,0ab ≠,当0a >、0b >时,且2||3235||a b M a b =+=+=;当0a >、0b <时,且2||3231||a b M a b =+=-=-;当0a <、0b >时,且2||3231||a b M a b =+=-+=;当0a <、0b <时,且2||3235||a b M a b =+=--=-.故本题选:D .11.已知a ,b ,c 为非零有理数,则||||||a b c a b c ++的值不可能为()A .0B .3-C .1-D .3【详解】解:当a 、b 、c 没有负数时,原式1113=++=;当a 、b 、c 有一个负数时,原式1111=-++=;当a 、b 、c 有两个负数时,原式1111=--+=-;当a 、b 、c 有三个负数时,原式1113=---=-;原式的值不可能为0.故本题选:A .12.若||||||a b ab x a b ab =++,则x 的最大值与最小值的和为()A .0B .1C .2D .3【详解】解:当a 、b 都是正数时,1113x =++=;当a 、b 都是负数时,1111x =--+=-;当a 、b 异号时,1111x =--=-;则x 的最大值与最小值的和为:3(1)2+-=.故本题选:C .13.已知:||2||3||a b b c c a m c a b+++=++,且0abc >,0a b c ++=.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则(x y +=)A .4B .3C .2D .1【详解】解:0abc > ,0a b c ++=,a ∴、b 、c 为两个负数,一个正数,a b c +=-,b c a +=-,c a b +=-,∴||2||3||c a b m c a b---=++,∴分三种情况说明:当0a <,0b <,0c >时,1234m =--=-,当0a <,0c <,0b >时,1230m =--+=,当0a >,0b <,0c <时,1232m =-+-=-,m ∴共有3个不同的值,4-,0,2-,最大的值为0,3x ∴=,0y =,3x y ∴+=.故本题选:B .14.已知||1abc abc =,那么||||||a b c a b c++=.【详解】解:1abcabc =,0abc ∴>,a ∴、b 、c 均为正数或一个正数两个负数,①当a 、b 、c 均为正数时,1113ab c ab c ++=++=;②a 、b 、c 中有一个正数两个负数时,不妨设a 为正数,b 、c 为负数,1111ab c a b c++=--=-;综上,3ab c++=或1-.故本题答案为:3或1-.考察题型五绝对值的非负性1.任何一个有理数的绝对值一定()A .大于0B .小于0C .不大于0D .不小于0【详解】解:由绝对值的定义可知:任何一个有理数的绝对值一定大于等于0.故本题选:D .2.对于任意有理数a ,下列结论正确的是()A .||a 是正数B .a -是负数C .||a -是负数D .||a -不是正数【详解】解:A 、0a =时||0a =,既不是正数也不是负数,故本选项错误;B 、a 是负数时,a -是正数,故本选项错误;C 、0a =时,||0a -=,既不是正数也不是负数,故本选项错误;D 、||a -不是正数,故本选项正确.故本题选:D .3.式子|1|3x --取最小值时,x 等于()A .1B .2C .3D .4【详解】解:|1|0x - ,∴当10x -=,即1x =时,|1|3x --取最小值.故本题选:A .4.当a =时,|1|2a -+会有最小值,且最小值是.【详解】解:|1|0a - ,|1|22a ∴-+,∴当10a -=,即1a =,此时|1|2a -+取得最小值2.故本题答案为:1,2.5.已知|2022||2023|0x y -++=,则x y +=.【详解】解:|2022|x - ,|2023|0y +,20220x ∴-=,20230y +=,2022x ∴=,2023y =-,202220231x y ∴+=-=-.故本题答案为:1-.6.如果|3||24|y x +=--,那么(x y -=)A .1-B .5C .5-D .1【详解】解:|3||24|y x +=-- ,|3||24|0y x ∴++-=,30y ∴+=,240x -=,解得:2x =,3y =-,235x y ∴-=+=.故本题选:B .7.若|2|2|3|3|5|0x y z -+++-=.计算:(1)x ,y ,z 的值.(2)求||||||x y z +-的值.【详解】解:(1)由题意得:203050x y z -=⎧⎪+=⎨⎪-=⎩,解得:235x y z =⎧⎪=-⎨⎪=⎩,即2x =,3y =-,5z =;(2)当2x =,3y =-,5z =时,|||||||2||3||5|2350x y z +-=+--=+-=.8.若a 、b 都是有理数,且|2||1|0ab a -+-=,求1111(1)(1)(2)(2)(2022)(2022)ab a b a b a b +++⋯⋯+++++++的值.【详解】解:由题意可得:20ab -=,10a -=,1a ∴=,2b =,原式1111 (12233420232024)=+++⨯⨯⨯⨯111111112233420232024=-+-+-++-112024=-20232024=.考察题型六绝对值的几何意义1.绝对值相等的两个数在数轴上对应的两点距离为6,则这两个数是()A .6,6-B .0,6C .0,6-D .3,3-【详解】解: 绝对值相等的两个数在数轴上对应的两个点间的距离是6,∴这两个数到原点的距离都等于3,∴这两个数分别为3和3-.故本题选:D .2.绝对值不大于π的所有整数为.【详解】绝对值不大于π的所有整数为0,1±,2±,3±.故本题答案为:0,1±,2±,3±.3.绝对值小于4的所有负整数之和是.【详解】解: 绝对值小于4的所有整数是3-,2-,1-,0,1,2,3,∴符合条件的负整数是3-,2-,1-,∴其和为:3216---=-.故本题答案为:6-.4.大家知道|5||50|=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离,又如式子|63|-,它在数轴上的意义是表示6的点与表示3的点之间的距离,类似地,式子|5|a +在数轴上的意义是.【详解】解:|5|a +在数轴上的意义是表示数a 的点与表示5-的点之间的距离.故本题答案为:表示数a 的点与表示5-的点之间的距离.5.计算|1||2|x x -++的最小值为()A .0B .1C .2D .3【详解】解:|1||2||1||(2)|x x x x -++=-+-- ,|1||2|x x ∴-++表示在数轴上点x 与1和2-之间的距离的和,∴当21x -时|1||2|x x -++有最小值3.故本题选:D .6.当a =时,|1||5||4|a a a -+++-的值最小,最小值是.【详解】解:当4a 时,原式5143a a a a =++-+-=,这时的最小值为3412⨯=,当14a <时,原式5148a a a a =++--+=+,这时的最小值为189+=,当51a -<时,原式51410a a a a =+-+-+=-+,这时的最小值接近为189+=,当5a -时,原式5143a a a a =---+-+=-,这时的最小值为3(5)15-⨯-=,综上,当1a =时,式子的最小值为9.故本题答案为:1,9.7.已知式子|1||2||3||4|10x x y y ++-+++-=,则x y +的最小值是.【详解】解:令12x x a ++-=,34y y b ++-=,根据绝对值几何意义:a 表示x 到1-与2两点之间的距离之和,b 表示y 到3-与4两点之间的距离之和, 当12x -,34y -时,正好有10a b +=,∴当1x =-,3y =-时,x y +的最小值为:1(3)4-+-=-.故本题答案为:4-.8.若不等式|2||3||1||1|x x x x a -+++-++对一切数x 都成立,则a 的取值范围是.【详解】解:数形结合:绝对值的几何意义:||x y -表示数轴上两点x ,y 之间的距离.画数轴易知:|2||3||1||1|x x x x -+++-++表示x 到3-,1-,1,2这四个点的距离之和.令|2||3||1||1|y x x x x =-+++-++,3x =-时,11y =,1x =-时,7y =,1x =时,7y =,2x =时,9y =,可以观察知:当11x -时,由于四点分列在x 两边,恒有7y =,当31x -<-时,711y <,当3x <-时,11y >,当12x <时,79y <,当2x 时,9y ,综上,7y ,即|2||3||1||1|7x x x x -+++-++对一切实数x 恒成立.∴a 的取值范围为7a .9.设|1|a x =+,|1|b x =-,|3|c x =+,则2a b c ++的最小值为.【详解】解:|1|2|1||3|x x x ++-++表示x 到1-、3-的距离以及到1的距离的2倍之和,当x 在1-和1之间时,它们的距离之和最小,此时26a b c ++=.故本题答案为:6.10.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.(2)如果|1|3x +=,那么x =;(3)若|3|2a -=,|2|1b +=,且数a 、b 在数轴上表示的数分别是点A 、点B ,则A 、B 两点间的最大距离是,最小距离是.(4)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-=.【详解】解:(1)数轴上表示4和1的两点之间的距离是:413-=,表示3--=,-和2两点之间的距离是:2(3)5故本题答案为:3,5;(2)|1|3x+=,x+=-,x+=或1313x=或4x=-,2故本题答案为:2或4-;(3)|3|2b+=,,|2|1a-=b=-或3b=-,∴=或1,1a5当5b=-时,则A、B两点间的最大距离是8,a=,3当1b=-时,则A、B两点间的最小距离是2,a=,1则A、B两点间的最大距离是8,最小距离是2,故本题答案为:8,2;(4)若数轴上表示数a的点位于4-与2之间,++-=++-=.a a a a|4||2|(4)(2)6故本题答案为:6.11.同学们都知道,|5(2)|--表示5与2-之差的绝对值,实际上也可理解为5与2-两数在数轴上所对的两点之间的距离.试探索(1)求|5(2)|--=;(2)同样道理|1008||1005|x x+=-表示数轴上有理数x所对点到1008-和1005所对的两点距离相等,则x=;(3)类似的|5||2|++-表示数轴上有理数x所对点到5x x-和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|5||2|7x x++-=,这样的整数是.(4)由以上探索猜想对于任何有理数x,|3||6|-+-是否有最小值?如果有,写出最小值;如果没有,x x说明理由.【详解】解:(1)|5(2)|7--=,故本题答案为:7;(2)(10081005)2 1.5-+÷=-,故本题答案为: 1.5-;(3)式子|5||2|7++-=理解为:在数轴上,某点到5x x-所对应的点的距离和到2所对应的点的距离之和为7,所以满足条件的整数x 可为5-,4-,3-,2-,1-,0,1,2,故本题答案为:5-,4-,3-,2-,1-,0,1,2;(4)有,最小值为3(6)3---=.12.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.如果表示数a 和1-的两点之间的距离是3,那么a =.(2)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-的值为;(3)利用数轴找出所有符合条件的整数点x ,使得|2||5|7x x ++-=,这些点表示的数的和是.(4)当a =时,|3||1||4|a a a ++-+-的值最小,最小值是.【详解】解:(1)|14|3-=,|32|5--=,|(1)|3a --=,13a +=或13a +=-,解得:4a =-或2a =,故本题答案为:3,5,4-或2;(2) 表示数a 的点位于4-与2之间,40a ∴+>,20a -<,|4||2|(4)[(2)]426a a a a a a ∴++-=++--=+-+=,故本题答案为:6;(3)使得|2||5|7x x ++-=的整数点有2-,1-,0,1,2,3,4,5,2101234512--++++++=,故本题答案为:12;(4)1a =有最小值,最小值|13||11||14|4037=++-+-=++=,故本题答案为:7.1.将2,4,6,8,⋯,200这100个偶数,任意分为50组,每组两个数,现将每组的两个数中任意数值记作a ,另一个记作b ,代入代数式1(||)2a b a b -++中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是.【详解】解:当a b >时,11(||)()22a b a b a b a b a -++=-++=,当a b <时,11(||)()22a b a b b a a b b -++=-++=,1021041062007550∴+++⋯⋯+=,∴这50个值的和的最大值是7550.故本题答案为:7550.2.39121239||||||||a a a aa a a a +++⋯+的不同的值共有()个.A .10B .7C .4D .3【详解】解:当0a >,1||a a =,当0a <时,1||aa =-,按此分类讨论:当1a 、2a 、3a 、⋯、9a 均为正数时,391212399||||||||a a a aa a a a +++⋯+=;当1a 、2a 、3a 、⋯、9a 有八个为正数,一个为负数时,39121239817||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有七个为正数,两个为负数时39121239725||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有六个为正数,三个为负数时,39121239633||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有五个为正数,四个为负数时,39121239541||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有四个为正数,五个为负数时,39121239451||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有三个为正数,六个为负数时,39121239363||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有两个为正数,七个为负数时,39121239275||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有一个为正数,八个为负数时,39121239187||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 均为负数时,391212399||||||||a a a aa a a a +++⋯+=-;所以共有10个值.故本题选:A .3.若x 是有理数,则|2||4||6||8||2022|x x x x x -+-+-+-+⋯+-的最小值是.【详解】解:当1012x =时,算式|2||4||6||2022|x x x x -+-+-+⋯+-的值最小,最小值=2|2|2|4|2|6|2|1012|x x x x -+-+-+⋯+-2020201620120=+++⋯+(20200)5062=+⨯÷20205062=⨯÷511060=.故本题答案为:511060.4.对于有理数x ,y ,a ,t ,若||||x a y a t -+-=,则称x 和y 关于a 的“美好关联数”为t ,例如,|21||31|3-+-=,则2和3关于1的“美好关联数”为3.(1)3-和5关于2的“美好关联数”为;(2)若x 和2关于3的“美好关联数”为4,求x 的值;(3)若0x 和1x 关于1的“美好关联数”为1,1x 和2x 关于2的“美好关联数”为1,2x 和3x 关于3的“美好关联数”为1,⋯,40x 和41x 关于41的“美好关联数”为1,⋯.①01x x +的最小值为;②12340x x x x +++⋯⋯+的最小值为.【详解】解:(1)|32||52|8--+-=,故本题答案为:8;(2)x 和2关于3的“美好关联数”为4,|3||23|4x ∴-+-=,|3|3x ∴-=,解得:6x =或0x =;(3)①0x 和1x 关于1的“美好关联数”为1,01|1||1|1x x ∴-+-=,∴在数轴上可以看作数0x 到1的距离与数1x 到1的距离和为1,∴只有当00x =,11x =时,01x x +有最小值1,故本题答案为:1;②由题意可知:12|2||2|1x x -+-=,12x x +的最小值123+=,34|4||4|1x x -+-=,34x x +的最小值347+=,56|6||6|1x x -+-=,56x x +的最小值5611+=,78|8||8|1x x -+-=,78x x +的最小值7815+=,......,3940|40||40|1x x -+-=,3940x x +的最小值394079+=,12340x x x x ∴+++⋯⋯+的最小值:371115...79+++++(379)202+⨯=820=,故本题答案为:820.。
2.3.2 绝对值与相反数:相反数求一个数的相反数1.的相反数是( )A B .C D .2.|3|--的相反数是( )A .3-B .3C .13D .13-3.a b c +-的相反数是( )A .a b c--+B .a b c-+C .a b c-++D .a b c---4.填空:(13)--是 的相反数;()20-+是 的相反数.5.已知a 是5-的相反数,b 比最小的正整数大4,c 是相反数等于它本身的数,则32a b c ++的值是 .题型二 相反数的有关辨析6.下列说法中,正确的是( )A .()3--与3-互为相反数B .相反数等于它本身的数有无数个C .有理数a 一定比a -大D .a -的相反数就是a7.下面说法正确的有( )①符号相反的数互为相反数;②()3.8--的相反数是3.8;③一个数和它的相反数不可能相等;④正数与负数互为相反数.A .0个B .1个C .2个D .3个8.下列说法正确的有( )(1)有理数的绝对值一定比0大;(2)有理数的相反数一定比0小;(3)如果两个数的绝对值相等,那么这两个数相等;(4)互为相反数的两个数的绝对值相等.A .1个B .2个C .3个D .4个9.下列判断正确的是( )A .若|a|=|b|,则a=b B .若|a|=|b|,则a= -b C .若a=b ,则|a|=|b|D .若a=-b ,则|a|= -|b|10.下列说法:①若a 、b 互为相反数,则a +b =0;②若a +b =0,则a 、b 互为相反数;③若a 、b 互为相反数,则1a b =-;④若1ab=-,则a 、b 互为相反数.其中正确的结论是( ).A .②③④B .①②③C .①②④D .①②题型三 绝对值与相反数11.若15a -=-,则a 的值为( )A .5±B .15±C .15D .15-12.若26x -=-,则x =.13.若43y y +=-,则y 的值是.题型四 数轴与相反数14.在数轴上表示下列各数:5-,2,0,112-,4.5,0.5,3-,(1)--,并将它们的相反数用“<”符号连接起来.15.在数轴上表示下列各数的相反数,并比较原数的大小.3, 1.5-,132-,4||5-,0,4-16.有理数a ,b 在数轴上的位置如图所示.(1)在数轴上分别用A ,B 两点表示a -,b -;(2)若数b 与b -表示的点相距20个单位长度,则b 与b -表示的数分别是什么?(3)在(2)的条件下,若数a 表示的点与数b 的相反数表示的点相距5个单位长度,则a 与a -表示的数是多少?17.如图,图中数轴的单位长度为1,请回答下列问题:(1)如果点A ,B 表示的数是互为相反数,那么点C 表示的数是_______,在此基础上,在数轴上与点C 的距离是3个单位长度的点表示的数是__________(2)如果点D ,B 表示的数是互为相反数,那么点E 表示的数是_______(3)在第(1)问的基础上解答:若点P 从点A 出发,以每秒1个单位长度的速度向点B 的方向匀速运动;同时,点Q 从点B 出发,以每秒2个单位长度的速度向点A 的方向匀速运动.则两个点相遇时点P 所表示的数是多少?题型五 多重符号的化简18.下列化简,正确的是( )A .()1010éù---=-ëûB .()33--=-C .()55-+=D .()88éù--+=-ëû19.若2x -=,则()x ---éùëû的值为 .20.化简下列各数:①()8--= ;②()0.75-+= ;③35éùæö---=ç÷êúèøëû ;④()3.8-+-=éùëû .21.(1)(5)++= ;(2)()12--= ;(3)()3.2éù--+ëû= ;(4)()3.2éù---ëû= ;(5)()27éù-+-=ëû;(6)23ìüéùæö-+-+=íýç÷êúèøëûîþ.题型六 相反数的判定22.下列各组数中,互为相反数的是( )A .()3.2--与 3.2-B .2.3与2.31C .()4.9-+-éùëû与4.9D .()1-+与()1+-23.下列各组数中,互为相反数的是( )A .()7-+与()7+-B .()7--与7C .115--与65æö--ç÷èøD .1100æö--ç÷èø与0.01+-24.下列各对数:“①()4--与()4++;②-53æö-÷çøè与-35æö+÷çøè;③-112æö+÷çøè与+112æö-÷çøè;④()1éù-+-ëû与()1éù-++ëû”中,互为相反数的有( )A .1对B .2对C .3对D .4对题型七 相反数的性质25.已知有理数a 表示数5,b 与c 互为相反数,则233a b c --的值为 .26.如果代数式35x +与2x 的值互为相反数,则x 的值为 .27.若5a -与1-互为相反数,那么=a .28.两个有理数互为相反数,则它们的积( )A .符号为正B .符号为负C .一定不小于0D .一定不大于029.若a 与b 互为相反数,则22520202023224a b ab+=( )A .2020-B .2-C .1D .230.a 为有理数.定义符号“※”:当a >﹣2时,※a=﹣a ;当a <﹣2时,※a=a ;当a=﹣2时,※a=0.根据这种定义.则※[﹣4+※(2﹣3)]的值为( )A .3B .﹣3C .5D .﹣531.用“Þ”与“Ü”表示一种法则:()a b b Þ=-,()a b a Ü=-,如(23)3Þ=-,则()()()()202320242022202120481024512256ÞÜÞÜÞÜÞ=éùéùëûëû .32.求方程32(02)x a a +-=<<的所有解的和.1.C【分析】本题考查了相反数.直接根据相反数的定义作答即可.【详解】解:.故选:C 2.B【分析】根据“只有符号不同的两个数叫做互为相反数”以及去绝对值解答.【详解】解:3||3-= ,33\--=-的相反数是3.故选: B .【点睛】本题考查了相反数以及绝对值,掌握相反数的定义是关键.3.A【分析】本题考查了相反数的定义及去括号法则,解题的关键是熟记定义.根据相反数的定义,即可得到答案.【详解】解:a b c +-的相反数是:()a b c a b c -+-=--+;故选择:A .4.13-20【分析】本题考查相反数的定义,解题的关键是掌握求相反数的方法.【详解】解:(13)--是13-的相反数;()20-+是20的相反数.故答案为:13-,20.5.25【分析】根据()55a =--=,最小的正整数是1,相反数等于它本身的数是0,进行求解即可.【详解】解:∵a 是5-的相反数,∴5a =,∵最小的正整数是1,且b 比最小的正整数大4,∴145b =+=,∵相反数等于它本身的数是0,∴0c =,∴323525025a b c ++=´+´+=.故答案为:25.【点睛】本题主要考查了相反数的定义,代数式求值,解题的关键是熟记相关结论,准确计算.6.D【分析】本题主要考查相反数,根据相反数的意义逐项分析即可得出答案.【详解】解:A. ()33,33--=-=,所以,()3--与3-相等,故选项A 说法错误,不符合题意;B. 相反数等于它本身的数有1个,是0,故选项B 说法错误,不符合题意;C.当0a =时,a a =-,故选项C 说法错误,不符合题意;D. a -的相反数就是a ,说法正确,故选项D 符合题意.故选:D .7.A【分析】根据“只有符号相反的数互为相反数”可对5个选项进行一一分析进而得出答案即可.【详解】解:①只有符号相反的数互为相反数,故此选项错误;②()3.8 3.8--=,3.8的相反数是 3.8-;故此选项错误;③0的相反数等于0,故此选项错误;④正数与负数不一定互为相反数,故此选项错误;故正确的有0个,故选:A .【点睛】本题考查的是相反数的概念,掌握“只有符号相反的数互为相反数”是解题关键.8.A【详解】分析: 根据0的绝对值为0,互为相反数的绝对值相等,即可解答.详解: (1)有理数的绝对值一定比0大,错误,例如,0的绝对值为0;(2)有理数的相反数一定比0小,错误,例如,0的相反数为0;(3)如果两个数的绝对值相等,那么这两个数相等或和相反数,故错误;(4)互为相反数的两个数的绝对值相等,正确.正确的有1个.故选A.点睛: 本题考查了绝对值,相反数,解决本题的关键是熟记绝对值的性质,相反数的性质.9.C【分析】根据相反数、绝对值的意义判断即可.【详解】解:A. 若|a|=|b|,则a=±b,不符合题意;B. 若|a|=|b|,则a=±b,不符合题意;C. 若a=b,则|a|=|b|,正确符合题意;D. 若a=-b,则|a|= |-b|,不符合题意;故选:C.【点睛】本题考查了相反数、绝对值的意义,用到的知识点:互为相反数的两个数绝对值相等;绝对值等于一个正数的数有两个,它们互为相反数.10.C【详解】试题分析:根据相反数的定义逐一分析即可得出答案.解:∵互为相反数的两个数的和为0,又∵a、b互为相反数,∴a+b=0,反之也成立,故①、②正确;∵0的相反数是0,∴若a=b=0时,ab无意义,故③错误;∵ab=−1,∴a=−b,∴a、b互为相反数,故④正确;正确的有①②④.故选C.11.B【分析】本题主要考查绝对值,先把原式化为15a=,从而可求出15a=±.【详解】解:∵15a-=-,∴15a =,∴15a =±,故选:B .12.3或3-【分析】本题考查了绝对值的意义,正确熟练掌握知识点是解题的关键.直接取绝对值即可.【详解】解:26x -=-26x =3x =∴3x =或3-.故答案为:3或3-.13.0.5-##12-【分析】本题考查了绝对值、解一元一次方程,熟练掌握绝对值的定义是解此题的关键;根据绝对值的定义化为两个一元一次方程,解方程即可解答.【详解】Q 43y y +=-,\43y y +=-或()43y y +=--,解得:y 不存在或0.5y =-故答案为:0.5-14.数轴见解析,14.53210.50152-<-<-<-<-<<<【分析】本题主要考查了在数轴上表示有理数,利用数轴比较有理数的大小,将题目中的数据标在数轴上,根据数轴左边的数总是小于右边的数将各数用大于号连接起来,正确表示出各数是解题的关键.【详解】解:在数轴上表示如下:各数的相反数分别为:5,112,0,0.5-,1-,2-,3-, 4.5-,它们的相反数用“<”符号连接为:14.53210.50152-<-<-<-<-<<<.15.数轴见解析,1443 1.50325-<-<-<<-<【分析】本题主要考查了用数轴上点表示有理数,相反数的定义,根据数轴比较有理数的大小,解题的关键是熟练掌握数轴上点的特点.先根据相反数的定义,求出各个数的相反数,然后将各个数表示在数轴上,再比较大小即可.【详解】解:3的相反数是3-,1.5-的相反数是1.5,132-的相反数是132,45-的相反数是45-,0的相反数是0,4-的相反数是4,在数轴上表示如下:比较原数的大小为:1443 1.50325-<-<-<<-<.16.(1)见解析(2)b 表示的数是10-,b -表示的数是10(3)a 表示的数是5,a -表示的数是5-【分析】(1)根据题意作图即可;(2)互为相反数的两个数到原点的距离相等,据此求出b 表示的点到原点的距离为20210¸=,结合数轴即可作答;(3)结合(1)的图形,可得a b <-,先求出a 表示的点到原点的距离为1055-=,问题随之得解.【详解】(1)如图,(2)数b 与其相反数相距20个单位长度,则b 表示的点到原点的距离为20210¸=,∴结合数轴,b 表示的数是10-,即b -表示的数是10;(3)如图,即有a b <-,∵b -表示的点到原点的距离为10,而数a 表示的点与数b 的相反数表示的点相距5个单位长度,∴a 表示的点到原点的距离为1055-=,∴a 表示的数是5,a -表示的数是5-.【点睛】本题考查的是相反数的定义等知识,熟知以上知识是解答此题的关键.17.(1)-1;-4或2;(2)72-;(3)-1【分析】(1)由AB 的长度结合点A ,B 表示的数是互为相反数,即可得出点A ,B 表示的数,由2AC =且点C 在点A 的右边可得出点C 表示的数,再利用数轴上两点间的距离公式可求出在数轴上与点C 的距离是3个单位长度的点表示的数;(2)由BD 的长度结合点D ,B 表示的数是互为相反数,即可得出点D 表示的数,由1DE =且点E 在点D 的右边可得出点E 表示的数;(3)当运动时间为t 秒时,点P 表示的数为3t -,点Q 表示的数为23t -+,由点P ,Q 相遇可得出关于t 的一元一次方程,解之即可得出t 的值,再将其代入(23)t -+中即可得出两个点相遇时点P 所表示的数.【详解】解:(1)=6AB Q ,且点A ,B 表示的数是互为相反数,\点A 表示的数为3-,点B 表示的数为3,\点C 表示的数为321-+=-.134--=-Q ,132-+=,\在数轴上与点C 的距离是3个单位长度的点表示的数是4-或2.故答案为:1-;4-或2.(2)9BD =Q ,且点D ,B 表示的数是互为相反数,\点D 表示的数为92-,\点E 表示的数为97122-+=-.故答案为:72-.(3)当运动时间为t 秒时,点P 表示的数为3t -,点Q 表示的数为23t -+,323t t -=-+Q ,2t \=,31t \-=-.答:两个点相遇时点P 所表示的数是1-.【点睛】本题考查了一元一次方程的应用、数轴以及相反数,解题的关键是:(1)由线段AB 的长度结合点A ,B 表示的数互为相反数,找出点A 表示的数;(2)由线段BD 的长度结合点D ,B 表示的数互为相反数,找出点D 表示的数;(3)找准等量关系,正确列出一元一次方程.18.A【分析】本题考查了相反数,掌握一个数的前面加上负号就是这个数的相反数成为解题的关键.根据相反数的定义逐层去括号,然后判断即可解答.【详解】解;A 、()[]101010éù---=-=-ëû,故A 选项正确,符合题意;B 、()33--=,故B 选项错误,不符合题意;C 、()55-+=,故C 选项错误,不符合题意;D 、()[]888éù--+=--=ëû,故D 选项错误,不符合题意.故选:A .19.2【分析】本题考查了多重符号的化简,求代数式的值,根据多重符号的化简方法把()x ---éùëû后可得结果.【详解】解:∵2x -=,∴()2x x éù---=-=ëû.故答案为:2.20.①8;②0.75-;③35-;④3.8【分析】利用化简多重符号的方法即可求解.【详解】解:①()88--=;②()0.750.75-+=-;③3355éùæö---=-ç÷êúèøëû;④()3.8 3.8-+-=éùëû.【点睛】本题考查了相反数的意义,熟练掌握化简多重符号的方法是解题的关键.21. 5 12 3.2 3.2- 27 23【分析】本题主要考查了正负号的化简,熟练掌握相反数的定义,是解决问题的关键.根据正数的相反数是负数,负数的相反数是正数,逐步化简正负号,即得(方法不唯一).【详解】解:(1)()55++=;(2)()121212--=+=;(3)()()3.2 3.2 3.2éù--+=++=ëû;(4)()()3.2 3.2 3.2éù---=+-=-ëû;(5)()()27272727éù-+-=--=+=ëû;(6)22223333ìüéùéùæöæöæö-+-+=--+=++=íýç÷ç÷ç÷êúêúèøèøèøëûëûîþ.故答案为:(1)5;(2)12;(3)3.2;(4) 3.2-;(5)27;(6)23.22.A【分析】先对各项进行化简,再根据相反数的定义进行逐一判断即可.【详解】解:A 、∵()3.2--=3.2,3.2与-3.2是相反数,∴()3.2--与 3.2-互为相反数.故A 选项正确;B 、2.3与2.31不是相反数,故B 选项错误;C 、因为()4.9-+-éùëû=4.9,4.9与4.9不相反数,故C 选项错误;D 、因为()1-+=-1,()1+- =-1,所以()1-+与()1+-不是相反数,故D 选项不正确;故选A.【点睛】本题主要考查了相反数的定义和符号的化简,掌握相反数的定义是解题的关键.23.C【分析】先化简多重符号和绝对值,再根据相反数的定义进行求解即可.【详解】解:A 、()77-+=-与()77+-=-不互为相反数,不符合题意;B 、()77--=与7不互为相反数,不符合题意;C 、111155--=-与6655æö--=ç÷èø互为相反数,符合题意;D 、110.01100100æö--==ç÷èø与0.010.01+-=不互为相反数,不符合题意;故选C .【点睛】本题主要考查了相反数的定义,化简多重符号和绝对值,熟知只有符号不同的两个数互为相反数,0的相反数是0是解题的关键.24.B【分析】分别化简多重符号,进而根据相反数的定义,即可求解.【详解】解①()44--=与()44++=,相等,不合题意;②-5533æö-=÷çøè与-3553æö+=-÷çøè,互为相反数,符合题意,;③-111122æö+=-÷çøè与+111122æö-=-÷çøè,相等,不合题意;④()11éù-+-=ëû与()11éù-++=-ëû,互为相反数,符合题意,∴互为相反数的有②④,共2对故选:B .【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.25.10【分析】本题考查了相反数的定义,求代数式的值,先根据b 与c 互为相反数求出0b c +=,然后代入233a b c --计算即可.【详解】解:∵b 与c 互为相反数,∴0b c +=,∴233a b c--()23a b c =-+253010=´-´=.故答案为:10.26.1-【分析】本题考查相反数与一元一次方程.根据相反数的定义“如果两个数互为相反数,那么它们的和为0”进行计算即可.【详解】解:∵35x +与2x 的值互为相反数,∴3520x x ++=,解得=1x -.故答案为:1-.27.4或6【分析】本题考查绝对值和相反数的定义,互为相反数的两个数和为0,根据相反数的定义得到510a --=,解绝对值方程即可.【详解】解:∵5a -与1-互为相反数,∴510a --=即51a -=解得:4a =或6a =,故答案为:4或6.28.D【分析】任何数都有相反数,一个正数的相反数是负数,一个负数的相反数是正数,0的相反数0,据此作答.【详解】解:只有符号不同的两个数互为相反数,0的相反数是0,所以,一个有理数和它的相反数的积一定是负数或0,即一定不大于0.故选:D .【点睛】本题考查了相反数的意义,注意要把0考虑进去.29.B【分析】本题考查相反数,代数式求值,根据a 与b 互为相反数,可以得到a b =-,然后代入整理后的式子计算即可.【详解】解:∵a 与b 互为相反数,∴0a b +=.∴a b =-,∴()2222222202225202520230234048202420242024b b a b b ab b b -==++=---,故选B .30.B【分析】直接利用已知当a >-2时,※a=-a ;当a <-2时,※a=a ;当a=-2时,※a=0,分别化简得出答案.【详解】解:※[-4+※(2-3)]=※(-4+※-1)=※(-4+1)=-3.故选B.【点睛】此题主要考查了相反数,正确理解题意是解题关键.31.2024-【分析】本题考查了有理数的混合运算,根据题中的新定义化简原式,计算即可得到结果.【详解】解:()a b b Þ=-Q ,()a b a Ü=-,()()()()202320242022202120481024512256éùéù\ÞÜÞÜÞÜÞëûëû,()()2023202420222021éù=-ÞÜÞëû,()20232024éù=--Þëû,()20232024=Þ,2024=-.32.12-【分析】本题考查的是绝对值的性质及一元一次方程的解法,先根据绝对值的性质求出3x +的值,再求出x 的值,再求和即可解答.【详解】解:32(02)x a a +-=<<Q ,32x a \+-=±,32x a +=±,\()32x a +=±±,()23x a =±±-,1x a \=-或5x a =--或1x a =--或5x a =-,32(02)x a a \+-=<<所有解的和为:()()()151512a a a a -+--+--+-=-.故答案为:12-.。
人教版数学七年级上册第1章 1.2.3相反数同步练习一、单选题(共12题;共24分)1、﹣(﹣)的相反数是()A、﹣﹣B、﹣+C、﹣D、+2、下列的数中,负有理数的个数为()﹣,﹣(﹣2),﹣|﹣7|,|﹣|,﹣(+ ).A、2个B、3个C、4个D、5个3、下列说法正确的是()A、a一定是正数B、绝对值最小的数是0C、相反数等于自身的数是1D、绝对值等于自身的数只有0和14、﹣2017的相反数是()A、2017B、C、﹣D、05、相反数不大于它本身的数是()A、正数B、负数C、非正数D、非负数6、一个数的相反数是非负数,这个数是()A、负数B、非负数C、正数D、非正数7、下列各组数中,互为相反数的是()A、2和B、﹣2和C、2 和﹣2.375D、+(﹣2)和﹣28、一个数的相反数等于它本身,这样的数一共有()A、1个B、2个C、3个D、4个9、已知5个数中:(﹣1)2017,|﹣2|,﹣(﹣1.5),﹣32,﹣3的倒数,其中正数的个数有()A、1B、2C、3D、410、在﹣中,负数有()A、1个B、2个C、3个D、4个11、如果a,b互为相反数,那么(6a2﹣12a)﹣6(a2+2b﹣5)的值为()A、﹣18B、18C、30D、﹣3012、下列各对数:﹣2与+(﹣2),+(+3)与﹣3,﹣(﹣)与+(﹣),﹣(﹣12)与+(+12),﹣(+1)与﹣(﹣1).其中互为相反数的有()A、0对B、1对C、2对D、3对二、填空题(共5题;共13分)13、当2x+1和﹣3x+2互为相反数时,则x2﹣2x+1=________.14、±=________;=________;|﹣|=________;π﹣3.14的相反数是________.15、的相反数是________,它的绝对值是________.16、计算:﹣(+ )=________,﹣(﹣5.6)=________,﹣|﹣2|=________,0+(﹣7)=________.(﹣1)﹣|﹣3|=________.17、当x=________时,代数式与x﹣3的值互为相反数.三、解答题(共5题;共25分)18、a、b互为相反数,c、d互为倒数,|m|=2,且m<0,求2a﹣(cd)2007+2b﹣3m的值.19、把下列各数及其相反数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来﹣2.5,0,+3.5,﹣.20、已知a、b互为相反数,c、d互为倒数,x的绝对值是3,求x2﹣(a+b+cd)x﹣cd.21、把下列各数及它们的相反数在数轴上表示出来,并用“<”把所有数都连接起来. 2 ,﹣1.5,0,﹣4.22、如果与|y+1|互为相反数,求x﹣y的平方根.答案解析部分一、单选题1、【答案】C【考点】相反数,有理数的加减混合运算【解析】【解答】解:﹣(﹣)的相反数是﹣,故选C【分析】原式计算后,利用相反数定义判断即可.2、【答案】B【考点】相反数【解析】【解答】解:因为﹣(﹣2)=2,﹣|﹣7|=﹣7,|﹣|= ,﹣(+ )=﹣.所以负有理数有﹣,﹣|﹣7|,﹣(+ )共三个.故选B.【分析】先对各数进行化简,根据化简后的结果再确定负有理数的个数.3、【答案】B【考点】相反数,绝对值【解析】【解答】解:A、a既是正数,也可能是负数,还可能是0,故本选项错误;B、,绝对值最小的数是0;故本选项正确;C、相反数等于自身的数是0,故本选项错误;D、绝对值等于自身的数是非负数,故本选项错误.故选B.【分析】根据绝对值的性质,以及相反数的定义对各选项举反例验证即可得解.4、【答案】A【考点】相反数【解析】【解答】解:﹣2017的相反数是2017,故选:A.【分析】根据相反数的定义,可得答案.5、【答案】D【考点】相反数【解析】【解答】解:设这个数为a,根据题意,有﹣a≤a,所以a≥0.故选D.【分析】设这数是a,得到a的不等式,求解即可;也可采用特殊值法进行筛选.6、【答案】D【考点】相反数【解析】【解答】解:∵一个数的相反数是非负数,∴这个数是非正数,故选D.【分析】非负数包括正数和0,再根据相反数的定义得出即可.7、【答案】C【考点】相反数【解析】【解答】解:A、2与是互为倒数,故本选项错误;B、﹣2和相等,是互为负倒数,故本选项错误;C、2 和﹣2.375互为相反数,正确;D、∵+(﹣2)=﹣2,∴+(﹣2)与﹣2相等,不是互为相反数,故本选项错误.故选C.【分析】根据相反数的定义,只有符号不同的两个数是互为相反数解答.8、【答案】A【考点】相反数【解析】【解答】解:∵0的相反数等于0,故选:A.【分析】根据只有符号不同的两个数互为相反数,一个数的相反数等于它本身,可得这个数.9、【答案】B【考点】正数和负数,相反数,绝对值,倒数【解析】【解答】解:(﹣1)2017=﹣1,|﹣2|=2,﹣(﹣1.5)=1.5,﹣32=﹣9,﹣3的倒数是﹣.故正数的个数有2个.故选:B.【分析】根据有理数的乘方求出(﹣1)2007和﹣32,根据绝对值的性质求出|﹣2|,根据相反数的定义求出﹣(﹣1.5),根据倒数的定义求出﹣3的倒数的值即可作出判断.10、【答案】C【考点】正数和负数,相反数,绝对值【解析】【解答】解:﹣|﹣2|=﹣2,|﹣(﹣2)|=2,﹣(+2)=﹣2,﹣(﹣)= ,﹣[+(﹣2)]=2,+[﹣(+ )]=﹣,负数有:﹣|﹣2|,﹣(+2),+[﹣(+ )],共3个.故选C.【分析】负数是小于0的数,结合所给数据进行判断即可.11、【答案】C【考点】相反数,整式的加减【解析】【解答】解:∵果a,b互为相反数,∴a+b=0,∴(6a2﹣12a)﹣6(a2+2b﹣5)=6a2﹣12a﹣6a2﹣12b+30=﹣12a﹣12b+30=﹣12(a+b)+30=﹣12×0+30=30,故选C.【分析】根据a,b互为相反数,然后对题目中所求式子化简,即可解答本题.12、【答案】D【考点】相反数【解析】【解答】解:﹣2与+(﹣2)不是相反数,+(+3)与﹣3互为相反数,﹣(﹣)与+(﹣)互为相反数,﹣(﹣12)与+(+12)是同一个数,﹣(+1)与﹣(﹣1)互为相反数,故选:D.【分析】根据相反数的意义,只有符号不同的数为相反数.二、填空题13、【答案】4【考点】相反数,解一元一次方程【解析】【解答】解:根据题意得:2x+1﹣3x+2=0,移项合并得:﹣x=﹣3,解得:x=3,则原式=9﹣6+1=4,故答案为:4【分析】利用互为相反数两数之和为0列出方程,求出方程的解得到x的值,代入原式计算即可得到结果.14、【答案】;﹣3;;3.14﹣π【考点】相反数,绝对值,平方根【解析】【解答】解:±= ;=﹣3;|﹣|= ;π﹣3.14的相反数是3.14﹣π,故答案为:,﹣3,,3.14﹣π.【分析】根据平方根的意义,立方根的意义,绝对值的性质,相反数的意义,可得答案.15、【答案】3﹣;【考点】相反数,绝对值【解析】【解答】解:根据相反数的概念有的相反数是﹣(),即3﹣;根据绝对值的定义:的绝对值是.【分析】分别根据相反数、绝对值的概念即可求解.16、【答案】﹣;5.6;﹣2;﹣7;﹣4【考点】相反数,绝对值,有理数的加减混合运算【解析】【解答】解:原式=﹣;原式=5.6;原式=﹣2;原式=﹣7;原式=﹣1﹣3=﹣4,故答案为:﹣;5.6;﹣2;﹣7;﹣4【分析】原式利用减法法则,绝对值的代数意义计算即可得到结果.17、【答案】【考点】相反数,一元一次方程的应用【解析】【解答】解:∵代数式与x﹣3的值互为相反数,∴+x﹣3=0,解得:x= .故填.【分析】紧扣互为相反数的特点:互为相反数的和为0.三、解答题18、【答案】解:由题意知:a+b=0,cd=1,m=﹣2.原式=2(a+b)﹣(cd)2007﹣3m=2×0﹣1﹣3×(﹣2)=5【考点】相反数,绝对值,倒数,代数式求值【解析】【分析】先依据相反数、倒数、绝对值的性质得到a+b、c d、m的值,然后代入计算即可.19、【答案】解:这几个数分别为,2.5,﹣2.5,0,+3.5,﹣3.5,1 ,﹣1 ,根据负数的绝对值越大则负数的值越小可得:﹣3.5<﹣2.5<﹣1 <0<1 <2.5<3.5【考点】数轴,相反数,有理数大小比较【解析】【分析】负数的绝对值越大则负数的值越小,由此可得出答案.20、【答案】解:∵a、b互为相反数,c、d互为倒数,x的绝对值是3,∴a+b=0,cd=1,x=±3.当x=3时,原式=32﹣(0+1)×3﹣1=9﹣3﹣1=5;当x=﹣3时,原式=(﹣3)2﹣(0+1)×(﹣3)﹣1=9+3﹣1=11【考点】相反数,绝对值,倒数,代数式求值【解析】【分析】根据题意可知a+b=0,cd=1,x=±3,然后代入计算即可.21、【答案】解:﹣4<﹣2 <﹣1.5<0<1.5<2 <4【考点】数轴,相反数,有理数大小比较【解析】【分析】先在数轴上表示各个数和相反数,再比较即可.22、【答案】解:∵与|y+1|互为相反数,∴x﹣3=0,y+1=0,解得,x=3,y=﹣1,∴,即x﹣y的平方根是±2.【考点】相反数,二次根式的非负性,绝对值的非负性【解析】【分析】根据非负数的性质和题目中与|y+1|互为相反数,可以得到x、y的值,从而可以求得x﹣y的平方根.。
相反数、绝对值专题训练注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。
答案写在试卷上均无效,不予记分。
第I卷(选择题)一、选择题(本大题共7小题,共21.0分)1.若m•n≠0,则+的取值不可能是()A. 0B. 1C. 2D.2.若a、b都是不为零的数,则的结果为A. 3或B. 3或C. 或1D. 3或或13.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A. 0B. 1或C. 2或D. 0或4.有理数abc<0,则++的值是()A. 1B. 3C. 0D. 1或5.实数a、b在数轴上的位置如图,则|a+b|-|a-b|等于()A. 2aB. 2bC.D.6.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A. B. C. D.7.如图,a,b为数轴上的两点表示的有理数,在a+b,b-a,|a-b|,|b|-|a|中,负数的个数有()A. 1B. 2C. 3D. 4第II卷(非选择题)二、填空题(本大题共7小题,共21.0分)8.已知|a|=3,|b|=4,且a<b,则的值为______ .9.如果n<0,那么= ______ .10.若a,b都是不为零的有理数,那么+的值是______.11.有理数a、b、c在数轴上的位置如图所示,化简:-|c-a|+|b|+|a|-|c|=______.12.若a、b、c在数轴上的位置如图,则|a|-|b-c|+|c|= ______ .13.若,则的取值范围是________.14.若有理数在数轴上的位置如图所示,则化简:______.三、计算题(本大题共1小题,共6.0分)15.已知有理数a、b、c在数轴上的对应点如图所示,化简:|a-b|-|a+b|+|a|+|a-c|.四、解答题(本大题共5小题,共40.0分)16.有理数a,b,c在数轴上的位置如图所示,且|a|=|b|.(1)用“>”“<”或“=”填空:b______0,a+b______0,a-c______0,b-c______0;(2)化简:|c-a|-|c-b|+|a+b|.17.阅读下列材料并解决有关问题:我们知道,所以当x>0时,==1;当x<0时,==-1.现在我们可以用这个结论来解决下面问题:(1)已知a,b是有理数,当ab≠0时,+= ______ ;(2)已知a,b是有理数,当abc≠0时,++= ______ ;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则++= ______ .18.已知a、b、c均为非零的有理数,且=-1,求++的值.19.实数a,b,c在数轴上的位置如图,化简|b+c|-|b+a|+|a+c|.20.设a为有理数.(1)若b=(a+2)2+3,则b是否有最小值?若有,请求出这个最小值,并求此时a的值;若没有,请说明理由.(2)试比较a2与|a|的大小.答案和解析1.【答案】B【解析】【分析】此题主要考查了绝对值的定义及有理数的加法法则.由于m、n为非零的有理数,则有3种情况要考虑到,用到了分类讨论的思想.由于m、n为非零的有理数,根据有理数的分类,m、n的值可以是正数,也可以是负数.那么分三种情况分别讨论:①两个数都是正数;②两个数都是负数;③其中一个数是正数另一个是负数,针对每一种情况,根据绝对值的定义,先去掉绝对值的符号,再计算即可.【解答】解:分3种情况:①两个数都是正数;∴+=1+1=2,②两个数都是负数;∴+=-1-1=-2,③其中一个数是正数另一个是负数,所以,原式=-1+1=0.∴+的取值不可能是1.故选B.2.【答案】B【解析】【分析】本题考查了绝对值的意义及分式的化简.正数和0的绝对值是它本身,负数和0的绝对值是它的相反数.当x>0时,=1;当x<0时,=-1.互为相反数(0除外)的两个数的商为-1,相同两个数(0除外)的商为1.可从a、b同号,a、b异号,分类讨论得出结论.【解答】解:①当a>0,b>0时则++=1+1+1=3;②当a<0,b<0时=-1-1+1=-1;③当a>0,b<0时=1-1-1=-1;④当a<0,b>0时=-1+1-1=-1;故选B.3.【答案】A【解析】【分析】本题考查了分式的化简求值,涉及到绝对值、非零实数的性质等知识点,注意分情况讨论未知数的取值,不要漏解.根据a、b、c是非零实数,且a+b+c=0可知a,b,c为两正一负或两负一正,按两种情况分别讨论代数式的可能的取值,再求所有可能的值即可.【解答】解:由已知可得:a,b,c为两正一负或两负一正.①当a,b,c为两正一负时:,所以;②当a,b,c为两负一正时:,所以.由①②知所有可能的值为0.应选A.4.【答案】D【解析】解:∵abc<0,∴a,b,c中有一个负数或三个负数,当有一个负数时,原式=-1+1+1=1;当有三个负数时,-1-1-1=-3,故选D.利用有理数的乘法法则判断得到a,b,c中负数的个数,利用绝对值的代数意义化简即可得到结果.此题考查了有理数的除法,以及绝对值,熟练掌握运算法则是解本题的关键.5.【答案】A【解析】【分析】此题考查了整式的加减,绝对值,以及实数与数轴,熟练掌握运算法则是解本题的关键.根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴上点的位置得:a<0<b,且|a|<|b|,∴a+b>0,a-b<0,则原式=a+b+a-b=2a.故选A.6.【答案】C【解析】【分析】本题考查数轴,解题的关键是明确数轴的特点,能举出错误选项的反例.根据数轴和ac<0,b+a<0,可以判断选项中的结论是否成立,从而可以解答本题.【解答】解:由数轴可得,a<b<c,∵ac<0,b+a<0,∴如果a=-2,b=0,c=2,则b+c>0,故选项A错误;如果a=-2,b=-1,c=0.9,则|b|>|c|,故选项B错误;如果a=-2,b=0,c=2,则abc=0,故选D错误;∵a<b,ac<0,b+a<0,∴a<0,c>0,|a|>|b|,故选项C正确;故选:C.7.【答案】B【解析】解:有数轴可得:a<0,b>0,且|a|>|b|,∴a+b<0,b-a>0,|a-b|>0,|b|-|a|<0,∴负数的个数有2个.故选:B.由数轴的性质可知a<0,b>0,且|a|>|b|,由此判断每个式子的符号.本题考查了数轴.关键是利用数轴判断a、b的符号,a、b的关系式.8.【答案】-7或-【解析】【分析】本题考查了有理数的除法,绝对值的性质,有理数的加法,熟练掌握运算法则是解题的关键.根据绝对值的性质求出a,b,再根据有理数的加法判断出b的值,有理数的除法进行计算即可得解.【解答】解:∵|a|=3,|b|=4,∴a=±3,b=±4,∵a<b,∴当a=3时,b=4,∴=-,当a=-3时,b=4,∴=-7,故答案为-7或-.9.【答案】-1【解析】解:∵n<0,∴|n|=-n,∴==-1.故答案为:-1.根据负数的绝对值等于它的相反数去掉绝对值号,再根据有理数的除法运算法则进行计算即可得解.本题考查了有理数的除法,绝对值的性质,是基础题,正确去掉绝对值号是解题的关键.10.【答案】2,0或-2【解析】解:①a>0,b>0;则+=1+1=2,②a>0,b<0或a<0,b>0,则+=1-1=0或+=-1+1=0③a<0,b<0,则+=-1-1=-2.所以+的值是2,0或-2.故答案为:2,0或-2.分情况讨论①a>0,b>0;②a>0,b<0或a<0,b>0,③a<0,b<0,然后根据范围去掉绝对值可得出+可能的值.本题考查有理数的除法及绝对值的知识,难度不大,关键是分类讨论a和b的范围.11.【答案】b+2c【解析】解:从数轴可知:c<0<a<b,|c|>|a|,∴c-a<0,∴-|c-a|+|b|+|a|-|c|=c-a+b+a+c=b+2c,故答案为:b+2c.根据数轴得出c<0<a<b,|c|>|a|,求出c-a<0,再去掉绝对值符号合并同类项即可.本题考查了整式的加减,数轴的应用,注意:整式的加法实质就是合并同类项.12.【答案】b-a【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.此题考查了整式的加减,数轴,以及绝对值,熟练掌握去括号法则与合并同类项法则是解本题的关键.【解答】解:根据数轴上点的位置得:a<b<0<c,∴b-c<0,则原式=-a+b-c+c=b-a,故答案为:b-a13.【答案】【解析】【分析】本题考查了绝对值的性质,依据绝对值的性质得到,即可求得x的取值范围.【解答】解:∵ ,∴ ,∴ ,故答案为.14.【答案】a【解析】【分析】此题主要考查了实数与数轴之间的对应关系,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.先根据数轴上各点的位置判断出a,b,c的符号及|a|,|b|和|c|的大小,接着判定a+c、2a+b、c-b的符号,再化简绝对值即可求解.【解答】解:由上图可知,c<b<0<a,|b|<|a|<|c|,∴a+c<0、2a+b>0、c-b<0,原式=-(a+c)+2a+b-(b-c)=-a-c+2a+b-b+c=a.故答案为a.15.【答案】解:根据数轴上点的位置得:b<a<0<c,∴a-b>0,a+b<0,a-c<0,则原式=a-b+a+b-a-a+c=c.【解析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.16.【答案】(1)<= ><(2)由数轴可得,b<c<0<a,∵|a|=|b|,∴|c-a|-|c-b|+|a+b|=a-c-(c-b)+0=a-c-c+b=a+b-2c.【解析】解:(1)由数轴可得,b<c<0<a,∵|a|=|b|,∴b<0,a+b=0,a-c>0,b-c<0,故答案为:<,=,>,<;(2)见答案【分析】(1)根据数轴可以解答本题;(2)根据数轴可以将题目中式子的绝对值去掉,然后化简即可解答本题.本题考查整式的加减、数轴、绝对值、有理数大小的比较,解答本题的关键是明确它们各自的计算方法,利用数形结合的思想解答.17.【答案】(1)±2或0;(2)±1或±3;(3)-1.【解析】解:(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,+=-1-1=-2,②a>0,b>0,+=1+1=2,③a、b异号,+=0,故答案为:±2或0;(2)已知a,b是有理数,当abc≠0时,①a<0,b<0,c<0,++=-1-1-1=-3,②a>0,b>0,c>0,++=1+1+1=3,③a、b、c两负一正,++=-1-1+1=-1,④a、b、c两正一负,++=-1+1+1=1,故答案为:±1或±3;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则b+c=-a,a+c=-b,a+b=-c,a、b、c两正一负,则++═---=1-1-1=-1,故答案为:-1.【分析】(1)分3种情况讨论即可求解;(2)分4种情况讨论即可求解;(3)根据已知得到b+c=-a,a+c=-b,a+b=-c,a、b、c两正一负,进一步计算即可求解.此题考查了有理数的除法,以及绝对值,熟练掌握运算法则是解本题的关键.18.【答案】解:∵a、b、c是非零实数,且=-1,∴可知a,b,c为两正一负或三负.①当a,b,c为两正一负时:++=1+1-1=1;②当a,b,c为三负时:++=-1-1-1=-3.故++的值可能为1和-3.【解析】本题考查了代数式求值有关知识,根据a、b、c均为非零的有理数,且=-1,可知a,b,c为两正一负或三负,按两种情况分别讨论代数式的可能的取值,再求所有可能的值即可.19.【答案】解:|b+c|-|b+a|+|a+c|=-(b+c)-(-b-a)+(a+c)=-b-c+b+a+a+c=2a.【解析】先由数轴上点的关系,可得a,、c互为相反数,再根据负数的绝对值是它的相反数,可化简去掉绝对值,再合并同类项,得答案.本题考查了整式的加减,先根据数轴上点的位置关系,化简掉绝对值,再合并同类项.20.【答案】解:(1)∵(a+2)2≥0,∴(a+2)2+3>0,∴b是否有最小值是3,此时a的值为-2;(2)当a<-1时,a2<|a|,当-1<a<0时,a2>|a|,当0≤a<1时,a2<|a|,当a>1时,a2>|a|.【解析】(1)根据非负数的性质解答即可;(2)利用分情况讨论思想解答.本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.。
i.-2的绝对值是()5-4c-f D.且2【即学即练2】2.数轴上有力、B、C、。
四个点,其中绝对值等于2的点是(),4B C-J_I A二18・•]]L A-4-3-2-1012•345A.点力B.点BC.点。
D.点D【即学即练3】3.已矢口u—-2,b=l,则同+|-句的值为()A.3B.1C.0D.-1知识点02绝对值的性质1.绝对值的非负性:由定义可知,绝对值表示到原点的距离,所以不能为O所以绝对值是一个,所以绝对值具有。
即若|。
|0o几个非负数的和等于o,这几个非负数一定分别等于0o即:若\a\+\b\+...+I m|=0,则一定有o题型考点:根据绝对值的非负性求值。
【即学即练1】4.已知|x-2|+加T|=0,则x-y的相反数为()A.-1B.1C.3D.-3【即学即练2】5.若向+例=0,则口与力的大小关系是()A.a=b=0B.口与力互为倒数C.Q与b异号D.口与力不相等知识点03绝对值与数轴1.绝对值与数轴:在数轴上,一个数离原点越近,绝对值就,一个数离原点越远,绝对值,题型考点:根据绝对值与数轴进行求解判断。
6.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越・【即学即练2】7.如图,四个有理数m n,p,q在数轴上对应的点分别为N,P,0若乃+0=0,则秫,n,p,q四个有理数中,绝对值最小的一个是()M OA.p知识点04绝对值与相反数1.绝对值与相反数:①数轴上互为相反数的两个数在原点的两侧,且到原点的距离相等,所以互为相反数的两个数他们的绝对值_________o即若。
与5互为相反数,贝」|q|\b\o②绝对值等于某个正数的数一定有,它们o即若|x|=q(q>0),则③绝对值相等的两个数要么,要么o即若|。
|=|们,则有或o题型考点:根据相反数的绝对值进行求解。
【即学即练1】8.若|x|=5,贝0x—.【即学即练2】9.已知□=-5,同=|句,则人的值为()A.±5B.-5C.+5D.0【即学即练3】10.绝对值等于5的数是,它们互为.知识点05求式子的绝对值1.求式子的绝对值:先判断式子与的大小关系,再对式子进行求绝对值。
第2章 有理数2.4 绝对值与相反数 课程标准 课标解读 1.借助数轴理解绝对值和相反数的概念;2.知道|a|的绝对值的含义以及互为相反数的两个数在数轴上的位置关系;3.会求一个数的绝对值和相反数,并会用绝对值比较两个负有理数的大小;4.通过应用绝对值解决实际问题,体会绝对值的意义和作用. 1、相反数和绝对值的表示方法 2、数轴的几何意义表示,在数轴上分析绝对值和相反数性质知识点01 相反数 1.定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.【微点拨】(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.【即学即练1】1.3-的相反数是( )A .13-B .13C .3D .3-【答案】C【分析】目标导航知识精讲依据相反数的定义求解即可.【详解】解:-3的相反数是3.故选:C.知识点02 多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .【微点拨】(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【即学即练2】2.在下列各数:13⎛⎫--⎪⎝⎭,36-,227,0,-(+3),-|-2015|中,负数的个数是()A.1个B.2个C.3个D.4个【答案】C【分析】先化简各数,再与0比较即可.【详解】解::11=033⎛⎫-->⎪⎝⎭,-(+3)=-3<0,-|-2015|=-2015<0,负数有36-,-(+3),-|-2015|,负数的个数是3.故选择:C.知识点03 绝对值1.定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,例如+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3.2.性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数.(2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.【微点拨】(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.【即学即练3】3.已知关于x 的方程mx |m |+1=0是一元一次方程,则m 的取值是( )A .±1B .﹣1C .1D .以上答案都不对【答案】A【分析】根据一元一次方程的定义得出m≠0且|m|=1,求出m 即可.【详解】解:∵关于x 的方程mx |m|+1=0是一元一次方程,∵m≠0且|m|=1,解得:m =±1,故选:A . 知识点04 有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩-数为0 正数与0:正数大于0负数与0:负数小于03. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.【微点拨】利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小:(3)判定两数的大小.【即学即练4】4.下列四个数中,最小的数是( )A .2-B .4-C .(1)--D .0【答案】A【分析】根据有理数的大小比较及绝对值可直接进行排除选项.【详解】解:∵()44,11-=--=,∵()4102->-->>-,∵最小的数是-2;故选A .考法01 化简绝对值1、根据题设条件只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺利去掉绝对值符号,这是解答这类问题的常规思路.2、借助数轴 能力拓展①零点的左边都是负数,右边都是正数.②右边点表示的数总大于左边点表示的数.③离原点远的点的绝对值较大,牢记这几个要点就能从容自如地解决问题了.3、采用零点分段讨论法①求零点:分别令各绝对值符号内的代数式为零,求出零点(不一定是两个).②分段:根据第一步求出的零点,将数轴上的点划分为若干个区段,使在各区段内每个绝对值符号内的部分的正负能够确定.③在各区段内分别考察问题.④将各区段内的情形综合起来,得到问题的答案.误区点拨 千万不要想当然地把 等都当成正数或无根据地增加一些附加条件,以免得出错误的结果.【典例1】a 、b 、c 三个数在数轴上的位置如图所示,则下列各式中正确的个数有( )∵0ab >; ∵c a b -<<-; ∵11a b >; ∵b b =-. A .4个B .3个C .2个D .1个 【答案】B【分析】根据有理数大小的比较可得数轴上的右边的数总大于左边的数得出b <c <0<a ,b a c >>,再分别判断各式.【详解】解:结合图形,根据数轴上的右边的数总大于左边的数,可得b <c <0<a ,b a c >>.∵∵0ab <,故错误;∵c a b -<<-,故正确; ∵11a b>,故正确; ∵b b =-,故正确;考法02 绝对值的意义一.绝对值的实质:正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即也就是说,|x|表示数轴上坐标为x的点与原点的距离。
章节测试题1.【答题】-5的绝对值是()A. 5B. -5C.D.【答案】A【分析】本题考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.根据绝对值的性质求解.【解答】根据负数的绝对值等于它的相反数,得|-5|=5.选A.2.【答题】|-2013|的值是()A. B. C. 2013 D. -2013【答案】C【分析】本题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.计算绝对值要根据绝对值定义去掉这个绝对值的符号.【解答】|-2013|=2013.选C.3.【答题】下列四个数中,小于0的数是()A. -1B. 0C. 1D. π【答案】A【分析】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.在数轴上表示出各数,再根据数轴的特点进行解答即可.【解答】如图所示,∵-1在0的左边,∴-1<0.选A.4.【答题】下列各数中,小于-3的数是()A. 2B. 1C. -2D. -4【答案】D【分析】本题考查了有理数的大小比较法则的应用,注意:有理数的大小比较法则是:正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小.根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.【解答】A.2>-3,故本选项错误;B.1>-3,故本选项错误;C.∵|-2|=2,|-3|=3,∴-2>-3,故本选项错误;D.∵|-4|=4,|-3|=3,∴-4<-3,故本选项正确;选D.5.【答题】在-2,1,5,0这四个数中,最大的数是()A. -2B. 1C. 5D. 0【答案】C【分析】本题考查了有理数的大小的比较,解题的关键利用熟练掌握有理数的大小比较法则.根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数进行比较即可.【解答】在-2,1,5,0这四个数中,大小顺序为:-2<0<1<5,∴最大的数是5.选C.6.【答题】|-2|的值等于()A. 2B.C.D. -2【答案】A【分析】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=-a.直接根据绝对值的意义求解.【解答】|-2|=2.选A.7.【答题】-6的绝对值是()A. -6B. 6C. ±6D.【答案】B【分析】本题考查了绝对值的性质,熟记:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.根据绝对值的性质,当a是负有理数时,a的绝对值是它的相反数-a,解答即可;【解答】根据绝对值的性质,|-6|=6.选B.8.【答题】–2019的绝对值是()A. 2019B. –2019C.D. –【答案】A【分析】本题考查绝对值的定义.绝对值的定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|,读作“a的绝对值”.【解答】–2019的绝对值是2019.选A.9.【答题】如图,点A所表示的数的绝对值是()A. 3B. –3C.D. −【答案】A【分析】本题考查数轴以及绝对值的定义.【解答】|–3|=3,选A.10.【答题】–0.2的绝对值是()A. 0.2B. –C. 5D. –5 【答案】A【分析】本题考查绝对值的定义.【解答】–0.2的绝对值是0.2.选A.11.【答题】一个数的绝对值等于3,则这个数是______.【答案】3或–3【分析】本题考查绝对值的定义.【解答】∵,∴这个数是3或–3.故答案为3或–3.12.【答题】–3的绝对值是______.【答案】3【分析】本题考查绝对值的定义.【解答】根据负数的绝对值是它的相反数,得|–3|=3.13.【题文】已知的相反数等于,,求a,b的值.【答案】,b=±3.【分析】本题考查相反数以及绝对值的定义.【解答】∵的相反数等于,∴.∵,∴b=±3.14.【答题】若|6–x|与|y+9|互为相反数,则x=______,y=______.【答案】6 –9【分析】本题考查绝对值的非负性. 任何数都有绝对值,且只有一个,无论a取何有理数,都有|a|≥0,即任何一个有理数的绝对值都是非负数,绝对值最小的数是0.【解答】由题意得,|6–x|+|y+9|=0,则6–x=0,y+9=0,解得x=6,y=–9.故答案为6,–9.15.【答题】若,则关于x,y的取值,下列说法正确的是()A. ,B. ,C. ,D. ,【答案】A【分析】本题考查绝对值的非负性.【解答】∵,∴x–1=0,y+2=0,∴x=1,y=–2,选A.16.【答题】若(a﹣2)2+|b+4|=0,则a+b=______.【答案】﹣2【分析】本题考查绝对值的非负性.【解答】由题意得,a﹣2=0,b+4=0,解得a=2,b=﹣4,∴a+b=2+(﹣4)=﹣2.故答案为﹣2.17.【答题】的绝对值是()A. 5B. –C. –5D.【答案】D【分析】本题考查绝对值的定义.【解答】的绝对值是.选D.18.【答题】数轴上有A、B、C、D四个点,其中绝对值等于2的点是()A. 点AB. 点BC. 点CD. 点D【答案】A【分析】本题考查数轴以及绝对值的定义.【解答】∵绝对值等于2的数是–2和2,∴在所给的点中绝对值等于2的点是点A.选A.19.【答题】–4的相反数的绝对值是()A. 4B. –4C.D.【答案】A【分析】本题考查相反数以及绝对值的定义.【解答】–4的相反数为4,则4的绝对值是4.选A.20.【答题】已知a,b两数在数轴上的位置如图所示,则化简代数式|a–b|+|a–2|–|b+1|的结果是()A. 3B. 2a–1C. –2b+1D. –1【答案】A【分析】本题考查绝对值的化简.【解答】根据数轴上点的位置得:b<−1<0<1<a<2,∴a–b>0,a−2<0,b+1<0,则原式=a–b−a+2–(–b–1)=3,选A.。
苏科版数学七年级上册2.4.3《绝对值与相反数》说课稿一. 教材分析《苏科版数学七年级上册》2.4.3《绝对值与相反数》这一节主要介绍了绝对值和相反数的概念及其性质。
绝对值是数轴上表示一个数的点到原点的距离,相反数是在数轴上与原数相对的数。
这一节内容是初中数学的基础,对于学生理解实数的概念,以及后续学习代数和几何有着重要的意义。
二. 学情分析七年级的学生已经初步接触了实数的概念,对于数轴也有了一定的了解。
但是,他们对于绝对值和相反数的定义及性质可能还不是很清楚,需要通过具体例子和练习来加深理解。
同时,学生可能对于数轴上的距离和相对概念有一定的困惑,需要教师进行详细的解释和引导。
三. 说教学目标1.理解绝对值和相反数的概念,掌握它们的性质。
2.能够运用绝对值和相反数的性质解决一些实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 说教学重难点1.绝对值和相反数的定义及性质。
2.如何运用绝对值和相反数的性质解决实际问题。
五. 说教学方法与手段1.采用讲授法,教师详细讲解绝对值和相反数的定义及性质,引导学生进行思考。
2.使用举例法,通过具体例子让学生理解绝对值和相反数的概念,加深记忆。
3.利用练习法,让学生通过做练习题,巩固所学知识,提高解决问题的能力。
4.采用小组讨论法,让学生分组讨论,培养学生的合作意识和沟通能力。
六. 说教学过程1.引入:通过数轴引导学生回顾实数的概念,然后提出绝对值和相反数的定义,让学生初步了解。
2.讲解:详细讲解绝对值和相反数的定义及性质,让学生理解并能够运用。
3.举例:给出具体例子,让学生理解绝对值和相反数的概念,加深记忆。
4.练习:让学生做练习题,巩固所学知识,提高解决问题的能力。
5.讨论:让学生分组讨论,分享解题心得,培养学生的合作意识和沟通能力。
6.小结:对本节课的内容进行总结,强调绝对值和相反数的重要性。
七. 说板书设计板书设计如下:绝对值与相反数1.绝对值:数轴上表示一个数的点到原点的距离。
苏科版数学七年级上册2.4.1《绝对值与相反数》说课稿一. 教材分析《苏科版数学七年级上册2.4.1绝对值与相反数》这一节的内容是在学生已经学习了有理数的概念和运算法则的基础上进行讲解的。
本节内容主要介绍了绝对值和相反数的概念,以及它们的性质和运用。
教材通过例题和练习题的方式,使学生能够理解和掌握绝对值和相反数的定义,并能够运用它们解决实际问题。
二. 学情分析学生在学习这一节内容时,已经具备了初步的数学思维能力和一定的逻辑推理能力。
但是,由于绝对值和相反数的概念比较抽象,学生可能对其理解存在一定的困难。
因此,在教学过程中,需要注重引导学生通过实例来理解和掌握概念,并通过大量的练习来巩固知识。
三. 说教学目标1.知识与技能目标:学生能够理解绝对值和相反数的概念,掌握它们的性质和运用。
2.过程与方法目标:通过实例分析和练习,培养学生运用绝对值和相反数解决实际问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.教学重点:绝对值和相反数的概念及其性质。
2.教学难点:绝对值和相反数的运用和实际问题的解决。
五. 说教学方法与手段在教学过程中,我将采用讲授法、案例分析法、小组讨论法和练习法等教学方法。
同时,利用多媒体课件和黑板等教学手段,以直观的方式展示绝对值和相反数的概念和性质,激发学生的学习兴趣和积极性。
六. 说教学过程1.导入:通过一个实际问题,引出绝对值和相反数的概念,激发学生的学习兴趣。
2.新课讲解:讲解绝对值和相反数的定义和性质,通过例题和练习题使学生理解和掌握。
3.课堂练习:学生独立完成练习题,教师进行讲解和解答疑惑。
4.小组讨论:学生分组讨论绝对值和相反数在实际问题中的应用,分享解题思路和方法。
5.总结:教师引导学生总结绝对值和相反数的概念和性质,以及解决实际问题的方法。
七. 说板书设计板书设计包括以下几个部分:1.绝对值和相反数的定义和性质。
2.4 绝对值与相反数一.选择题(共8小题)1.﹣的相反数是()A.2019B.﹣C.﹣2019D.2.﹣2的绝对值为()A.﹣B.C.﹣2D.23.计算|﹣3|的结果是()A.3B.C.﹣3D.±34.下列各数与﹣(﹣2019)相等的是()A.﹣2019B.2019C.﹣|﹣2019|D.5.如果实数a满足|a|=3,且a<0,那么a的值为()A.±3B.1C.3D.﹣36.已知数轴上的三点A、B、C,分别表示有理数a、1、﹣1,那么|a+1|表示为()A.A、B两点间的距离B.A、C两点间的距离C.A、B两点到原点的距离之和D.A、C两点到原点的距离之和7.已知a<0,ab<0,化简|a﹣b﹣1|﹣|2+b﹣a|的结果是()A.1B.3C.﹣1D.﹣38.|a﹣b|=|a|+|b|成立的条件是()A.ab>0B.ab>1C.ab≤0D.ab≤1二.填空题(共6小题)9.﹣16的相反数是.10.﹣的绝对值是.11.若1<a<2,化简|a﹣2|+|1﹣a|的结果是.12.π﹣3的绝对值是.13.一对相反数x,y满足2x﹣y=6,则|y﹣x|=.14.化简﹣(﹣)的结果是.三.解答题(共6小题)15.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.16.(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.17.当a≠0时,请解答下列问题:(1)求的值;(2)若b≠0,且,求的值.18.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|,如果表示数a和﹣2的两点之间的距离是3,那么a=.(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值.19.阅读下列材料完成相关问题:已知a,b、c是有理数(1)当ab>0,a+b<0时,求的值;(2)当abc≠0时,求的值;(3)当a+b+c=0,abc<0,的值.20.【归纳】(1)观察下列各式的大小关系:|﹣2|+|3|>|﹣2+3|,|﹣6|+|3|>|﹣6+3||﹣2|+|﹣3|=|﹣2﹣3|,|0|+|﹣8|=|0﹣8|归纳:|a|+|b||a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)【应用】(2)根据上题中得出的结论,若|m|+|n|=13,|m+n|=1,求m的值.【延伸】(3)a、b、c满足什么条件时,|a|+|b|+|c|>|a+b+c|.答案与解析一.选择题(共8小题)1.﹣的相反数是()A.2019B.﹣C.﹣2019D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:D.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.﹣2的绝对值为()A.﹣B.C.﹣2D.2【分析】直接利用绝对值的性质化简得出答案.【解答】解:﹣2的绝对值为:2.故选:D.【点评】此题主要考查了绝对值,正确掌握相关定义是解题关键.3.计算|﹣3|的结果是()A.3B.C.﹣3D.±3【分析】根据绝对值的性质进行计算.【解答】解:|﹣3|=3.故选:A.【点评】本题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.下列各数与﹣(﹣2019)相等的是()A.﹣2019B.2019C.﹣|﹣2019|D.【分析】利用绝对值和相反数的定义解答即可.【解答】解:﹣(﹣2019)=2019,A.﹣2019与2019不相等,故此选项不符合题意;B.2019与2019相等,故此选项符合题意;C.﹣|﹣2019|=﹣2019,与2019不相等,故此选项不符合题意;D.﹣与2019不相等,故此选项不符合题意;故选:B.【点评】本题主要考查了绝对值和相反数的定义,理解定义是解答此题的关键.5.如果实数a满足|a|=3,且a<0,那么a的值为()A.±3B.1C.3D.﹣3【分析】直接利用绝对值的性质得出a的值.【解答】解:∵|a|=3,且a<0,∴a=﹣3.故选:D.【点评】此题主要考查了绝对值,正确把握绝对值的性质是解题关键.6.已知数轴上的三点A、B、C,分别表示有理数a、1、﹣1,那么|a+1|表示为()A.A、B两点间的距离B.A、C两点间的距离C.A、B两点到原点的距离之和D.A、C两点到原点的距离之和【分析】首先把|a+1|化为|a﹣(﹣1)|,然后根据数轴上的三点A、B、C,分别表示有理数a、1、﹣1,判断出|a+1|表示为A、C两点间的距离即可.【解答】解:∵|a+1|=|a﹣(﹣1)|,∴|a+1|表示为A、C两点间的距离.故选:B.【点评】此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.7.已知a<0,ab<0,化简|a﹣b﹣1|﹣|2+b﹣a|的结果是()A.1B.3C.﹣1D.﹣3【分析】根据绝对值的性质即可求出答案.【解答】解:由于a<0,ab<0,∴b>0,∴a﹣b﹣1<0,2+b﹣a>0,∴原式=﹣(a﹣b﹣1)﹣(2+b﹣a)=﹣a+b+1﹣2﹣b+a=﹣1故选:C.【点评】本题考查绝对值的性质,解题的关键是熟练运用绝对值的性质,本题属于基础题型.8.|a﹣b|=|a|+|b|成立的条件是()A.ab>0B.ab>1C.ab≤0D.ab≤1【分析】根据条件分析a与b的关系,进而求出正确答案.【解答】解:当a、b异号或a、b均为0时,|a﹣b|=|a|+|b|成立,∴ab≤0,故选:C.【点评】此题主要考查了绝对值的性质,能够根据已知条件正确地判断出a、b的关系是解答此题的关键.二.填空题(共6小题)9.﹣16的相反数是16.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:﹣16的相反数是16.故答案为:16【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.10.﹣的绝对值是.【分析】根据绝对值的定义即可得到结论.【解答】解:﹣的绝对值是,故答案为:.【点评】本题考查了绝对值的定义,熟练掌握绝对值的定义是解题的关键.11.若1<a<2,化简|a﹣2|+|1﹣a|的结果是1.【分析】判断a﹣2、1﹣a是正数还是负数,然后利用绝对值的概念进行化简即可.【解答】解:∵1<a<2,∴a﹣2<0,1﹣a<0,∴|a﹣2|+|1﹣a|=﹣a+2﹣1+a=1,故答案为:1.【点评】本题考查了绝对值的概念,解题的关键是根据得出a﹣2、1﹣a是正数还是负数.12.π﹣3的绝对值是π﹣3.【分析】根据正有理数的绝对值是它本身即可求解.【解答】解:π﹣3的绝对值是π﹣3.故答案为:π﹣3.【点评】考查了绝对值,如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.13.一对相反数x,y满足2x﹣y=6,则|y﹣x|=4.【分析】根据相反数的性质得出x+y=0,进而得出x,y的值,进而利用绝对值解答即可.【解答】解:根据题意可得:,解得:,所以|y﹣x|=|﹣2﹣2|=4,故答案为:4【点评】本题考查了相反数、绝对值的意义.根据相反数的性质得出x+y=0是解决本题的关键.14.化简﹣(﹣)的结果是.【分析】根据相反数的定义作答.【解答】解:﹣(﹣)=.故答案是:.【点评】考查了相反数.求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a 的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号。
相反数、绝对值【十大题型】【苏科版】【题型1 相反数与绝对值的概念辨析】 (1)【题型2 相反数的几何意义的应用】 (3)【题型3 绝对值非负性的应用】 (5)【题型4 化简多重符号】 (6)【题型5 化简绝对值】 (8)【题型6 利用相反数的性质求值】 (9)【题型7 解绝对值方程】 (11)【题型8 绝对值几何意义的应用】 (13)【题型9 有理数的大小比较】 (15)【题型10 应用绝对值解决实际问题】 (17)【知识点1 相反数与绝对值】相反数:1.概念:只有符号不同的两个数叫做互为相反数.相反数的表示方法:一般地,a和-a互为相反数,这里的a表示任意一个数可以是正数、负数也可以是零,特别地,一个数的相反数等于它本身这个数是零.2.性质:若a与b互为相反数,那么a+b=0.绝对值:1.定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.2.性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【题型1 相反数与绝对值的概念辨析】【例1】(2023秋·福建龙岩·七年级校考阶段练习)与-4的和为0的数是()A.14B.4C.-4D.−14【答案】B【分析】与-4的和为0的数,就是-4的相反数4.【详解】解:与-4的和为0的数,就是求出-4的相反数4,故选:B.【点睛】此题考查相反数的意义,掌握互为相反数的两个数的和为0的性质是解决问题的基础.【变式1-1】(2023·江苏·七年级假期作业)将符号语言“|a|=a(a≥0)”转化为文字表达,正确的是()A.一个数的绝对值等于它本身B.负数的绝对值等于它的相反数C.非负数的绝对值等于它本身D.0的绝对值等于0【答案】C【分析】根据绝对值的含义及绝对值的性质逐项判断即可解答.【详解】解:∵一个非负数的绝对值等于它本身,一个负数的绝对值等于它的相反数,∴A项不符合题意;∵a≥0,表示的是非负数的绝对值,不是负数的绝对值,∴B不符合题意;∵一个非负数的绝对值等于它本身,∴C符合题意;∵a≥0,表述的是非负数的绝对值,不只是0的绝对值,∴选项D不符合题意;故选:C.【变式1-2】(2023·江苏·七年级假期作业)下列各对数中,互为相反数的是()A.−(+1)和+(−1)B.−(−1)和+(−1)C.−(+1)和−1D.+(−1)和−1【答案】B【分析】先化简各数,然后根据相反数的定义判断即可.【详解】解:A、−(+1)=−1,+(−1)=−1,不是相反数,故此选项不符合题意;B、−(−1)=1,+(−1)=−1,是相反数,故此选项符合题意;C、−(+1)=−1,不是相反数,故此选项不符合题意;D、+(−1)=−1,不是相反数,故此选项不符合题意;故选:B.【点睛】本题主要考查了相反数.先化简再求值是解题的关键.【变式1-3】(2023秋·江苏盐城·七年级江苏省响水中学阶段练习)绝对值小于2016的所有的整数的和________.【答案】0【详解】绝对值小于2016的所有整数为:−2015,...,0,1, (2015)故-2015+(-2014)+(-2013)+…+2013+2014+2015=(-2015+2015)+( -2014+2014)+( -2013+2013)+…+(-1+1)+0=0;故答案为0.点睛:由于数比较多,不可能挨个求和,故考虑用“互为相反数的两个数的和等于0”这个性质.【题型2 相反数的几何意义的应用】【例2】(2023·全国·七年级假期作业)如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?【答案】(1)-1(2)点C表示的数是0.5,D表示的数是-4.5【分析】(1)根据互为相反数的定义确定出原点的位置,再根据数轴写出点C表示的数即可;(2)根据互为相反数的定义确定出原点的位置,再根据数轴写出点C、D表示的数即可.【详解】(1)由点A、B故点C表示的数是-1.(2)由点D、B表示的数是互为相反数可知数轴上原点的位置如图,故点C表示的数是0.5,D表示的数是-4.5.【点睛】本题考查了相反数的定义和数轴,解题的关键是根据题意找出原点的位置.【变式2-1】(2023秋·七年级课时练习)如图,数轴上两点A、B表示的数互为相反数,若点B表示的数为6,则点A表示的数为()A.6B.﹣6C.0D.无法确定【答案】B【分析】根据数轴上点的位置,利用相反数定义确定出点A表示的数即可.【详解】解:∵数轴上两点A,B表示的数互为相反数,点B表示的数为6,∴点A表示的数为﹣6,故选:B.【点睛】此题考查数轴与有理数,相反数的定义,理解相反数的定义是解题的关键.【变式2-2】(2023·全国·七年级假期作业)如图,A,B,C,D是数轴上的四个点,已知a,b均为有理数,且a+b=0,则它们在数轴上的位置不可能落在()A.线段AB上B.线段BC上C.线段BD上D.线段AD上【答案】A【分析】根据相反数的性质,数轴的定义可知,a,b位于原点两侧,据此即可求解.【详解】解:∵a,b均为有理数,且a+b=0,∴a,b位于原点两侧,∴a,b在数轴上的位置不可能落在线段AB上,故选:A.【变式2-3】(2023秋·江苏无锡·七年级校考阶段练习)用“⇒”与“⇐”表示一种法则:(a⇒b)=﹣b,(a⇐b)=﹣a,如(2⇒3)=﹣3,则(2023⇒2018)⇐(2023⇒2015)=__________【答案】2018.【分析】根据题意,(a⇒b)=-b,(a⇐b)=-a,可知(2023⇒2018)=-2018,(2023⇒2015)=-2015,再计算(-2018⇐-2015)即可.【详解】解:∵(a⇒b)=-b,(a⇐b)=-a,∴(2023⇒2018)⇐(2023⇒2015)=(-2018⇐-2015)=2018.故答案为:2018.【点睛】本题这是一种新定义问题,间接考查了相反数的概念,一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.解题的关键是根据题意掌握规律.【题型3 绝对值非负性的应用】【例3】(2023秋·云南昭通·七年级校考阶段练习)已知|a﹣2|与|b﹣3|互为相反数,求a+b的值.【答案】5.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列非常求出a、b的值,然后代入代数式进行计算即可得解.【详解】∵|a-2|与|b-3|互为相反数,∴|a-2|+|b-3|=0,∴a-2=0,b-3=0,解得a=2,b=3,所以,a+b=2+3=5.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.【变式3-1】(2023秋·云南楚雄·七年级校考阶段练习)对于任意有理数a,下列式子中取值不可能为0的是()A.|a+1|B.|−1|+a C.|a|+1D.−1+|a|【答案】C【分析】根据绝对值的非负性即可得出答案.【详解】解:A.当a=−1时,a+1=0,则|a+1|=0,故A选项不符合题意;B.当a=−1时,|−1|+a=1−0,故B选项不符合题意;C.|a|≥0,则|a|+1≥1,不可能为0,故C选项符合题意;D.当a=±1时,−1+|a|=−1+1=0,故D选项不符合题意;故选:C.【点睛】本题考查了绝对值的非负性,解题的关键是掌握任何数的绝对值都是非负数,两个非负数的和一定为非负数.【变式3-2】(2023秋·山东潍坊·七年级统考期中)若|a−1|+|b+2|=0,求a+|−b|.【答案】3【分析】根据绝对值的非负性求解即可.【详解】解:∵|a−1|+|b+2|=0,∴a−1=0,b+2=0,解得:a=1,b=−2,故a +|−b |=1+2=3.【点睛】本题考查了绝对值的非负性,准确的计算是解决本题的关键.【变式3-3】(2023秋·七年级课时练习)对于任意有理数m ,当m 为何值时,5−|m −3|有最大值?最大值为多少?【答案】5【分析】根据绝对值的非负性得到|m −3|≥0,得到当m =3时,|m −3|最小,代入求解即可;【详解】解:由绝对值都是非负数,得|m −3|≥0.当m =3时,|m −3|最小,最小值为0,此时5−|m −3|有最大值,最大值是5.【点睛】本题主要考查了绝对值的非负性应用,准确计算是解题的关键.【题型4 化简多重符号】【例4】(2023秋·全国·七年级专题练习)化简下列各数:(1)−(−23)=________ ;(2)−(+45)=________;(3)−{+[−(+3)]}=________.【答案】 23 −45 3【分析】根据多重符合化简的法则,化简结果的符合由符号的个数决定,确定符号后可得结果.【详解】解:−(−23)=23,−(+45)=−45,−{+[−(+3)]}=3,故答案为:23,−45,3.【点睛】本题考查了化简多重符号,多重符号的化简是由“−”的个数来定,若“−”个数为偶数个时,化简结果为正;若“−”个数为奇数个时,化简结果为负.【变式4-1】(2023·浙江·七年级假期作业)下列化简正确的是( )A .+(−6)=6B .−(−8)=8C .−(−9)=−9D .−[+(−7)]=−7 【答案】B【分析】根据化简多重符号的方法逐项判断即可求解.【详解】解:A. +(−6)=−6,原选项计算错误,不合题意;B. −(−8)=8,原选项计算正确,符合题意;C. −(−9)=9,原选项计算错误,不合题意;D. −[+(−7)]=7,原选项计算错误,不合题意.故选:B.【点睛】本题考查有理数的多重符合化简,化简多重符号就是看数字前负号的个数,如果负号的个数是奇数个则最终符号为负号,如果负号个数为偶数个则最终符号为正号.【变式4-2】(2023秋·江苏无锡·七年级统考期末)在−(+2.5),−(−2.5),+(−2.5),+(+2.5)中,正数的个数是()A.1B.2C.3D.4【答案】B【分析】根据多重符号化简原则逐一进行判断即可得到答案.【详解】解:∵−(+2.5)=−2.5,−(−2.5)=2.25,+(−2.5)=−2.5,+(+2.5)=2.5,∴正数的个数是2个,故选B.【点睛】本题考查了多重符号化简,解题关键是掌握多重符号化简的原则:若一个数前有多重符号,则看该数前面的符号中,符号“−”的个数来决定,即奇数个符号则该数为负数,偶数个符号,则该数为正数.【变式4-3】(2023·全国·七年级假期作业)化简下列各式的符号:(1)﹣(+4);(2)+(﹣37);(3)﹣[﹣(﹣325)];(4)﹣{﹣[﹣(﹣π)]}.化简过程中,你有何发现?化简结果的符号与原式中的“﹣”号的个数与什么关系吗?【答案】(1)-4;(2)−37;(3)−325;(4)π;最后结果的符号与﹣的个数有着密切联系,如果一个数是正数,当﹣的个数是奇数,最后结果为负数,当﹣的个数是偶数,最后结果为正数【分析】根据已知数据结合去括号的法则化简各数,进而得出结果的符号与原式中的“-”号的个数的关系.【详解】解:(1)﹣(+4)=﹣4;(2)+(−37)=−37;(3)﹣[﹣(﹣325)]=﹣325;(4)﹣{﹣[﹣(﹣π)]}=π.最后结果的符号与“﹣”的个数有着密切联系,如果一个数是正数,当“﹣”的个数是奇数,最后结果为负数,当“﹣”的个数是偶数,最后结果为正数.【点睛】本题考查了相反数的意义,正确发现数字变化规律是解题的关键.【题型5 化简绝对值】【例5】(2023春·黑龙江哈尔滨·六年级统考期中)有理数a,b,c在数轴上的位置如图所示,化简|b+c|+ |a−c|=_______.【答案】a−b−2c【分析】先由数轴判断a,b,c与0的大小关系,其中a>0,b<0,c<0,则b+c<0,a−c>0,再根据绝对值的意义,正数的绝对值是其本身,负数的绝对值是其相反数,0的绝对值是0,进而得出结果.【详解】解:∵a>0,b<0,c<0,∴b+c<0,a−c>0,∴b+c+a−c=−(b+c)+a−c=−b−c+a−c=a−b−2c故答案为:a−b−2c.【点睛】本题主要考查了数轴上的点以及绝对值的意义,其中正确掌握正负数的绝对值是解题的关键.【变式5-1】(2023秋·江苏宿迁·七年级统考期中)如果|m|=|n|,那么m,n的关系()A.相等B.互为相反数C.都是0D.互为相反数或相等【答案】D【分析】利用绝对值的代数意义化简即可得到m与n的关系.【详解】解:∵m=n,∴m=n或m=−n,即互为相反数或相等,故选:D.【点睛】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.【变式5-2】(2023·浙江·七年级假期作业)化简:(1)|−(+7)|;(2)−|−8|;【答案】(1)7(2)−8【分析】(1)先化简括号的符号,然后再根据绝对值的性质化简即可;(2)直接化简绝对值即可.【详解】(1)解:|−(+7)|=|−7|=7(2)−|−8|=−8.【点睛】本题主要考查绝对值的化简,熟练掌握运算法则是解题关键.【变式5-3】(2023·全国·七年级假期作业)求下列各数的绝对值:(1)−38;(2)0.15;(3)a(a<0);(4)3b(b>0);【答案】(1)38(2)0.15(3)−a(4)3b【分析】根据正数与0的绝对值是其本身,负数的绝对值是其相反数即可求解.【详解】(1)|−38|=38;(2)|0.15|=0.15;(3)∵a<0,∴|a|=−a;(4)∵b>0,∴3b>0,∴|3b|=3b【点睛】本题考查了绝对值的性质,准确把握“正数与0的绝对值是其本身,负数的绝对值是其相反数”是解题的关键.【题型6 利用相反数的性质求值】的相反数是x,-5的相反数是y,z的相反数是0,求x+y 【例6】(2023·全国·七年级专题练习)已知-213+z的相反数.【答案】-713【分析】根据相反数的概念求出x ,y ,z 的值,代入x+y+z 即可得到结果.【详解】解:∵-213的相反数是x ,-5的相反数是y ,z 相反数是0,∴x=213,y=5,z=0,∴x+y+z=213+5+0=713. ∴x+y+z 的相反数是-713 . 【点睛】本题考查了相反数的定义,熟记相反数的概念是解题的关键.【变式6-1】(2023秋·湖北孝感·七年级统考期中)在数轴上表示整数a 、b 、c 、d 的点如图所示,且a +b =0,则c +d 的值是________.【答案】−4.【分析】根据题意先确定原点的位置,然后得到c 、d 表示的数,再进行计算即可.【详解】解:∵a +b =0,∴a 与b 互为相反数,由数轴可知,如图:∴a =−2,b =2,c =−8,d =4,∴c +d =−8+4=−4;故答案为:−4.【点睛】本题考查了数轴的定义,相反数的定义,解题的关键是熟练掌握所学的知识进行解题.【变式6-2】(2023春·广东河源·七年级校考开学考试)若 a +b =0,则 a b 的值是 ( ) A .−1B .0C .无意义D .−1或无意义【答案】D 【分析】分b =0,b ≠0两种情形计算即可.【详解】当b ≠0时,∵a +b =0,∴a=−b,∴a b =−bb=−1;当b=0时,∵a+b=0,∴a=0,∴ab无意义,∴ab的值是−1或无意义,故选D.【点睛】本题考查了相反数的意义,及其商的意义,熟练掌握相反数的意义是解题的关键.【变式6-3】(2023秋·湖南永州·七年级校考阶段练习)已知a,b互为相反数,则a+2a+3a+⋯+49a+50a+ 50b+49b+⋯+3b+2b+b=________.【答案】0【分析】根据相反数的概念,得到a+b=0,继而可得出答案.【详解】解:∵a,b互为相反数,∴a+b=0.∴a+2a+3a+...+49a+50a+50b+49b+...+3b+2b+b=(a+b)+2(a+b)+3(a+b)+50(a+b)=0.故答案为:0.【点睛】本题考查了相反数的概念,属于基础题,注意掌握相反数的概念是关键.【题型7 解绝对值方程】【例7】(2023秋·江苏宿迁·七年级泗阳致远中学校考阶段练习)若|−m|=|−12|,则m的值为()A.±2B.−12或12C.12D.−12【答案】B【分析】根据绝对值的性质,进行化简求解即可.【详解】解:|−m|=|−12||−m|=12,∴m=±1,2故选:B.【点睛】本题考查了绝对值方程问题,解题的关键是掌握绝对值化简的性质,正数的绝对值是本身,负数的绝对值是其相反数.【变式7-1】(2023秋·海南省直辖县级单位·七年级校考阶段练习)如果|x|−2=2,那么x是()A.4B.-4C.±2D.±4【答案】D【分析】根据绝对值意义进行解答即可.【详解】解:∵|x|−2=2,∴|x|=4,∴x=±4,故选:D.【点睛】本题考查了绝对值的意义,绝对值表示该数在数轴表示的点距原点的距离.【变式7-2】(2023秋·湖北孝感·七年级统考期中))已知|a+1|=2,|2b−1|=7,a<b,求|a|+|b|.【答案】5或7【分析】根据绝对值的意义以及a与b的关系求出a和b的值,代入计算即可.【详解】解:∵|a+1|=2,|2b−17,∴a=1或-3,b=4或-3,∵a<b,∴a=1,b=4,或a=-3,b=4,|a|+|b|=5或7.【点睛】本题考查了绝对值的意义,解题的关键是掌握已知一个数的绝对值,求这个数.【变式7-3】(2023秋·江苏·七年级专题练习)解方程:3x−|x|+5=1.【答案】x=−1【分析】根据绝对值的意义,分类讨论求解即可.【详解】解:当x≥0时,3x−x+5=1,解得:x=−2(不符合题意,舍去),当x<0时,3x+x+5=1,解得:x=−1,综上所述:x=−1,∴原方程的解为:x=−1.【点睛】本题考查了绝对值方程,解本题的关键在熟练掌握绝对值的意义.正数的绝对值为它本身,负数的绝对值则是它的相反数,0的绝对值还是为0.【题型8 绝对值几何意义的应用】【例8】(2023秋·全国·七年级专题练习)|x−1|+|x−2|+|x−3|+⋅⋅⋅+|x−2021|的最小值是()A.1B.1010C.1021110D.2020【答案】C【分析】x为数轴上的一点,|x-1|+|x-2|+|x-3|+…|x-2021|表示:点x到数轴上的2021个点(1、2、3、…2021)的距离之和,进而分析得出最小值为:|1011-1|+|1011-2|+|1011-3|+…|1011-2021|求出即可.【详解】解:在数轴上,要使点x到两定点的距离和最小,则x在两点之间,最小值为两定点为端点的线段长度(否则距离和大于该线段);所以:当1≤x≤2021时,|x-1|+|x-2021|有最小值2020;当2≤x≤2020时,|x-2|+|x-2020|有最小值2018;…当x=1011时,|x-1011|有最小值0.综上,当x=1011时,|x-1|+|x-2|+|x-3|+…|x-2021|能够取到最小值,最小值为:|1011-1|+|1011-2|+|1011-3|+…|1011-2021|=1010+1009+…+0+1+2+…+1010=1011×1010=1021110.故选:C.【点睛】本题考查了绝对值的性质以及利用数形结合求最值问题,利用已知得出x=1011时,|x-1|+|x-2|+|x-3|+…|x-2021|能够取到最小值是解题关键.【变式8-1】(2023秋·七年级单元测试)小亮把中山路表示成一条数轴,如图所示,把路边几座建筑的位置用数轴上的点,其中火车站的位置记为原点,正东方向为数轴正方向,公交车的1站地为1个单位长度(假设每两站之间距离相同)回答下列问题:(1)到火车站的距离等于2站地的是和.(2)到劝业场的距离等于2站地的是和.(3)在数轴上,到表示1的点的距离等于2的点有个,表示的数是.(4)如果用a表示图中数轴上的点,那么|a|表示该点到火车站的距离,当|a|=2时,a=2或−2.请你结合图形解释等式|a−1|=2表达的几何意义,并求出当|a−1|=2时,a的值.【答案】(1)烈士陵园,北国商城(2)人民商场,博物馆(3)2,−1或3(4)表达的几何意义见解析,a的值为3或−1【分析】(1)由图即可直接得出结论;(2)由图即可直接得出结论;(3)结合数轴即可直接得出结论;(4)结合图形可知|a−1|=2的几何意义为:该点到劝业场的距离等于2,进而可直接得出a的值.【详解】(1)解:由图可知到火车站的距离等于2站地的是人民商场和劝业场.故答案为:烈士陵园,北国商城;(2)解:由图可知到劝业场的距离等于2站地的是人民商场和博物馆.故答案为:人民商场,博物馆;(3)解:在数轴上,到表示1的点的距离等于2的点有2个,分别是−1和3.故答案为:2,−1或3;(4)解:该题中|a−1|=22,且为人民商场或博物馆.即到表示1的点的距离等于2的点.结合图形可知当|a−1|=2时,a的值为3或−1.【点睛】本题考查数轴上两点之间的距离,用数轴上的点表示有理数,绝对值的意义.利用数形结合的思想是解题关键.【变式8-2】(2023春·浙江·七年级期末)方程|x|+|x−2022|=|x−1011|+|x−3033|的整数解共有()A.1010B.1011C.1012D.2022【答案】C【详解】根据绝对值的意义,方程表示整数x到0与2022的距离和等于到1011与3033的距离的和,进而得出x为1011与2022之间的整数,据此即可求解.【分析】解:方程的整数解是1011至2022之间的所有整数,共有1012个.故选:C.【点睛】本题考查了绝对值的意义,数轴上两点的距离,理解绝对值的意义是解题的关键.【变式8-3】(2023秋·七年级单元测试)阅读材料:因为|x|=|x−0|,所以|x|的几何意义可解释为数轴上表示数x的点与表示数0的点之间的距离.这个结论可推广为:|x1−x2|的几何意义是数轴上表示数x1的点与表示数x2的点之间的距离.根据上述材料,解答下列问题:(1)等式|x−2|=3的几何意义是什么?这里x的值是多少?(2)等式|x−4|=|x−5|的几何意义是什么?这里x的值是多少?(3)式子|x−1|+|x−3|的几何意义是什么?这个式子的最小值是多少?【答案】(1)几何意义为数轴上表示数x的点与表示数2的点之间的距离等于3,x=−1或5(2)几何意义是点P到点A的距离等于点P到点B的距离,x=412(3)几何意义是点P到点M的距离与点P到点N的距离的和,最小值为2【分析】(1)根据|x1−x2|的几何意义求解可得;(2)先去绝对值,再解方程即可求解;(3)由题意知|x−1|+|x−3|表示数x到1和3的距离之和,当数x在两数之间时式子取得最小值.【详解】(1)解:等式|x−2|=3的几何意义为数轴上表示数x的点与表示数2的点之间的距离等于3,这里x=−1或5.(2)解:设数轴上表示数x,4,5的点分别为P,A,B,则等式|x−4|=|x−5|的几何意义是点P到点A的距离等于点P到点B的距离,即PA=PB,所以x=41.2(3)解:设数轴上表示数x,1,3的点分别为P,M,N,则式子|x−1|+|x−3|的几何意义是点P到点M的距离与点P到点N的距离的和,即PM+PN.结合数轴可知:当1≤x≤3时,式子|x−1|+|x−3|的值最小,最小值为2.【点睛】本题考查了一元一次方程的应用,数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示是解题的关键.【题型9 有理数的大小比较】这四个数中,绝对值最小的数是()【例9】(2023·湖北孝感·七年级统考期中))在1,−2,0,32A.1B.−2C.0D.32【答案】C【分析】先求绝对值,然后根据有理数大小比较即可求解.【详解】解:∵1,−2,0,32这四个数的绝对值分别为1,2,0,32∴绝对值最小的数是0,故选:C .【点睛】本题考查了绝对值,有理数的大小比较,熟练掌握绝对值的定义,有理数的大小比较是解题的关键.【变式9-1】(2023秋·广东河源·七年级校考开学考试)已知下列有理数,在数轴上表示下列各数,并按原数从小到大的顺序用“<”把这些数连接起来.−5,+3,−|−3.5|,0,−(−2),−1【答案】数轴见解析,−5<−|−3.5|<−1<0<−(−2)<+3【分析】先去括号,去绝对值符号,把各数在数轴上表示出来,按原数从小到大的顺序用“<”把这些数连接起来即可.【详解】解:−|−3.5|=−3.5,−(−2)=2,如图,故−5<−|−3.5|<−1<0<−(−2)<+3.【点睛】本题主要考查数轴上有理数的表示及大小比较,熟练掌握数轴上有理数的表示及大小比较是解题的关键.【变式9-2】(2023·浙江·七年级假期作业)(1)试用“<”“ >”或“=”填空:①|+6|−|+5| |(+6)−(+5)|;②|−6|−|−5| |(−6)−(−5)|;③|+6|−|−5| |(+6)−(−5)|;(2)根据(1)的结果,请你总结任意两个有理数a 、b 的差的绝对值与它们的绝对值的差的大小关系为|a|−|b| |a −b|;(3)请问,当a 、b 满足什么条件时,|a|−|b|=|a −b|?【答案】(1)①=;②=;③<;(2)≤;(3)①当a >b >0,②a <b <0,③a =b ,④b =0,时|a|−|b|=|a −b|.【分析】(1)先计算,再比较大小即可;(2)根据(1)的结果,进行比较即可;(3)根据(1)的结果,可发现,当a 、b 同号时,|a|−|b|=|a −b|.【详解】解:(1)①|+6|−|+5|=1,|(+6)−(+5)|=1,∴|+6|−|+5|=|(+6)−(+5)|;②|−6|−|−5|=1,|(−6)−(−5)|=1,∴|−6|−|−5|=|(−6)−(−5)|;③|+6|−|−5|=1,|(+6)−(−5)|=11,∴|+6|−|−5|<|(+6)−(−5)|;故答案为:=,=,<;(2)|a|−|b|⩽|a−b|;故答案为:≤;(3)①当a>b>0,②a<b<0,③a=b,④b=0,时|a|−|b|=|a−b|.【点睛】本题考查了有理数的大小比较及绝对值的知识,解题的关键是注意培养自己由特殊到一般的总结能力.【变式9-3】(2023秋·湖北黄冈·七年级统考期末)有理数a,b,c在数轴上的位置如图所示,下列关系正确的是()A.|a|>|b|B.a>﹣b C.b<﹣a D.﹣a=b【答案】C【分析】先根据各点在数轴上的位置得出b﹤-c﹤0﹤a﹤c,再根据绝对值、相反数、有理数的大小逐个判断即可.【详解】从数轴可知:b﹤-c﹤0﹤a﹤c,∴∣a∣﹤∣b∣,a﹤-b,b﹤-a,-a≠b,所以只有选项C正确,故选:C.【点睛】本题考查了有理数的大小比较、相反数、绝对值、数轴的应用,解答的关键是熟练掌握利用数轴比较有理数的大小的方法.【题型10 应用绝对值解决实际问题】【例10】(2023·浙江·七年级假期作业)某汽车配件厂生产一批圆形的零件,现从中抽取6件进行检查,比标准直径长的毫米数记作正数,比标准直径短的毫米数记作负数,检查记录如下表:(1)找出哪件零件的质量相对好一些?(2)若规定与标准直径相差不大于0.2毫米的产品为合格产品;则这6件产品中有哪些产品不合格?【答案】(1)第4件质量最好;(2)第1件、第2件产品不合格.【分析】(1)根据绝对值越小质量越好,越大质量越差即可知道哪件零件的质量相对来讲好一些;(2)按绝对值由大到小排即可.【详解】(1)解:∵|+0.5|=0.5,|-0.3|=0.3,|+0.1|=0.1,|0|=0,|-0.1|=0.1,|+0.2|=0.2,∵0<0.1=0.1<0.2<0.3<0.5,∴|0|<|+0.1|=|-0.1|<|+0.2|<|-0.3|<|+0.5|,∴第4件质量最好;(2)解:∵|+0.5|=0.5>0.2,|-0.3|=0.3>0.2,∴第1件、第2件产品不合格.【点睛】本题主要考查绝对值的意义,可以结合绝对值的意义进行解答.【变式10-1】(2023秋·辽宁沈阳·七年级统考期中)如图,为了检测4个足球质量,规定超过标准质量的克数记为正数,不足标准质量的克数记为负数.下列选项中最接近标准的是()A.B.C.D.【答案】B【分析】根据绝对值最小的最接近标准,可得答案.【详解】解:|−1.4|=1.4,|−0.5|=0.5,|0.6|=0.6,|−2.3|=2.3,0.5<0.6<1.4<2.3,则最接近标准的是−0.5.故选:B.【点睛】本题考查了正数和负数,利用绝对值的意义是解题关键.【变式10-2】(2023秋·山东济南·七年级校考阶段练习)按规定,食品包装袋上都应标明袋内装有食品多少克,下表是几种饼干的检验结果,“+”“-”分别表示比标准重量多和少,用绝对值判断最符合标准的一种食品是_____.【答案】甜味【分析】找出表格中四个数值的绝对值最小的即可得.【详解】解:|+10|=10,|−8.5|=8.5,|+5|=5,|−7.3|=7.3,因为5<7.3<8.5<10,所以最符合标准的一种食品是甜味,故答案为:甜味.【点睛】本题考查了绝对值的应用,理解题意,正确求出各数的绝对值是解题关键.【变式10-3】(2023秋·浙江金华·七年级校考阶段练习)已知零件的标准直径是100mm,超过标准直径的数量记作正数,不足标准直径的数量记作负数,检验员抽查了五件样品,检查结果如下:(1)指出哪件样品的直径最符合要求;(2)如果规定误差的绝对值在0.18mm之内是正品,误差的绝对值在0.18~0.22mm之间是次品,误差的绝对值超过0.22mm是废品,那么这五件样品分别属于哪类产品?【答案】(1)第4件样品的直径最符合要求;(2)第1,2,4件样品是正品;第3件样品为次品;第5件样品为废品.【分析】(1)表中的数据是零件误差数,所以这些数据中绝对值小的零件较好;(2)因为绝对值越小,与规定直径的偏差越小,每件样品所对应的结果的绝对值,即为零件的误差的绝对值,看绝对值的结果在哪个范围内,就可确定是正品、次品还是废品.【详解】解:(1)∵|−0.05|<|+0.10|<|−0.15|<|+0.20|<|+0.25|,∴第4件样品的直径最符合要求.(2)因为|+0.10|=0.10<0.18,|−0.15|=0.15<0.18,|−0.05|=0.05<0.18.所以第1,2,4件样品是正品;因为|+0.20|=0.20,0.18<0.20<0.22,所以第3件样品为次品;因为|+0.25|=0.25>0.22,所以第5件样品为废品.【点睛】考查了绝对值,绝对值越小表示数据越接近标准数据,绝对值越大表示数据越偏离标准数据.。
七年级数学上册课堂同步小练习全册合集(含答案)第一章有理数1.1 正数和负数1.下列各数是负数的是( )A.23B.-4C.0D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( )A.-4米B.+16米C.-6米D.+6米3.下列说法正确的是( )A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示.5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F出发前进3下.”李强回答:“F遇到+3就变成了L.”余英提问:“从L出发前进2下.”……依此规律,当李明回答“Q遇到-4就变成了M”时,赵燕刚刚提出的问题应该是.6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480.正数有;负数有;既不是正数,也不是负数的有.1.2.1 有理数1.在0,14,-3,+10.2,15中,整数的个数是( )A.1B.2C.3D.42.下列各数中是负分数的是( )A.-12B.1 7C.-0.444…D.1.53.对于-0.125的说法正确的是( )A.是负数,但不是分数B.不是分数,是有理数C.是分数,不是有理数D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有,正分数有,非正有理数有.5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95.正整数集合:{ …};负整数集合:{ …};正分数集合:{ …};负分数集合:{ …};非负有理数集合:{ …};非正有理数集合:{ …}.1.下列所画数轴中正确的是( )2.如图,点M表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A表示的有理数是3,将点A向左移动2个单位长度,这时A点表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是.5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是.6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.-3的相反数是( )A.-3B.3C.-13D.132.下列各组数中互为相反数的是( )A.4和-(-4)B.-3和1 3C.-2和-12D.0和03.若一个数的相反数是1,则这个数是.4.化简:(1)+(-1)=;(2)-(-3)=;(3)+(+2)=.5.求出下列各数的相反数:(1)-3.5;(2)35;(3)0;(4)28;(5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4 绝对值第1课时绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.化简-|-5|的结果是( )A.5B.-5C.0D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )4.若一个负有理数的绝对值是310,则这个数是.5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x+1|+|y-2|=0,求x,y的值.第2课时有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-22.有理数a在数轴上的位置如图所示,则( )A.a>2B.a>-2C.a<0D.-1>a3.比较大小:(1)0 -0.5;(2)-5 -2;(3)-12-23.4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3 有理数的加减法1.3.1 有理数的加法第1课时有理数的加法法则1.计算(-5)+3的结果是( )A.-8B.-2C.2D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( )A.-1℃B.1℃C.-9℃D.9℃4.下列计算正确的是()A.-112+0.5=-1 B.(-2)+(-2)=4C.(-1.5)+-212=-3 D.(-71)+0=715.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)-718+-16.第2课时有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法律)=[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法律)=( )+( )=.3.简便计算:(1)(—6)+8+(—4)+12; (2)147+-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg,77kg,-40kg,-25kg,10kg,-16kg,27kg,-5kg,25kg,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2 有理数的减法第1课时有理数的减法法则1.计算4-(-5)的结果是( )A.9B.1C.-1D.-92.计算(-9)-(-3)的结果是( )A.-12B.-6C.+6D.123.下列计算中,错误的是( )A.-7-(-2)=-5B.+5-(-4)=1C.-3-(-3)=0D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)-23-112--14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第一天第二天第三天第四天第五天最高气温(℃) -1 5 6 8 11最低气温(℃) -7 -3 -4 -4 2第2课时有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为()A.7+3-5-2B.7-3-5-2C.7+3+5-2D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是()A.3、5、7、2、9的和B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和3.计算8+(-3)-1所得的结果是( )A.4B.-4C.2D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)-312--523+713;(3)-0.5+-14-(-2.75)-12; (4)314+-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4 有理数的乘除法1.4.1 有理数的乘法第1课时有理数的乘法法则1.计算-3×2的结果为( )A.-1B.-5C.-6D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是;(2)-12的倒数是.4.填表(想法则,写结果):因数因数积的符号积的绝对值积+8 -6-10 +8-9 -420 85.计算:(1)(-15)×13; (2)-218×0;(3)334×-1625; (4)(-2.5)×-213.第2课时多个有理数相乘1.下列计算结果是负数的是( )A.(-3)×4×(-5)B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5)2.计算-3×2×27的结果是( )A.127B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×-97×(-24)×+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×-79×(-0.8).第3课时有理数乘法的运算律1.简便计算2.25×(-7)×4×-37时,应运用的运算律是( )A.加法交换律B.加法结合律C.乘法交换律和结合律D.乘法分配律2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( )A.-5×(-4)×(-2)×(-2)=80B.-9×(-5)×(-4)×0=-180C.(-12)×13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×3-12,用分配律计算正确的是( )A.(-2)×3+(-2)×-12B.(-2)×3-(-2)×-12C.2×3-(-2)×-12D.(-2)×3+2×-125.填空:(1)21×-45×-621×(-10)=21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×-45×( )(利用乘法结合律)=( )×( )=;(2)14+18+12×(-16)=14×+18×+12×(分配律)==.1.4.2 有理数的除法第1课时有理数的除法法则1计算(-18)÷6的结果是( )A.-3B.3C.-13 D.132.计算(-8)÷-18的结果是() A.-64 B.64 C.1 D.-1 3.下列运算错误的是()A.13÷(-3)=3×(-3) B.-5÷-12=-5×(-2)C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是()A.0可以作被除数B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等5.若▽×-45=2,则“▽”表示的有理数应是()A.-52 B.-58 C.52 D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)-123÷-212; (4)-34÷-37÷-116.第2课时分数的化简及有理数的乘除混合运算1.化简:(1)-162=; (2)12-48=;(3)-56-6=.2.计算(-2)×3÷(-2)的结果是( )A.12B.3C.-3D.-123.计算43÷-13×(-3)的结果是()A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( )A.0B.12C.-33D.392.计算3×13-12的结果是.3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷12-2×524;(3)5÷-87-5×98; (4)1011×1213×1112-1÷-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5 有理数的乘方1.5.1 乘方第1课时乘方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数2.计算(-3)2的结果是( )A.-6B.6C.-9D.93.下列运算正确的是( )A.-(-2)2=4B.--232=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( )A.32与-32B.(-2)2与-22C.|-2|与-|+2|D.(-2)3与-235.把34×34×34×34写成乘方的形式为,读作.6.计算:(1)(-1)5=; (2)-34=;(3)07=; (4)523=.7.计算:(1)(-2)3; (2)-4 52;(3)--372; (4)-233.第2课时有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( )解:原式=2÷3×(5-9)…①=2÷3×(-4)…②=2÷(-12)…③=-6.…④A.①B.②C.③D.④2.计算(-8)×3÷(-2)2的结果是( )A.-6B.6C.-12D.123.按照下图所示的操作步骤,若输入x的值为-3,则输出的值为. 输入x→平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8);(2)-9÷3+12-23×12+32;(3)8-2×32-(-2×3)2;(4)-14÷-122+2×3-0÷2243.1.5.2 科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为 1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为 2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3 近似数1.下列四个数据中,是精确数的是( )A.小明的身高 1.55mB.小明的体重38kgC.小明家离校 1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数 5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据 2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第二章整式的加减2.1 整式第1课时用字母表示数1.下列代数式书写格式正确的是( )A.x5B.4m÷nC.x(x+1)34D.-12ab2.某种品牌的计算机,进价为m元,加价n元作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( )A.(m+0.8n)元B.0.8n元C.(m+n+0.8)元D.0.8(m+n)元3.若买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要( )A.(4m+7n)元B.28mn元C.(7m+4n)元D.11mn元4.某超市的苹果价格如图所示,则代数式100-9.8x可表示的实际意义是.5.每台电脑售价x元,降价10%后每台售价为元.6.用字母表示图中阴影部分的面积.1.下列各式中不是单项式的是( )A.a3B.-15C.0D.3 a2.单项式-2x2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3 D.-23,23.在代数式a+b,37x2,5a,-m,0,a+b3a-b,3x-y2中,单项式的个数是个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x瓶装升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n次,则他10分钟投篮的次数是次.6.填表:单项式 a -x2y -\f(5xy2z 2) πx2y -23a2b3系数次数7.如果关于x,y的单项式(m+1)x3y n的系数是3,次数是6,求m,n的值.1.在下列代数式中,整式的个数是( )A.5个B.4个C.3个D.2个2.多项式3x2-2x-1的各项分别是( )A.3x2,2x,1B.3x2,-2x,1C.-3x2,2x,-1D.3x2,-2x,-13.多项式1+2xy-3xy2的次数是( )A.1B.2C.3D.44.多项式3x3y+2x2y-4xy2+2y-1是次项式,它的最高次项的系数是.5.写出一个关于x,y的三次二项式,你写的是(写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a的整式表示)?这个整式是多项式还是单项式?指出其次数.2.2 整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是( )A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和3.整式4-m+3m2n3-5m3是( )A.按m的升幂排列B.按n的升幂排列C.按m的降幂排列D.按n的降幂排列4.计算2m2n-3nm2的结果为( )A.-1B.-5m2nC.-m2nD.2m2n-3nm25.合并同类项:(1)3a-5a+6a; (2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时去括号1.化简-2(m-n)的结果为( )A.-2m-nB.-2m+nC.2m-2nD.-2m+2n2.下列去括号错误的是( )A.a-(b+c)=a-b-cB.a+(b-c)=a+b-cC.2(a-b)=2a-bD.-(a-2b)=-a+2b3.-(2x-y)+(-y+3)化简后的结果为( )A.-2x-y-y+3B.-2x+3C.2x+3D.-2x-2y+34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】,其中空格的地方被钢笔水弄污了,那么空格中的项是( )A.-7xyB.7xyC.-xyD.xy5.去掉下列各式中的括号:(1)(a+b)-(c+d)=; (2)(a-b)-(c-d)=;(3)(a+b)-(-c+d)=; (4)-[a-(b-c)]=.6.化简下列各式:(1)3a-(5a-6); (2)(3x4+2x-3)+(-5x4+7x+2);(3)(2x-7y)-3(3x-10y);第3课时整式的加减1.化简x+y-(x-y)的结果是( )A.2x+2yB.2yC.2xD.02.已知A=5a-3b,B=-6a+4b,则A-B为( )A.-a+bB.11a+bC.11a-7bD.-a-7b3.已知多项式x3-4x2+1与关于x的多项式2x3+mx2+2相加后不含x的二次项,则m的值是( )4.若某个长方形的周长为4a,一边长为(a-b),则另一边长为( )A.(3a+b)B.(2a+2b)C.(a+b)D.(a+3b)5.化简:(1)(-x2+5x+4)+(5x-4+2x2);(2)-2(3y2-5x2)+(-4y2+7xy).第三章一元一次方程3.1 从算式到方程3.1.1 一元一次方程1.下列各方程是一元一次方程的是( )2.方程x+3=-1的解是( )A.x=2B.x=-4C.x=4D.x=-23.若关于x的方程2x+a-4=0的解是x=-2,则a的值是( )A.-8B.0C.8D.44.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x名学生,则由题意可列方程为.5.商店出售一种文具,单价 3.5元,若用100元买了x件,找零30元,则依题意可列方程为.6.七(2)班有50名学生,男生人数是女生人数的倍.若设女生人数为x名,请写出等量关系,并列出方程.3.1.2 等式的性质1.若a=b,则下列变形一定正确的是( )2.下列变形符合等式的基本性质的是( )A.若2x-3=7,则2x=7-3B.若3x-2=x+1,则3x-x=1-2C.若-2x=5,则x=5+2D.3.解方程- x=12时,应在方程两边( )A.同时乘-B.同时乘 4C.同时除以D.同时除以-4.由2x-16=5得2x=5+16,此变形是根据等式的性质在原方程的两边同时加上了.5.利用等式的性质解下列方程:(1)x+1=6; (2)3-x=7;(3)-3x=21;3.2 解一元一次方程(一)——合并同类项与移项第1课时利用合并同类项解一元一次方程1.方程-x=3-2的解是( )A.x=1B.x=-1C.x=-5D.x=52.方程4x-3x=6的解是( )A.x=6B.x=3C.x=2D.x=13.方程5x-2x=-9的解是.4.若两个数的比为2∶3,和为100,则这两个数分别是.5.解下列方程:第2课时利用移项解一元一次方程1.下列变形属于移项且正确的是( )A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是( )A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为( )A.x=1B.x=2C.x=3D.x=44.解下列方程:5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,并且唐诗的数目是宋词的数目的3倍,求这本《唐诗宋词选读》中唐诗的数目?3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个(规定只有2分球与3分球),那么他一共投进了多少个2分球,多少个3分球?第2课时利用去分母解一元一次方程3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题1.挖一条1210m的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则下列方程正确的是( )A.130x+90x=1210B.130+90x=1210C.130x+90=1210D.(130-90)x=12102.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的?3.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?第2课时销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为( )A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?第3课时球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?第4课时电话分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:计费方式全球通神州行月租费25元/月0本地通话费0.2元/min 0.3元/min(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时立体图形与平面图形1.从下列物体抽象出来的几何图形可以看成圆柱的是( )2.下列图形不是立体图形的是( )A.球B.圆柱C.圆锥D.圆3.下列图形属于棱柱的有( )A.2个B.3个C.4个D.5个4.将下列几何体分类:其中柱体有,锥体有,球体有(填序号).5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.6.把下列图形与对应的名称用线连起来:圆柱四棱锥正方体三角形圆第2课时从不同的方向看立体图形和立体图形的展开图1.如图所示是由5个相同的小正方体搭成的几何体,从正面看得到的图形是( )2.下列常见的几何图形中,从侧面看得到的图形是一个三角形的是( )3.如图所示是由三个相同的小正方体组成的几何体从上面看得到的图形,则这个几何体可以是( )4.下面图形中是正方体的展开图的是( )5.如图所示是正方体的一种展开图,其中每个面上都有一个数字,则在原正方体中,与数字6相对的数字是( )A.1B.4C.5D.26.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).4.1.2 点、线、面、体1.围成圆柱的面有( )A.1个B.2个C.3个D.4个2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( )A.点动成线B.线动成面C.面动成体D.以上答案都不对3.结合生活实际,可以帮我们更快地掌握新知识.(1)飞机穿过云朵后留下痕迹表明;(2)用棉线“切”豆腐表明;(3)旋转壹元硬币时看到“小球”表明.4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?4.2 直线、射线、线段第1课时直线、射线、线段1.向两边延伸的笔直铁轨给我们的形象似( )A.直线B.射线C.线段D.以上都不对2.如图,下列说法错误的是( )A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.5.如图,按要求完成下列小题:(1)作直线BC与直线l交于点D;(2)作射线CA;(3)作线段AB.第2课时线段的长短比较与运算1.如图所示的两条线段的关系是( )A.a=bB.a<bC.a>bD.无法确定第1题图第2题图2.如图,已知点B在线段AC上,则下列等式一定成立的是( )A.AB+BC>ACB.AB+BC=ACC.AB+BC<ACD.AB-BC=BC3.如图,已知D是线段AB的延长线上一点,C为线段BD的中点,则下列等式一定成立的是( )A.AB+2BC=ADB.AB+BC=ADC.AD-AC=BDD.AD-BD=CD4.有些日常现象可用几何知识解释,如在足球场上玩耍的两位同学,需要到一处会合时,常常沿着正对彼此的方向行进,其中的道理是.5.如图,已知线段AB=20,C是线段AB上一点,D为线段AC的中点.若BC=AD+8,求AD的长.4.3 角4.3.1 角1.图中∠AOC的表示正确的还有( )A.∠OB.∠1C.∠AOBD.∠BOC第1题图第2题图2.如图,直线AB,CD交于点O,则以O为顶点的角(只计算180°以内的)的个数是( )A.1个B.2个C.3个D.4个3.小茗早上6:30起床,这时候挂钟的时针和分针的夹角是°.4.把下列角度大小用度分秒表示:(1)50.7°; (2)15.37°.5.把下列角度大小用度表示:(1)70°15′; (2)30°30′36″.4.3.2 角的比较与运算1.如图,其中最大的角是( )A.∠AOCB.∠BODC.∠AODD.∠COB第1题图第2题图2.如图,OC为∠AOB内的一条射线,且∠AOB=70°,∠BOC=30°,则∠AOC的度数为°.3.计算:(1)23°34′+50°17′; (2)85°26′-32°42′.4.如图,已知OC为∠AOB内的一条射线,OM,ON分别平分∠AOC,∠COB.若∠AOM=30°,∠NOB=35°,求∠AOB的度数.4.3.3 余角和补角1.如图,点O在直线AB上,∠BOC为直角,则∠AOD的余角是( )A.∠BODB.∠CODC.∠BOCD.不能确定第1题图第4题图2.若∠A=50°,则∠A的余角的度数为( )A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为( )A.100°B.10°C.20°D.90°4.如图,已知射线OA表示北偏西25°方向,写出下列方位角的度数:(1)射线OB表示北偏西方向;(2)射线OC表示北偏东方向.5.如图,直线AB上有一点O,射线OC,OD在其同侧.若∠AOC∶∠COD∶∠DOB=2∶5∶3.(1)求出∠AOC的度数;(2)计算说明∠AOC与∠DOB互余.4.4 课题学习——设计制作长方体形状的包装纸盒1.现需要制作一个无盖的长方体纸盒,下列图形不符合要求的是( )2.如图,现设计用一个大长方形制作一个长方体纸盒,要求纸盒的长、宽、高分别为4,3,1,则这个大长方形的长为( )A.14B.10C.8D.73.如图,该几何体的展开图可能是( )4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第一章有理数1.1正数和负数1.B2.C3.B4.输1场5.从Q出发后退4下6.227,2.7183,2020,480-18,-0.333…,-2591.2有理数1.2.1有理数1.C2.C3.D4.0,1+13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…};正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2数轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3相反数1.B 2.D 3.-1 4.(1)-1(2)3(3)25.解:(1)-3.5的相反数是 3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28.(5)-2018的相反数是2018.6.解:如图所示.1.2.4绝对值第1课时绝对值1.C2.B3.B4.-3 105.解:|7|=7,-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0.6.解:因为|x+1|+|y-2|=0,且|x+1|≥0,|y-2|≥0,所以x+1=0,y-2=0,所以x=-1,y=2.第2课时有理数的大小比较1.C2.B3.(1)>(2)<(3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下:-6<-514<-35<0<1.5<2.1.3有理数的加减法1.3.1有理数的加法第1课时有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019. (4)原式=0.(5)原式=4.(6)原式=-59.第2课时有理数加法的运算律及运用1.D2.交换结合-17+1923.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10. (2)原式=147+37+-213+13=2+(-2)=0.(3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7. 4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2有理数的减法第1课时有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15. (2)原式=-5+(-2)=-7. (3)原式=0+(-9)=-9. (4)原式=-812-112+312=-12. 5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时有理数的加减混合运算1.A2.D3.A4.解:(1)原式=- 3.5+1.7+2.8-5.3=-4.3. (2)原式=-312+523+713=912. (3)原式=-12+-12+-14+234=112. (4)原式=314+534+-718+718=9.5.解:-2+5-8=-5(℃).答:该地清晨的温度为-5℃.1.4有理数的乘除法1.4.1有理数的乘法第1课时有理数的乘法法则1.C2.B3.(1)16(2)-24.-48-48-80-80+3636+1601605.解:(1)原式=- 5.(2)原式=0.(3)原式=-125.(4)原式=356.第2课时多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140.(2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×-45=-2815.第3课时有理数乘法的运算律1.C2.A3.A4.A5.(1)-621-45-621-10-68-48(2)(-16)(-16)(-16)-4-2-8-141.4.2有理数的除法第1课时有理数的除法法则1.A 2.B 3.A 4.B 5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0.(3)原式=-53÷-52=53×25=23.(4)原式=-34×73×67=-32.第2课时分数的化简及有理数的乘除混合运算1.(1)-8(2)-14(3)2832.B3.A4.解:(1)原式=-12×-16=2.(2)原式=-27×19×527=-59.(3)原式=-30×415×38×112=-14.第3课时有理数的加、减、乘、除混合运算1.C2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷-32×524=-916×23×524=-38×524=-564. (3)原式=5×-78-5×98=5×-78-98=5×(-2)=-10. (4)原式=1011×1112×1213-1×-213=1012×1213+213=1013+213=1213.4.解:32-6+2×2=30(℃). 答:关掉空调2小时后的室温为30℃.1.5有理数的乘方1.5.1乘方第1课时乘方1.B2.D3.C4.D5.34434的4次方或34的4次幂6.(1)-1(2)-81(3)0(4)12587.解:(1)原式=-8.(2)原式=-425.(3)原式=-949.(4)原式=-827.第2课时有理数的混合运算1.C2.A3.134.解:(1)原式=9×1-8=1.(2)原式=-3+12×12-23×12+9=-3+6-8+9=4.(3)原式=8-2×9-(-6)2=8-18-36=-10-36=-46. (4)原式=-1÷14+6-0=-1×4+6=-4+6=2. 1.5.2科学记数法1.C2.C3.C4.(1)1.02×106(2)7(3)299000000。
苏科版七年级数学上册《2.4.1绝对值与相反数》说课稿一. 教材分析《2.4.1绝对值与相反数》这一节的内容,主要围绕着绝对值和相反数的概念,性质以及它们之间的关系展开。
教材通过例题和练习,使学生掌握绝对值和相反数的定义,并能运用它们解决一些实际问题。
这一节内容是初中的基础知识点,对于学生来说,理解并掌握这些概念和性质,对于后续的学习有着至关重要的作用。
二. 学情分析面对七年级的学生,他们对数学已有一定的认识和基础,但是对一些抽象的概念的理解还需要通过具体的实例来引导。
在这个阶段,学生的思维正处于从具体形象思维向抽象逻辑思维过渡的阶段,因此,在教学过程中,需要通过丰富的教学手段,引导学生从具体实例中发现规律,理解概念。
三. 说教学目标1.知识与技能目标:通过本节课的学习,学生能理解绝对值和相反数的概念,掌握它们的性质,并能运用它们解决一些实际问题。
2.过程与方法目标:通过观察,分析,归纳等方法,学生能自主探索绝对值和相反数的性质,培养他们的逻辑思维能力。
3.情感态度与价值观目标:通过对绝对值和相反数的学习,学生能体会数学与生活的密切联系,增强他们对数学的兴趣。
四. 说教学重难点1.教学重点:绝对值和相反数的概念,性质。
2.教学难点:绝对值和相反数性质的运用。
五. 说教学方法与手段在本节课的教学中,我将采用引导发现法,实例分析法,小组合作法等教学方法。
通过这些方法,引导学生主动探索,合作交流,从而达到理解并掌握绝对值和相反数的目的。
同时,我还将利用多媒体教学手段,如PPT,数学软件等,以直观,生动的方式展示数学概念和性质,帮助学生更好地理解和掌握。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考绝对值和相反数的概念。
2.新课讲解:通过具体的实例,引导学生观察,分析,归纳出绝对值和相反数的性质。
3.例题讲解:通过一些典型的例题,让学生运用绝对值和相反数的性质解决问题。
4.练习巩固:让学生做一些相关的练习题,巩固他们对绝对值和相反数的理解和掌握。