vasp计算
- 格式:docx
- 大小:18.24 KB
- 文档页数:7
VASP 计算----------力学常数摘要本文主要介绍了用VASP 对弹性模量、剪切模量、体积模量以及泊松比等力学常数计算,首先介绍了计算所需的相关基础知识,然后详细的阐述了理论的推导过程和对结果的处理方法,并介绍了VASP 所需文件和生成的文件,最后提供了计算的一个例子和其程序流程图。
目录一、 基础知识 .................................................................................................................... 1 二、 VASP 计算时解析推导 .............................................................................................. 3 三、 VASP 计算 .................................................................................................................. 9 四、 有待继续研究的地方 .............................................................................................. 10 五、 参考文献 .................................................................................................................. 10 六、 附录(一)程序流程图 .......................................................................................... 11 七、附录(二)------一个例子,TaN (12)一、 基础知识[1][2]这部分主要介绍了进行VASP 计算时所需要的概念的解释,其主要部分来自弹性力学,详细的介绍可阅读参考文献。
软件主要功能:采用周期性边界条件(或超原胞模型)处理原子、分子、团簇、纳米线(或管)、薄膜、晶体、准晶和无定性材料,以及表面体系和固体l 计算材料的结构参数(键长、键角、晶格常数、原子位置等)和构型l 计算材料的状态方程和力学性质(体弹性模量和弹性常数)l 计算材料的电子结构(能级、电荷密度分布、能带、电子态密度和ELF)l 计算材料的光学性质l 计算材料的磁学性质l 计算材料的晶格动力学性质(声子谱等)l 表面体系的模拟(重构、表面态和STM模拟)l 从头分子动力学模拟l 计算材料的激发态(GW准粒子修正)计算主要的四个参数文件:INCAR ,POSCAR,POTCAR ,KPOINTS,下面简要介绍,详细权威的请参照手册INCAR文件:该文件控制VASP进行何种性质的计算,并设置了计算方法中一些重要的参数,这些参数主要包括以下几类:l 对所计算的体系进行注释:SYSTEMl 定义如何输入或构造初始的电荷密度和波函数:ISTART,ICHARG,INIWA Vl 定义电子的优化–平面波切断动能和缀加电荷时的切断值:ENCUT,ENAUG–电子部分优化的方法:ALGO,IALGO,LDIAG–电荷密度混合的方法:IMIX,AMIX,AMIN,BMIX,AMIX_MAG,BMIX_MAG,WC,INIMIX,MIXPRE,MAXMIX–自洽迭代步数和收敛标准:NELM,NELMIN,NELMDL,EDIFFl 定义离子或原子的优化–原子位置优化的方法、移动的步长和步数:IBRION,NFREE,POTIM,NSW–分子动力学相关参数:SMASS,TEBEG,TEEND,POMASS,NBLOCK,KBLOCK,PSTRESS–离子弛豫收敛标准:EDIFFGl 定义态密度积分的方法和参数–smearing方法和参数:ISMEAR,SIGMA–计算态密度时能量范围和点数:EMIN,EMAX,NEDOS–计算分波态密度的参数:RWIGS,LORBITl 其它–计算精度控制:PREC–磁性计算:ISPIN,MAGMOM,NUPDOWN–交换关联函数:GGA,VOSKOWN–计算ELF和总的局域势:LELF,LVTOT–结构优化参数:ISIF–等等。
用VASP计算H原子的能量氢原子的能量为。
在这一节中,我们用VASP计算H原子的能量。
对于原子计算,我们可以采用如下的INCAR文件PREC=ACCURATENELMDL = 5 make five delays till charge mixingISMEAR = 0; SIGMA=0.05 use smearing method采用如下的KPOINTS文件。
由于增加K点的数目只能改进描述原子间的相互作用,而在单原子计算中并不需要。
所以我们只需要一个K点。
Monkhorst Pack 0 Monkhorst Pack1 1 10 0 0采用如下的POSCAR文件atom 115.00000 .00000 .00000.00000 15.00000 .00000.00000 .00000 15.000001cart0 0 0采用标准的H的POTCAR得到结果如下:k-point 1 : 0.0000 0.0000 0.0000band No. band energies occupation1 -6.3145 1.000002 -0.0527 0.000003 0.4829 0.000004 0.4829 0.00000我们可以看到,电子的能级不为。
Free energy of the ion-electron system (eV)---------------------------------------------------alpha Z PSCENC = 0.00060791Ewald energy TEWEN = -1.36188267-1/2 Hartree DENC = -6.27429270-V(xc)+E(xc) XCENC = 1.90099128PAW double counting = 0.00000000 0.00000000entropy T*S EENTRO = -0.02820948eigenvalues EBANDS = -6.31447362atomic energy EATOM = 12.04670449---------------------------------------------------free energy TOTEN = -0.03055478 eVenergy without entropy = -0.00234530 energy(sigma->0) = -0.01645004我们可以看到也不等于。
vasp计算3, Xming用gnuplot是gnu文件里面要加pause -14,INCAR 字符太长,vasp_lib里面要改drdatab.F文件,255改大,重新编译5 声子谱:phononp –d –dim=”3 3 1”6 vasp编译gama版本的:在第二个CPP加上-DwNGZhalf就行。
7 ISMEAR=-5,电荷密度和DOS之类的电子结构和总能准,但是算力不准,所以对于算声子谱,最好不用-5。
对于金属,声子谱一般用DFPT会更准。
对于半导体和绝缘体,不能用ISEMAR>0的,只能是-5或者0.对于金属,ISMEAR=1,sigma=0.28 DFPT不能用NPAR phonopy -d --dim="2 2 2" -c POSCAR-unitcellmv SPOSCAR POSCAR静态计算:IBRION=8,IALGO=38对于金属ISMEAR=1,sigma=0.2phonopy --fc vasprun.xmlband.conf里面要添加:FORCE_CONSTANTS = READphonopy -p -c POSCAR-unitcell band.conf一般来说,对于金属,或者窄能隙半导体,如果用位移法,则需要很大的胞才能算准,但是用DFPT则可以小包算准。
对于金属,PBE 可能更好点。
9, 如果体系较大,EDIFF达到停止计算,很可能是K点取太多,内存不够。
10, bandplot --gnuplot band.yaml >> phon.dat,用origin做声子谱11,画CBM和VBM的partial charge,读入静态的WA VECAR,进行处理,此时要设置INCAR,LPARD = .TRUE. 开关IBAND = 480 481 VBM CBMNBMOD = 1 默认KPUSE = 1 第几个K点LSEPB = .TRUE. vasp查LSEPK = .TRUE.12,算极化:铁电相和顺电相都要算,每一个相算三次。
VASP计算弹性常数VASP (Vienna Ab-initio Simulation Package) 是一种常用的第一性原理计算软件包,用于计算物质电子结构和能带结构。
除了电子结构计算,VASP还可以用于计算材料的弹性常数。
在本文中,我们将讨论如何使用VASP计算材料的弹性常数,并了解计算结果的解释。
弹性常数是描述材料变形行为的物理量。
材料在受力作用下产生变形,而弹性常数则定量描述了材料对应力的响应。
弹性常数包括弹性模量、剪切模量、泊松比等。
通过计算这些弹性常数,我们可以了解材料的机械性能和应力应变行为。
首先,我们需要确定计算材料的晶体结构。
这包括晶胞参数、原子位置和晶胞对称性。
在VASP中,我们使用POSCAR文件来描述晶体结构的具体细节。
POSCAR文件包括晶体的晶胞参数、原子种类和位置等信息。
其次,我们需要生成一系列的应变状态。
常见的应变状态包括体积应变、晶格常数应变和剪切应变。
在VASP中,我们可以使用ISIF标志来控制应变类型。
例如,ISIF=3可以用于计算体积应变,ISIF=2可以用于计算剪切应变。
然后,我们需要进行一系列的弛豫计算。
在每个应变状态下,我们需要优化结构以达到最低的总能量。
这可以通过设置IBRION=2和ISIF=3来实现。
这些计算将给出最优的应变状态下的应力张量。
最后,我们可以使用应力和应变的关系来计算材料的弹性常数。
对于单晶材料,弹性常数可以通过应力张量的分量和应变张量的分量之间的线性关系来得到。
C_ij = (stress_i - stress_0_i) / strain_j其中,C_ij是第i个应力分量(i = 1,2,...,6)和第j个应变分量(j = 1,2,...,6)之间的弹性常数,stress_i是在第i个应变分量下计算得到的应力,stress_0_i是在未应变状态下计算得到的应力,strain_j是第j个应变分量。
使用以上计算方法,我们可以得到材料的弹性常数。
如何用vasp计算铁磁,反铁磁,顺磁如何用V ASP计算铁磁、反铁磁和顺磁顺磁,意味进行non-spin polarized的计算,也就是ISPIN=1。
铁磁,意味进行spin-polarized的计算,ISPIN=2,而且每个磁性原子的初始磁矩设置为一样的值,也就是磁性原子的MAGMOM设置为一样的值。
对非磁性原子也可以设置成一样的非零值(与磁性原子的一样)或零,最后收敛的结果,非磁性原子的local磁矩很小,快接近0,很小的情况,很可能意味着真的是非磁性原子也会被极化而出现很小的local磁矩。
反铁磁,也意味着要进行spin-polarized的计算,ISPIN=2,这是需采用反铁磁的磁胞来进行计算,意味着此时计算所采用的晶胞不再是铁磁计算时的最小原胞。
比如对铁晶体的铁磁状态,你可以采用bcc的原胞来计算,但是在进行反铁磁的Fe计算,这是你需要采用sc 的结构来计算,计算的晶胞中包括两个原子,你要设置一个原子的MAGMOM为正的,另一个原子的MAGMOM设置为负,但是它们的绝对值一样。
因此在进行反铁磁的计算时,应该确定好反铁磁的磁胞,以及磁序,要判断哪种磁序和磁胞是最可能的反铁磁状态,那只能是先做好各种可能的排列组合,然后分别计算这些可能组合的情况,最后比较它们的总能,总能最低的就是可能的磁序。
同样也可以与它们同铁磁或顺磁的进行比较。
了解到该材料究竟是铁磁的、还是顺磁或反铁磁的。
亚铁磁,也意味要进行spin-polarized的计算,ISPIN=2,与反铁磁的计算类似,不同的是原子正负磁矩的绝对值不是样大。
非共线的磁性,那需采用专门的non-collinear的来进行计算,除了要设置ISPIN,MAGMOM的设置还需要指定每个原子在x,y,z方向上的大小。
这种情况会复杂一些。
举个例子来说,对于Mn-Cu(001)c(2x2)这种体系,原胞里面有2个Mn原子,那么你直接让两个Mn原子的MAGMOM的绝对值一样,符号相反就可以了,再加上ISPIN=2。
VASP计算DOS和能带个人总结一:VASP计算DOS和能带1.计算DOS①POSCAR②POTCAR③KPOINTS(建议以Gamma为中心取点,通常K×a≈45即可)④INCAR(越简洁越好)第一步:结构优化SYSTEM=**ISTART=0ENCUT=500(最好对其进行测试)EDIFF=1E-5EDIFFG=-0.01NSW=100ISIF=2IBRION=2【优化后计算DOS可以一步完成,也可以分为两步来完成,主要是计算量涉及到计算时间的差别】第二步:静态自洽(此时可稍微降低K点数,用第一步优化得到的CONTCAR作为POSCAR进行计算)SYSTEM=**ISTART=0PREC=AccurateEDIFF=1E-5EDIFFG=-0.01ENCUT=500ISMEAR=-5LCHARG=.TRUE.注意:此时得到的E-feimi是准确的,需要记下(grep ‘E-fermi’OUTCAR)第三步:非自洽计算(采用高密度K点)SYSTEM=**ISTART=1ICHARG=11LMAXMIX=2/4/6(VASP官网原话:If ICHARG is set to 11 or 12, it is strongly recommened to set LMAXMIX to twice the maximum l-quantum number in the pseudpotentials. Thus for s and p elements LMAXMIX should be set to 2, for d elements LMAXMIX should be set to 4, and for f elements LMAXMIX should be set to 6)PREC=AccurateEDIFF=1E-5EDIFFG=-0.01ENCUT=500(截断能最好与上一步保持一致)ISMEAR=-5LORBIT=10/11(推荐11,可以得到能级分裂的数据)优化后计算DOS一步完成:(采用高密度K点)SYSTEM=**ISTART=1PREC=AccurateEDIFF=1E-5EDIFFG=-0.01ENCUT=500ISMEAR=-5LORBIT=10/112.计算能带①POSCAR②POTCAR③KPOINTS:使用Line-mode格式,给出高对称性K点之间的分割点数,分割越密,路径积分就越准确。
如何用VASP计算晶格常数VASP是一款常用的第一性原理计算软件,可用于计算各种物理和化学性质,包括晶格常数。
本文将通过详细的步骤指导如何使用VASP计算晶格常数。
1.准备工作:在使用VASP计算晶格常数之前,需要准备以下文件:-INCAR文件:包含所有计算参数的输入文件。
- POSCAR文件:包含体系的原子坐标和晶格常数的输入文件。
可以使用外部软件生成,例如Materials Studio、VESTA等。
-POTCAR文件:包含原子势能信息的文件。
-KPOINTS文件:用于定义k点网格,用于计算能带结构。
可以使用自动生成工具进行生成。
2.设置INCAR文件:打开INCAR文件,设置以下参数:-ENCUT:截断能。
一种势能截断参数,对计算结果影响较大。
可通过多次计算逐渐增大其值,直到结果收敛为止。
- ISMEAR:用于定义电子占据数的方法。
常用的选项有Gaussian和Methfessel-Paxton。
- SIGMA:在使用ISMEAR选项为Gaussian时,用于定义宽度的参数。
一般选择小于0.2 eV。
- PREC:定义计算的精度级别。
常用的设置有Low、Normal和High。
-NSW:定义离子进行多少步的迭代。
-ISTART和ICHARG:对于初始的计算,将其设置为0。
-EDIFF:收敛判据。
设置一个合适的值,使得计算结果收敛。
3.设置POSCAR文件:打开POSCAR文件,设置晶体的结构参数。
可以手动输入原子的坐标,或者复制其他软件生成的文件内容。
4.设置POTCAR文件:在VASP的安装目录中,找到POTCAR文件夹,并将需要使用的原子势能文件复制到当前工作目录中。
注意保持POTCAR文件的顺序和POSCAR文件中原子的顺序一致。
5.设置KPOINTS文件:打开KPOINTS文件,在其中设置k点的信息。
k点的密度对计算结果的精度有一定影响,可以根据具体需求进行调整。
在这里,我们将只计算晶格常数,因此可以选择较低的k点密度。
V ASP计算方法总结1 静态计算计算方法:IBRION = -1NSW = 02 结构优化计算方法:①只进行离子弛豫IBRION = 2ISIF = 2②块体晶格参数优化IBRION = 2ISIF = 3③二维材料晶格参数优化3 表面能计算方法:1) 块体晶体晶格参数优化;静态计算;得能量Eb 2) 优化的块体切slab ;静态计算;得Es1 3) 将slab 模型离子弛豫;静态计算;得Es24) γ = (Es1 – N *(Eb / n ))/ 2A + (Es2 – Es1)/ A 计算步骤:4 功函数计算方法:1) 块体晶格参数优化;切slab 模型;离子弛豫 2) 修改INCAR (LVHAR = .TRUE.);静态计算 3) W = Ve - EF表面能1strustatic2slab 3optislabstatic计算步骤:5 吸附能计算方法:1) 块体和二维材料(D)晶格参数优化 2) 块体切slab ;构建slab 吸附模型3) slab 吸附模型去slab ;二维材料离子弛豫;静态计算 4) slab 吸附模型去二维材料;slab 离子弛豫;静态计算 5) slab 吸附模型离子弛豫;静态计算 6) E abs = E metal-D – E metal – E D 计算步骤:表面能1strustatic2slab3optislabstaticworkfunction吸附能1strustatic 2slab static 3slabDstatic6 差分电荷密度计算方法: 1) 完成吸附能计算2) Slab 吸附模型静态计算时得ρab3) Slab 吸附模型CONTCAR 去slab ;二维材料静态计算得ρa 4) Slab 吸附模型CONTCAR 去二维材料;slab 静态计算得ρb 5) △ρ = ρab – ρa – ρb 计算步骤:7 DOS计算方法: 1) 模型优化完成2) 自洽计算得到CHGCAR (DOS 文件夹下) ISMEAR = -5 LCHARG = .TRUE.吸附能1strustatic 2slabstatic3slabD staticDchargeslabcharge小密度k点(总k点>4)3)非自洽计算得到vasprun.xml(PDOS文件夹下)ISMEAR = -5ISTART = 1ICHARG = 11LORBIT = 11NEDOS = 1000大密度k点计算步骤:DOS PDOS8 能带计算计算方法:1)模型优化完成2)自洽计算得到CHGCAR(同上)ISMEAR = -5LCHARG = .TRUE.小密度k点(总k点>4)3)非自洽计算得到vasprun.xml(BAND文件下)a)INCARISMEAR ≠-5ISTART = 1ICHARG = 11LORBIT = 11NEDOS = 1000大密度k点NBANDS可适当增大b)KPOINTS写syml文件(用pand.x时,E-fermi得重写);gk.x一下计算步骤:DOS PDOS BAND。