EMI滤波器的设计原理及参数计算方法
- 格式:doc
- 大小:208.50 KB
- 文档页数:5
直流电源EMI滤波器的设计直流电源EMI滤波器的设计原则、网络结构、参数选择1 设计原则-满足最大阻抗失配插入损耗要尽可能增大,即尽可能增大信号的反射。
设电源的输出阻抗和与之端接的滤波器的输人阻抗分别为ZO和ZI,根据信号传输理论,当ZO≠ZI时,在滤波器的输入端口会发生反射,反射系数p=(ZO-ZI)/(ZO+ZI)显然,ZO与ZI相差越大,p便越大,端口产生的反射越大,EMI信号就越难通过。
所以,滤波器输入端口应与电源的输出端口处于失配状态,使EMI信号产生反射。
同理,滤波器输出端口应与负载处于失配状态,使EMI信号产生反射。
即滤波器的设什应遵循下列原则:源内阻是高阻的,则滤波器输人阻抗就应该是低阻的,反之亦然。
负载是高阻的,则滤波器输出阻抗就应该是低阻的,反之亦然。
对于EMI信号,电感是高阻的,电容是低阻的,所以,电源EMI滤波器与源或负载的端接应遵循下列原则:如果源内阻或负载是阻性或感性的,与之端接的滤波器接口就应该是容性的。
如果源内阻或负载是容性的,与之端接的滤波器接口就应该是感性的。
2 EMI滤波器的网络结构EMI信号包括共模干扰信号CM 和差模干扰信号DM,CM 和DM 的分布如图1所示。
它可用来指导如何确定EMI滤波器的网络结构和参数。
EMI滤波器的基本网络结构如图2 所示。
上述4种网络结构是电源EMI滤波器的基本结构,但是在选用时,要注意以下的间题:双向滤波功能——电网对电源、电源对电网都应该有滤波功能。
能有效地抑制差模干扰和共模干扰——工程设计中重点考虑共模干扰的抑制。
最大程度地满足阻抗失配原则。
几种实际使用的电源EMI滤波器的网络结构如图3 所示。
3 电源EMI滤波器的参数确定方法a)放电电阻的取值在允许的情况下,电阻取值要求越小越好,需要考虑以下情况:第一,电阻要求采用二级降额使用,保证可靠性。
降额系数为0.75 V,0. 6 W。
根据欧姆定律可求出n>(0.75Ve)2/(0.6 Pe)。
EMI 滤 波 器 原 理 与 设 计 方 法 详 解输入端差模电感的选择输入端差模电感的选择::1. 差模choke 置于L 线或N 线上,同时与XCAP 共同作用F=1 / (2*π* L*C)2. 波器振荡频率要低于电源供给器的工作频率,一般要低于10kHz 。
3. L = N2AL (nH/N2)nH4. N = [L (nH )/AL(nH/N2)]1/2匝5. AL = L (nH )/ N2nH/N26. W =(NI )2AL / 2000µJ输入端共模电感的选择输入端共模电感的选择::共模电感为EMI 防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI 特性及温升,以同样尺寸的Common Choke 而言,线圈数愈多(相对的线径愈细),EMI 防制效果愈好,但温升可能较高。
传导干扰频率范围为0.15~30MHz ,电场辐射干扰频率范围为30~100MHz 。
开关电源所产生的干扰以共模干扰为主。
产生辐射干扰的主要元器件除了开关管和高频整流二极管还有脉冲变压器及滤波电感等。
注意:1. 避免电流过大而造成饱和。
2.Choke 温度系数要小,对高频阻抗要大。
3.感应电感要大,分布电容要小。
4.直流电阻要小。
B = L * I / (N * A) (B shall be less than 0.3)L = Choke inductance. I = Maximum current through choke. N = Number of turns on choke.A = Effective area of choke. (for drum core, can approximate with cross section area of center pole.)假设在50KHZ 有24DB 的衰减则,共模截止频率Fc = Fs*10Att/4 0 = 50*10-24/40=12.6KHZ 电感值L= (RL*0.707)/(∏*Fc) = (500.707)/(3.14*12.6) = 893uH使用磁芯和磁棒作滤波电感时应注意自身的阻抗,对于共模电感不能使用低阻抗的磁芯和磁棒,否则会造成炸机现象。
emi滤波器电路设计-回复EMI滤波器电路设计是电子工程中非常重要的一项工作,它的作用是降低或消除电磁干扰(Electromagnetic Interference,简称EMI),使电路正常运行。
本文将以EMI滤波器电路设计为主题,一步一步回答相关问题。
第一步:了解EMI滤波器的原理和分类EMI滤波器的基本原理是利用滤波器电路对电路信号进行处理,降低或消除电磁辐射、传导噪声对其他设备的影响。
根据滤波器的工作原理和频率响应,EMI滤波器可以分为三类:无源LC滤波器、有源滤波器和混合滤波器。
其中无源LC滤波器是应用最广泛的一种。
第二步:确定EMI滤波器的设计要求在设计EMI滤波器电路之前,需要根据具体应用场景和系统要求,确定一些设计参数和要求,例如带宽范围、最大允许的衰减等级、最大允许的漏电流等。
这些参数和要求将直接影响到滤波器电路的设计和性能。
第三步:选择合适的滤波器拓扑结构在选择滤波器的拓扑结构时,需要考虑滤波器的频率响应、带宽需求以及设计要求等多个因素。
常见的LC滤波器拓扑结构包括L型滤波器、π型滤波器和T型滤波器等。
此外,还可以根据实际需要选择有源滤波器或混合滤波器等。
第四步:计算滤波器的元件数值和参数在确定滤波器的拓扑结构后,需要根据具体的设计要求和滤波器电路的特性,计算滤波器的元件数值和参数。
这包括滤波器电感、电容和电阻等的数值选择和设计。
第五步:绘制EMI滤波器的电路图根据前面的设计计算结果,可以使用相应的电路设计软件或者手绘工具绘制EMI滤波器的电路图。
电路图应该清晰明了,标明每个元件的数值和型号,接线端口应该有合适的标记。
第六步:仿真和优化滤波器电路在绘制完电路图之后,可以使用电路仿真软件对滤波器电路进行仿真和优化。
通过仿真可以验证滤波器电路的设计是否符合要求,并进行必要的调整和优化。
第七步:制作滤波器电路原型并进行测试根据仿真结果,可以制作EMI滤波器电路的原型,并进行实际测试。
EMI滤波器电路原理及设计
EMI滤波器的原理是基于信号的频率特性和线路的阻抗匹配。
在设计EMI滤波器时,首先需要分析电路中的电磁干扰源,并根据干扰频率的不
同选择合适的滤波器类型。
常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
在滤波器的设计中,核心是选择合适的元件参数以及电路拓扑结构。
其中电感和电容是常用的滤波元件,它们的选择需要考虑滤波器的频率响
应特性。
一般来说,电感可用于低频段的滤波,而电容则适用于高频段的
滤波。
在滤波器的设计中还需要考虑元件的阻抗匹配,以提高滤波效果。
除了滤波器,EMI滤波器还包括抑制器。
抑制器通过增加抑制网络,
进一步提高滤波器对电磁干扰的抑制效果。
抑制网络一般包括与电磁干扰
源之间的串联电感和并联电容。
它们通过改变电路的阻抗特性,减少电磁
干扰信号的传输和辐射。
在设计EMI滤波器时,还需要考虑电路的输入和输出特性以及滤波器
的功率损耗。
输入和输出特性的分析包括电压、电流和功率的测量与计算,以保证滤波器在工作范围内的性能。
而功率损耗则是指滤波器对信号的能
量损耗,需要控制在合理的范围内,以避免对整体电路性能的影响。
总之,EMI滤波器的设计原理是基于信号的频率特性和线路的阻抗匹配。
通过选择合适的滤波器类型、元件参数和抑制网络,可以实现对电磁
干扰的抑制。
设计时需要考虑电路的输入和输出特性以及滤波器的功率损耗,以保证滤波器正常工作并提供良好的滤波效果。
开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用来减少开关电源产生的电磁干扰(EMI)的一种装置。
EMI是指开关电源工作时产生的高频干扰信号,可能会对其他电子设备、无线通信和无线电接收产生干扰,影响它们的正常工作。
EMI滤波器通过合理设计,能有效地抑制开关电源产生的EMI信号,从而减少对其他设备的干扰。
EMI滤波器的原理是基于电流和电压的相位关系来实现的。
开关电源在工作时会产生高频电流脉冲,而这些电流脉冲会通过开关电源输入端的电容等元件,从而形成高频电流回路。
EMI滤波器通过给开关电源输入端加上一个电感元件,阻断高频电流回路的形成,从而减小EMI信号的辐射。
设计EMI滤波器时需要考虑以下几个因素:1.工作频率范围:EMI滤波器需要在开关电源产生EMI信号的频率范围内有效工作。
根据具体的应用环境和要求,选择合适的滤波器工作频率范围。
2.滤波特性:滤波器需要具有良好的滤波特性,对于较高频率的EMI信号能够有较好的抑制效果。
常用的滤波器类型有低通滤波器、带通滤波器和带阻滤波器等。
3.过渡区域:滤波器在过渡区域需要平衡阻抗和频率之间的变化。
过渡区域越宽,滤波器的性能越好。
过渡区域的宽度需要根据具体要求进行设计。
4.安全和可靠性:EMI滤波器需要满足安全和可靠性的要求。
在设计过程中,需要考虑电源参数范围、电流和电压的安全范围等因素,以确保滤波器的稳定性和可靠性。
设计EMI滤波器的方法有多种,可以根据需求选择不同的设计方法。
常见的方法包括线性滤波器设计、Pi型滤波器设计和C型滤波器设计等。
其中,Pi型滤波器是应用最广泛的一种,它由两个电感和一个电容组成,能够对高频信号进行抑制。
总之,开关电源EMI滤波器的原理和设计研究是为了降低开关电源产生的电磁干扰,保证其他设备的正常工作。
通过合理的滤波器设计和选择合适的滤波器类型,可以有效地减少EMI信号对其他设备的干扰,提高系统的抗干扰性能。
EMI滤波器电路原理及设计引言开关电源以其体积小、重量轻、效率高等优点被广泛应用于电力电子设备系统中,但是开关电源易受到电磁干扰,产生误动作,且本身的高频信号也会引起大量的噪声,会污染电网环境,干扰同一电网其他电子设备的正常工作。
这样就对EMC提出了更高的要求指标。
分类:开关电源中的电磁干扰(EMI)主要有传导干扰和辐射干扰。
通过正确的屏蔽和接地系统设计可以得到有效的控制,对于传导干扰来说,加装EMI滤波器,是一种比较经济有效的措施,辐射干扰的抑制可以通过加装变压器屏蔽铜片。
EMI滤波器介绍开关电源与交流电网相连,尽管开关电源是一个单端口网络,但具有相线(L),零线(N),地线(E)的开关电源实际上形成了两个AC端口,所以噪声源在实际分析中可以将其分解为共模和差模噪声源。
火线(L)与零线(N)之间的干扰叫做差模干扰(属于对称性干扰),火线(L)与地线(E)之间的干扰叫做共模干扰(非对称性干扰)。
在一般情况下,差模干扰幅度小、频率低、所造成的干扰较小;共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。
开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。
1.开关电源的EMI干扰源开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。
(1)功率开关管功率开关管工作在On-O ff快速循环转换的状态,dv/dt和di/dt都在急剧变换,因此,功率开关管既是电场耦合的主要干扰源,也是磁场耦合的主要干扰源。
(2)高频变压器高频变压器的EMI来源集中体现在漏感对应的di/dt快速循环变换,因此高频变压器是磁场耦合的重要干扰源。
(3)整流二极管整流二极管的EMI来源集中体现在反向恢复特性上,反向恢复电流的断续点会在电感(引线电感、杂散电感等)产生高 dv/dt,从而导致强电磁干扰。
简述一款EMI滤波器的设计摘要:本文介绍了一款EMI滤波器电路,包括电路设计的原理,整体构架、电路的组成、特点及关键问题的解决等。
关键词:EMI;滤波器;混合集成1.概述某型号弹上装置的研究需要一款EMI滤波器电路,用于整机的滤波部位,在整机中提供电源滤波。
基于此需求,我们公司研制了一款实用的EMI滤波器电路。
本文详细介绍了该EMI滤波器电路的设计。
2.主要性能指标及外形尺寸2.1主要性能指标1.输入电压:0V~40V2.输入电流:0A~7A3.输出电流:0A~7A4.输出压降:小于等于0.6V(@7A)5.插入损耗:大于等于35dB(@500kHz~10MHz);6.绝缘电阻:不小于100MΩ(@250V DC)7.工作温度范围:-55℃ ~+125℃8.贮存温度范围:-65℃ ~+150℃2.2 外形尺寸该电路采用厚膜混合集成工艺,双列直插式金属外壳平行缝焊封装,严格按混合集成电路通用规范中的要求来设计产品的外壳尺寸:53×28×10mm33.设计与方案确定3.1 整体框架设计产品在设计初期首先与用户进行了充分的沟通,全面了解了用户对产品电性能指标、外形结构要求以及产品的实际使用环境和工作状态。
本产品的设计遵循可靠、够用、简洁、易用的原则,在全面满足用户提出的性能指标的前提下,产品的可靠性,优良的抗振能力、必要的降额设计及良好的热设计思想贯穿于整个设计中,集中保证了产品的高可靠性。
通过共模和差模滤波模式,实现设计要求。
3.2工作原理及电路设计该产品电路原理图见图1。
图1 电路原理图图中L1、L2为共模扼流圈,它是由绕在同一磁环上的两组独立线圈构成,也可以称为共模电感线圈,两个线圈绕制的圈数要一样,绕制方向相反。
具体工作原理为:电源滤波器是由电感和电容组成的低通滤波电路所构成,它允许直流电流通过,对频率较高的干扰信号则有较大的衰减。
由于干扰信号有差模和共模两种,因此该电源滤波器对这两种干扰都具有衰减作用。
电源EMI滤波器的设计方法1. 确定fcn的一般方法扼流圈截止频率fcn要根据电磁兼容性设计要求确定。
对于骚扰源,要求将骚扰电平降低到规定的范围;对于接收器,其接收品质体现在对噪声容限的要求上。
对于一阶低通滤波器截止频率可按下式确定:骚扰源:fcn=kT×(系统中最低骚扰频率);接收机:fcn=kR×(电磁环境中最低骚扰频率)。
式中,kT、kR根据电磁兼容性要求确定,一般情况下取1/3或1/5。
例如:电源噪声扼流圈或电源输出滤波器截止频率取fcn=20~30kHz(当开关电源频率f=100kHz时);信号噪声扼流圈截止频率取fcn=10~30MHz(对传输速率为100Mbps的信息技术设备)。
此外,对于输入电流有特殊波形的设备,例如接有直接整流-电容滤波的电源输入电路(未作功率因数校正(PFC)的开关电源和电子镇流器之类电器通常如此),要滤除2~40次电流谐波传导干扰,噪声扼流圈截止频率fcn可能取得更低一些。
例如,美国联邦通信委员会(FCC)规定电磁干扰起始频率为300kHz;国际无线电干扰特别委员会(CISPR)规定为150kHz;美国军标规定为10kHz。
2. 噪声滤波器电路当扼流圈插入电路后,其提供的噪声抑制效果,不但取决于扼流圈阻抗ZF大小,也与扼流圈所在电路前后阻抗(即源阻抗和负载阻抗)有关。
网络分析指出:在工作频率范围内,传输线输入输出阻抗匹配,可以最大限度传输信号功率;对于噪声,我们自然会想到插入噪声滤波器,使其输入输出阻抗在噪声频率范围内失配,以最大限度抑制噪声。
因此,噪声滤波器结构和构成元件的选择要由噪声滤波器所在电路的源阻抗和负载阻抗而定。
从这个意义上说抗EMI滤波器实际上是噪声失配滤波器。
这里,我们特别提出噪声失配概念有利于对噪声与噪声滤波器相互作用的分析(见后面应用原理部分)。
噪声滤波器电路通常采用π形、T形、L形电路结构及他们的组合等,作成低通滤波器,基本电路结构形式如图1所示。
emi emc滤波计算
EMI(电磁干扰)和EMC(电磁兼容)的滤波计算与设计是确保电子设备在电磁环境中正常工作和减少电磁干扰的重要步骤。
下面是一些常见的EMI/EMC滤波计算方法:
1. EMI滤波器计算
EMI滤波器用于抑制设备产生的电磁干扰。
计算滤波器参数的一种方法是通过设备电源线的线路阻抗和设备的工作电流来确定。
一般来说,滤波器的阻抗应该接近设备的工作电源线路阻抗,以便实现最佳的EMI抑制效果。
2. EMI传导和辐射抑制计算
电子设备的电磁干扰可以通过传导和辐射两种方式传播。
传导抑制主要包括对电源线路、信号线路和接地线路的抑制;辐射抑制则需要通过合适的屏蔽材料和构造来防止电磁波的辐射。
EMI传导抑制计算方法包括:
- 计算设备电源线路和信号线路的阻抗匹配以减少传导干扰;- 计算接地线的阻抗,并确保其足够低以提供有效的接地;
- 通过分析设备的信号线路布局和信号传输速率来确定是否需要添加抑制层以降低传导干扰。
EMI辐射抑制计算方法包括:
- 使用屏蔽效能计算方法,如Faraday笼法(Faraday's Cage Method),来评估设备的辐射抑制能力;
- 根据设备的频率范围和辐射限制要求,选择合适的屏蔽材料
和结构。
以上是一些常见的EMI/EMC滤波计算方法,具体计算和设计
方法会根据设备的具体要求和标准要求进行调整和优化。
有效的EMI/EMC滤波设计可以帮助设备达到相关的电磁兼容标准,并确保其在电磁环境中的正常运行。
三相emi滤波电路参数设计(实用版)目录1.三相 EMI 滤波电路的概述2.三相 EMI 滤波电路的设计参数3.参数设计时的注意事项4.应用场景正文一、三相 EMI 滤波电路的概述三相 EMI 滤波电路,是一种用于抑制和减少电磁干扰(EMI)的电路。
EMI 滤波器主要作用是滤除外界电网的高频脉冲对电源的干扰,同时也起到减少开关电源本身对外界的电磁干扰。
它可以利用电感和电容的特性,使频率为 50Hz 左右的交流电可以顺利通过滤波器,但高于 50Hz 以上的高频干扰杂波被滤波器滤除。
因此,它又有另外一种名称,将 EMI 滤波器称为低通滤波器。
二、三相 EMI 滤波电路的设计参数在设计三相 EMI 滤波电路时,主要需要考虑以下参数:1.电流:根据电路的额定电流选择合适的电感值。
通常情况下,三相滤波器的额定电流为 3A 至 1600A。
2.电感值:电感值的选择需要考虑电路的频率响应和滤波效果。
一般来说,电感值越大,滤波效果越好,但同时会增大电路的体积和成本。
3.电容值:电容值的选择需要考虑电路的频率响应和滤波效果。
通常情况下,电容值越大,滤波效果越好,但同时会增大电路的体积和成本。
4.滤波器的阻抗:滤波器的阻抗需要与电路的阻抗相匹配,以保证滤波器能够有效地工作。
三、参数设计时的注意事项在设计三相 EMI 滤波电路时,需要注意以下几点:1.电感和电容的选择需要综合考虑电路的滤波效果、体积、成本等因素。
2.滤波器的阻抗需要与电路的阻抗相匹配,以保证滤波器能够有效地工作。
3.在设计过程中,需要考虑电路的可靠性和稳定性,以保证电路在长时间运行过程中不会出现故障。
4.在选择电感和电容的材质时,需要考虑其对电磁干扰的抑制能力以及其本身的稳定性。
四、应用场景三相 EMI 滤波电路广泛应用于各种电子设备中,如计算机机房、开关电源、测控系统等领域。
EMI滤波器设计原理高频开关电源由于其在体积、重量、功率密度、效率等方面的诸多优点,已经被广泛地应用于工业、国防、家电产品等各个领域。
在开关电源应用于交流电网的场合,整流电路往往导致输入电流的断续,这除了大大降低输入功率因数外,还增加了大量高次谐波。
同时,开关电源中功率开关管的高速开关动作(从几十kHz到数MHz),形成了EMI(electromagnetic interference)骚扰源。
从已发表的开关电源论文可知,在开关电源中主要存在的干扰形式是传导干扰和近场辐射干扰,传导干扰还会注入电网,干扰接入电网的其他设备。
减少传导干扰的方法有很多,诸如合理铺设地线,采取星型铺地,避免环形地线,尽可能减少公共阻抗;设计合理的缓冲电路;减少电路杂散电容等。
除此之外,可以利用EMI滤波器衰减电网与开关电源对彼此的噪声干扰。
EMI骚扰通常难以精确描述,滤波器的设计通常是通过反复迭代,计算制作以求逐步逼近设计要求。
本文从EMI滤波原理入手,分别通过对其共模和差模噪声模型的分析,给出实际工作中设计滤波器的方法,并分步骤给出设计实例。
1 EMI滤波器设计原理在开关电源中,主要的EMI骚扰源是功率半导体器件开关动作产生的d v/d t和d i/d t,因而电磁发射EME(Electromagnetic Emission)通常是宽带的噪声信号,其频率范围从开关工作频率到几MHz。
所以,传导型电磁环境(EME)的测量,正如很多国际和国家标准所规定,频率范围在0.15~30MHz。
设计EMI 滤波器,就是要对开关频率及其高次谐波的噪声给予足够的衰减。
基于上述标准,通常情况下只要考虑将频率高于150kHz的EME衰减至合理范围内即可。
在数字信号处理领域普遍认同的低通滤波器概念同样适用于电力电子装置中。
简言之,EMI滤波器设计可以理解为要满足以下要求:1)规定要求的阻带频率和阻带衰减;(满足某一特定频率f stop有需要H的衰减);stop2)对电网频率低衰减(满足规定的通带频率和通带低衰减);3)低成本。
EMI电源滤波器的设计EMI电源滤波器通常由三部分组成:差模滤波部分、共模滤波部分和终端滤波部分。
差模滤波器主要用于滤除差模模式的干扰信号,共模滤波器主要用于滤除共模模式的干扰信号,而终端滤波器用于进一步滤除残余的高频干扰信号。
在设计EMI电源滤波器时,首先需要确定所需的滤波频率范围以及所能容忍的最大干扰水平。
然后,选择合适的滤波器拓扑结构和元件。
常用的拓扑结构包括RC滤波器、LC滤波器、Pi型滤波器、T型滤波器等。
具体的设计步骤如下:1.确定滤波频率范围:根据应用需求和电磁兼容性(EMC)标准要求,确定滤波器应该滤除的频率范围。
2.选择滤波器拓扑结构:根据滤波频率范围选择合适的滤波器拓扑结构。
RC滤波器适用于低频滤波,LC滤波器适用于高频滤波,Pi型滤波器和T型滤波器适用于中频滤波。
3.计算元件数值:根据滤波器的拓扑结构和所需的滤波频率范围,计算出所需的电阻、电容和电感元件的数值。
这些元件的数值可以通过经验公式或者电路仿真工具进行计算。
4.选取合适的元件:根据计算的元件数值,选取合适的电阻、电容和电感元件。
在选取电感元件时,需要考虑元件的电流和电压容量,以保证滤波器的可靠性和稳定性。
5.组装滤波器电路:根据设计的滤波器电路图,组装电阻、电容和电感元件。
在组装过程中,需要确保元件的良好焊接和连接,以避免电流或电压泄漏。
6.测试和优化:组装完成后,对滤波器进行测试和优化。
通过使用示波器或者频谱分析仪等测试设备,可以检测滤波器的滤波效果和性能,并进行必要的优化调整。
总结起来,EMI电源滤波器的设计需要经过确定滤波频率范围、选择滤波器拓扑结构、计算元件数值、选取合适的元件、组装滤波器电路和测试优化等步骤。
通过合理的设计和优化,可以有效降低电源中的电磁干扰,提高电子设备的可靠性和稳定性。
EMI滤波器的设计原理随着电子设备、计算机与家用电器的大量涌现和广泛普及,电网噪声干扰日益严重并形成一种公害。
特别是瞬态噪声干扰,其上升速度快、持续时间短、电压振幅度高(几百伏至几千伏)、随机性强,对微机和数字电路易产生严重干扰,常使人防不胜防,这已引起国内外电子界的高度重视。
电磁干扰滤波器(EMI Filter)是近年来被推广应用的一种新型组合器件。
它能有效地抑制电网噪声,提高电子设备的抗干扰能力及系统的可靠性,可广泛用于电子测量仪器、计算机机房设备、开关电源、测控系统等领域。
1 电磁干扰滤波器的构造原理及应用1.11 构造原理电源噪声是电磁干扰的一种,其传导噪声的频谱大致为10kHz~30MHz,最高可达150MHz。
根据传播方向的不同,电源噪声可分为两大类:一类是从电源进线引入的外界干扰,另一类是由电子设备产生并经电源线传导出去的噪声。
这表明噪声属于双向干扰信号,电子设备既是噪声干扰的对象,又是一个噪声源。
若从形成特点看,噪声干扰分串模干扰与共模干扰两种。
串模干扰是两条电源线之间(简称线对线)的噪声,共模干扰则是两条电源线对大地(简称线对地)的噪声。
因此,电磁干扰滤波器应符合电磁兼容性(EMC)的要求,也必须是双向射频滤波器,一方面要滤除从交流电源线上引入的外部电磁干扰,另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。
此外,电磁干扰滤波器应对串模、共模干扰都起到抑制作用。
1.2 基本电路及典型应用电磁干扰滤波器的基本电路如图1所示。
该五端器件有两个输入端、两个输出端和一个接地端,使用时外壳应接通大地。
电路中包括共模扼流圈(亦称共模电感)L、滤波电容C1~C4。
L对串模干扰不起作用,但当出现共模干扰时,由于两个线圈的磁通方向相同,经过耦合后总电感量迅速增大,因此对共模信号呈现很大的感抗,使之不易通过,故称作共模扼流圈。
它的两个线圈分别绕在低损耗、高导磁率的铁氧体磁环上,当有电流通过时,两个线圈上的磁场就会互相加强。
EMI滤波器的设计原理1 电磁干扰滤波器的构造原理及应用1.1 构造原理1.2 基本电路及其典型应用电磁干扰滤波器的基本电路如图1所示。
电磁干扰的屏蔽方法EMC问题常常是制约中国电子产品出口的一个原因,本文主要论述EMI的来源及一些非常具体的抑制方法。
电磁兼容性(EMC)是指“一种器件、设备或系统的性能,它可以使其在自身环境下正常工作并且同时不会对此环境中任何其他设备产生强烈电磁干扰(IEEE C63.12-1987)。
”对于无线收发设备来说,采用非连续频谱可部分实现EMC性能,但是很多有关的例子也表明EMC并不总是能够做到。
例如在笔记本电脑和测试设备之间、打印机和台式电脑之间以及蜂窝电话和医疗仪器之间等都具有高频干扰,我们把这种干扰称为电磁干扰(EMI)。
EMC问题来源所有电器和电子设备工作时都会有间歇或连续性电压电流变化,有时变化速率还相当快,这样会导致在不同频率内或一个频带间产生电磁能量,而相应的电路则会将这种能量发射到周围的环境中。
EMI有两条途径离开或进入一个电路:辐射和传导。
信号辐射是通过外壳的缝、槽、开孔或其他缺口泄漏出去;而信号传导则通过耦合到电源 .... .、信号和控制线上离开外壳,在开放的空间中自由辐射,从而产生干扰。
很多EMI抑制都采用外壳屏蔽和缝隙屏蔽结合的方式来实现,大多数时候下面这些简单原则可以有助于实现EMI屏蔽:从源头处降低干扰;通过屏蔽、过滤或接地将干扰产生电路隔离以及增强敏感电路的抗干扰能力等。
EMI抑制性、隔离性和低敏感性应该作为所有电路设计人员的目标,这些性能在设计阶段的早期就应完成。
对设计工程师而言,采用屏蔽材料是一种有效降低EMI的方法。
如今已有多种外壳屏蔽材料得到广泛使用,从金属罐、薄金属片和箔带到在导电织物或卷带上喷射涂层及镀层(如导电漆及锌线喷涂等)。
无论是金属还是涂有导电层的塑料,一旦设计人员确定作为外壳材料之后,就可着手开始选择衬垫。
金属屏蔽效率可用屏蔽效率(SE)对屏蔽罩的适用性进行评估,其单位是分贝,计算公式为SE dB=A+R+B其中A:吸收损耗(dB) R:反射损耗(dB) B:校正因子(dB)(适用于薄屏蔽罩内存在多个反射的情况)一个简单的屏蔽罩会使所产生的电磁场强度降至最初的十分之一,即SE等于20dB;而有些场合可能会要求将场强降至为最初的十万分之一,即SE 要等于100dB。
三相emi滤波电路参数设计一、引言随着现代电力电子技术的快速发展,电磁干扰(EMI)问题日益严重。
三相EMI滤波电路作为抑制电磁干扰的有效手段,在各种电子产品和系统中得到了广泛应用。
本文将探讨三相EMI滤波电路的原理及参数设计方法,以期为相关领域的研究和应用提供参考。
二、三相EMI滤波电路原理1.滤波原理三相EMI滤波电路主要用于抑制电源侧和负载侧的电磁干扰,其滤波原理主要是利用电感和电容对电流的谐波进行滤波。
在三相系统中,滤波器需承受三相电压的谐波分量,因此需要设计合理的电感和电容参数以达到较好的滤波效果。
2.电路组成三相EMI滤波电路主要由电感、电容和电阻组成。
电感主要用于抑制高频谐波,电容主要用于抑制低频谐波,电阻主要用于限制滤波后的电流。
在实际应用中,电感、电容和电阻的选取和组合对滤波效果具有重要影响。
三、三相EMI滤波电路参数设计1.电感参数设计(1)电感量选择:电感量越大,滤波效果越好,但电感器的体积和重量也会相应增大。
在设计时,应根据实际应用场景和电磁干扰抑制要求选择合适的电感量。
(2)电感寄生参数影响:电感器的寄生电阻和电容会影响滤波效果。
在设计时,应尽量选择低电阻、低电容的电感器,以提高滤波效果。
2.电容参数设计(1)电容量选择:电容量越大,滤波效果越好,但电容器的体积和重量也会相应增大。
在设计时,应根据实际应用场景和电磁干扰抑制要求选择合适的电容量。
(2)电容寄生参数影响:电容器的寄生电阻和电感会影响滤波效果。
在设计时,应尽量选择低电阻、低电感的电容器,以提高滤波效果。
3.电阻参数设计(1)电阻值选择:电阻值越大,滤波后的电流越小,但电阻产生的热量也会相应增大。
在设计时,应根据实际应用场景和电磁干扰抑制要求选择合适的电阻值。
(2)电阻寄生参数影响:电阻的寄生电感和电容会影响滤波效果。
在设计时,应尽量选择低电感和低电容的电阻,以提高滤波效果。
四、电路调试与优化1.调试方法电路调试主要包括元件参数测量、滤波效果测试等环节。
EMI滤波器的设计原理
随着电子设备、计算机与家用电器的大量涌现和广泛普及,电网噪声干扰日益严重并形成一种公害。
特别是瞬态噪声干扰,其上升速度快、持续时间短、电压振幅度高(几百伏至几千伏)、随机性强,对微机和数字电路易产生严重干扰,常使人防不胜防,这已引起国内外电子界的高度重视。
电磁干扰滤波器(EMI Filter)是近年来被推广应用的一种新型组合器件。
它能有效地抑制电网噪声,提高电子设备的抗干扰能力及系统的可靠性,可广泛用于电子测量仪器、计算机机房设备、开关电源、测控系统等领域。
1 电磁干扰滤波器的构造原理及应用
1.11 构造原理
电源噪声是电磁干扰的一种,其传导噪声的频谱大致为10kHz~30MHz,最高可达150MHz。
根据传播方向的不同,电源噪声可分为两大类:一类是从电源进线引入的外界干扰,另一类是由电子设备产生并经电源线传导出去的噪声。
这表明噪声属于双向干扰信号,电子设备既是噪声干扰的对象,又是一个噪声源。
若从形成特点看,噪声干扰分串模干扰与共模干扰两种。
串模干扰是两条电源线之间(简称线对线)的噪声,共模干扰则是两条电源线对大地(简称线对地)的噪声。
因此,电磁干扰滤波器应符合电磁兼容性(EMC)的要求,也必须是双向射频滤波器,一方面要滤除从交流电源线上引入的外部电磁干扰,另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。
此外,电磁干扰滤波器应对串模、共模干扰都起到抑制作用。
1.2 基本电路及典型应用
电磁干扰滤波器的基本电路如图1所示。
该五端器件有两个输入端、两个输出端和一个接地端,使用时外壳应接通大地。
电路中包括共模扼流圈(亦称共模电感)L、滤波电容C1~C4。
L对串模干扰不起作用,但当出现共模干扰时,由于两个线圈的磁通方向相同,经过耦合后总电感量迅速增大,因此对共模信号呈现很大的感抗,使之不易通过,故称作共模扼流圈。
它的两个线圈分别绕在低损耗、高导磁率的铁氧体磁环上,当有电流通过时,两个线圈上的磁场就会互相加强。
L的电感量与EMI滤波器的额定电流 有关,参见表1。
需要指出,当额定电流较大时,共模扼流圈的线径也要相应增大,以便能承受较大的电流。
此外,适当增加电感量,可改善低频衰减特性。
C1和C2采用薄膜电容器,容量范围大致是0.01mF~0.47μF,主要用来滤除串模干扰。
C3和C4跨接在输出端,并将电容器的中点接地,能有效地抑制共模干扰。
C3和C4亦可并联在输入端,仍选用陶瓷电容,容量范围是2200pF~0.1μF。
为减小漏电流,电容量不得超过0.1μF,并且电容器中点应与大地接通。
C1~C4的耐压值均为
630VDC或250VAC。
图2示出一种两级复合式EMI滤波器的内部电路,由于采用两级(亦称两节)滤波,因此滤除噪声的效果更佳。
针对某些用户现场存在重复频率为几千赫兹的快速瞬态群脉冲干扰的问题,国内外还开发出群脉冲滤波器(亦称群脉冲对抗器),能对上述干扰起到抑制作用。
2 EMI滤波器在开关电源中的应用
为减小体积、降低成本,单片开关电源一般采用简易式单级EMI滤波器,典型电路如图3所示
图(a)与图(b)中的电容器C能滤除串模干扰,区别仅是图(a)将C接在输入端,
图(b)则接到输出端。
图(c)、(d)所示电路较复杂,抑制干扰的效果更佳。
图(c)中的L、C1和C2用来滤除共模干扰,C3和C4滤除串模干扰。
R为泄放电阻,可将C3上积累的电荷泄放掉,避免因电荷积累而影响滤波特性;断电后还能使电源的进线端L、N不带电,保证使用的安全性。
图(d)则是把共模干扰滤波电容C3和
C4接在输出端。
EMI滤波器能有效抑制单片开关电源的电磁干扰。
图4中曲线a为不加EMI 滤波器时开关电源上0.15MHz~30MHz传导噪声的波形(即电磁干扰峰值包络线)。
曲线b是插入如图3(d)所示EMI滤波器后的波形,能将电磁干扰衰减50dBμV ~ 70dBμV。
显然,这种EMI滤波器的效果更佳。
3 EMI 滤波器的技术参数及测试方法
3.1 主要技术参数
EMI 滤波器的主要技术参数有:额定电压、额定电流、漏电流、测试电压、绝缘电阻、直流电阻、使用温度范围、工作温升Tr 、插入损耗AdB 、外形尺寸、重量等。
上述参数中最重要的是插入损耗(亦称插入衰减),它是评价电磁干扰滤波器性能优劣的主要指标。
插入损耗(AdB)是频率的函数,用dB 表示。
设电磁干扰滤波器插入前后传输到负载上的噪声功率分别为P 1、P 2,有公式:
()1220lg AdB P P = (1)
假定负载阻抗在插入前后始终保持不变,则211
P V Z =,222P V Z =。
式中1V 是噪声源直接加到负载上的电压,2V 是在噪声源与负载之间插入电磁干扰滤波器后负载上的噪声电压,且21V V 。
代入(1)式中得到
()1220lg AdB V V = (2)
插入损耗用分贝(dB)表示,分贝值愈大,说明抑制噪声干扰的能力愈强。
鉴于理论计算比较烦琐且误差较大,通常是由生产厂家进行实际测量,根据噪声频谱逐点测出所对应的插入损耗,然后绘出典型的插入损耗曲线,提供给用户。
图5给出一条典型曲线。
由图可见,该产品可将1MHz~30MHz 的噪声电压衰减65dB 。
计算EMI 滤波器对地漏电流的公式为:
2LD C I fCV π= (3)
式中,LD I 为漏电流,f 是电网频率。
以图1为例,50f Hz =,
344400C C C pF =+=,C V 是3C 、4C 上的压降,亦即输出端的对地电压,可取
2201102C V V V ≈=。
由(3)式不难算出,此时漏电流0.15LD I mA =。
3C 和4C 若选4700pF ,则470029400C pF pF =⨯=,0.32LD I mA =。
显然,漏电流与C 成正比。
对漏电流的要求是愈小愈好,这样安全性高,一般应为几百微安至几毫安。
在电子医疗设备中对漏电流的要求更为严格。
需要指出,额定电流还与环境温度A T 有关。
例如国外有的生产厂家给出下述经验公式:
()12
18545A I I T =⨯-⎡⎤⎣⎦ (4)
式中,1I 是40°C 时的额定电流。
举例说明,当50A T C =︒时,10.88I I =;而当25A T C =︒时,11.15I I =。
这表明,额定电流值随温度的降低而增大,这是由于散热条件改善的缘故。
3.2 测量插入损耗的方法
测量插入损耗的电路如图6所示。
e 是噪声信号发生器,i Z 是信号源的内部阻抗,L Z 是负载阻抗,一般取50Ω。
噪声频率范围可选10kHz~30MHz 。
首先要在不同频率下分别测出插入前后负载上的噪声压降1V 、2V ,再代入(2)式中计算出每个频率点的AdB 值,最后绘出插入损耗曲线。
需要指出,上述测试方法比较烦琐,每次都要拆装EMI 滤波器。
为此可用电子开关对两种测试电路进行快速切换。
参考文献
1 沙占友.新编实用数字化测量技术.北京国防工业出版社,1998,1
2 沙占友.电源噪声滤波器应用.自动化仪表,1991,9
3 林先放.开关电源的抗干扰问题.电源技术应用,2000,8。