2020年广东省梅州市中考数学试题(word版含答案)
- 格式:doc
- 大小:935.09 KB
- 文档页数:12
2020年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9的相反数是()A.﹣9B.9C.D.﹣2.(3分)一组数据2,4,3,5,2的中位数是()A.5B.3.5C.3D.2.53.(3分)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)4.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.75.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣26.(3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8B.2C.16D.47.(3分)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+38.(3分)不等式组的解集为()A.无解B.x≤1C.x≥﹣1D.﹣1≤x≤19.(3分)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1B.C.D.210.(3分)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c <0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy﹣x=.12.(4分)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=.13.(4分)若+|b+1|=0,则(a+b)2020=.14.(4分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为.15.(4分)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为.16.(4分)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.2020年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9的相反数是()A.﹣9B.9C.D.﹣【分析】根据相反数的定义即可求解.【解答】解:9的相反数是﹣9,故选:A.2.(3分)一组数据2,4,3,5,2的中位数是()A.5B.3.5C.3D.2.5【分析】中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.【解答】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.3.(3分)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【解答】解:点(3,2)关于x轴对称的点的坐标为(3,﹣2).故选:D.4.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.7【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.5.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣2【分析】根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.【解答】解:∵在实数范围内有意义,∴2x﹣4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.6.(3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8B.2C.16D.4【分析】根据中位线定理可得DF=AC,DE=BC,EF=AC,继而结合△ABC的周长为16,可得出△DEF的周长.【解答】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=AC,DE=BC,EF=AC,故△DEF的周长=DE+DF+EF=(BC+AB+AC)=16=8.故选:A.7.(3分)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+3【分析】先求出y=(x﹣1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.【解答】解:二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x﹣2)2+2.故选:C.8.(3分)不等式组的解集为()A.无解B.x≤1C.x≥﹣1D.﹣1≤x≤1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2﹣3x≥﹣1,得:x≤1,解不等式x﹣1≥﹣2(x+2),得:x≥﹣1,则不等式组的解集为﹣1≤x≤1,故选:D.9.(3分)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1B.C.D.2【分析】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3﹣x,由直角三角形的性质可得:2(3﹣x)=x,解方程求出x即可得出答案.【解答】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.10.(3分)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c <0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【分析】根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy﹣x=x(y﹣1).【分析】直接提取公因式x,进而分解因式得出答案.【解答】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).12.(4分)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.【解答】解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.13.(4分)若+|b+1|=0,则(a+b)2020=1.【分析】根据非负数的意义,求出a、b的值,代入计算即可.【解答】解:∵+|b+1|=0,∴a﹣2=0且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.14.(4分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为7.【分析】由x=5﹣y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)﹣4xy计算可得.【解答】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2=15﹣8=7,故答案为:7.15.(4分)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为45°.【分析】根据∠EBD=∠ABD﹣∠ABE,求出∠ABD,∠ABE即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AD=AB,∴∠ABD=∠ADB=(180°﹣∠A)=75°,由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°,故答案为45°.16.(4分)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.【分析】求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.【解答】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:,而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=,解得,r=,故答案为:.17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2﹣2.【分析】如图,连接BE,BD.求出BE,BD,根据DE≥BD﹣BE求解即可.【解答】解:如图,连接BE,BD.由题意BD==2,∵∠MBN=90°,MN=4,EM=NE,∴BE=MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2﹣2.故答案为2﹣2.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.【分析】根据整式的混合运算过程,先化简,再代入值求解即可.【解答】解:(x+y)2+(x+y)(x﹣y)﹣2x2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=,y=时,原式=2××=2.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【分析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.【解答】解:(1)x=120﹣(24+72+18)=6;(2)1800×=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.【分析】先证△BDF≌△CEF(AAS),得出BF=CF,DF=EF,则BE=CD,再证△ABE≌△ACD(AAS),得出AB=AC即可.【解答】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.【分析】(1)关于x,y的方程组与的解相同.实际就是方程组的解,可求出方程组的解,进而确定a、b的值;(2)将a、b的值代入关于x的方程x2+ax+b=0,求出方程的解,再根据方程的两个解与2为边长,判断三角形的形状.【解答】解:(1)由题意得,关于x,y的方程组的相同解,就是方程组的解,解得,,代入原方程组得,a=﹣4,b=12;(2)当a=﹣4,b=12时,关于x的方程x2+ax+b=0就变为x2﹣4x+12=0,解得,x1=x2=2,又∵(2)2+(2)2=(2)2,∴以2、2、2为边的三角形是等腰直角三角形.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.【分析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2,则OB=,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.【解答】(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,,∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF===2,∴AB=DF=2,∴OB=,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH==.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.【分析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90﹣a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.【解答】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=2;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.【分析】(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD,即可求解;(3)确定直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),即可求解.【解答】解:(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2,故答案为2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD=×8﹣×2=3;(3)设点D(m,),则点B(4m,),∵点G与点O关于点C对称,故点G(8m,0),则点E(4m,),设直线DE的表达式为:y=sx+n,将点D、E的坐标代入上式得并解得:直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),故FG=8m﹣5m=3m,而BD=4m﹣m=3m=FG,则FG∥BD,故四边形BDFG为平行四边形.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.【分析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.【解答】解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,∴CO∥DE,∴,∵BC=CD,BO=3,∴=,∴OE=,∴点D横坐标为﹣,∴点D坐标为(﹣,+1),设直线BD的函数解析式为:y=kx+b,由题意可得:,解得:,∴直线BD的函数解析式为y=﹣x+;(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,∵直线BD:y=﹣x+与y轴交于点C,∴点C(0,),∴OC=,∵tan∠CBO==,∴∠CBO=30°,如图2,过点A作AK⊥BD于K,∴AK=AB=2,∴DK===2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO=∠PBO=30°,∴BN=PN=2,BP=2PN,∴PN=,BP=,当△BAD∽△BPQ,∴,∴BQ==2+,∴点Q(1﹣,0);当△BAD∽△BQP,∴,∴BQ==4﹣,∴点Q(﹣1+,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=BN=2,当△DAB∽△BPQ,∴,∴,∴BQ=2+2∴点Q(1﹣2,0);当△BAD∽△PQB,∴,∴BQ==2﹣2,∴点Q(5﹣2,0);综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).。
广东省梅州市2020版中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题: (共8题;共16分)1. (2分)下列运算中,正确的是()A . 3a+2b=5abB . 2a3+3a2=5a5C . 3a2b﹣3ba2=0D . 5a2﹣4a2=12. (2分)在平面直角坐标系中,点P(1,﹣3)关于原点对称的点的坐标是()A . (﹣1,3)B . (﹣3,1)C . (1,3)D . (3,﹣1)3. (2分)(2018·深圳) 下列数据:,则这组数据的众数和极差是()A .B .C .D .4. (2分)在乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中错误的是()A . 众数是90B . 中位数是90C . 平均数是90D . 极差是905. (2分)一元二次方程x2-2x+3=0的根的情况是()A . 育一个实数根B . 有两个相等的实数根C . 有两个不相等的实数根D . 没有实数根6. (2分)如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(N)与时间t(s)的函数图象大致是()A .B .C .D .7. (2分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图),把余下的部分拼成一个矩形(如图),根据两个图形中阴影部分的面积相等,可以验证()A . (a+b)2=a2+2ab+b2B . (a-b)2=a2-2ab+b2C . a2-b2=(a+b)(a-b)D . (a+2b)(a-b)=a2+ab-2b28. (2分)(2019·江岸模拟) 若一个圆锥的底面半径为2cm,高为4 cm,则圆锥的侧面展开图中圆心角的度数为()A . 80°B . 100°C . 120°D . 150°二、填空题 (共8题;共16分)9. (3分)因式分解:2x2﹣8=________;(x2+1)2﹣4x2=________;x2﹣x﹣12=________.10. (7分)(Ⅰ)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,①如图2,点A、B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|;(Ⅱ)回答下列问题:①数轴上表示2和5的两点之间的距离是________,数轴上表示﹣2和﹣5的两点之间的距离是________;数轴上表示1和﹣3的两点之间的距离是________;②数轴上表示x和﹣1的两点A和B之间的距离是________;③如果|x+3|=2,那么x为________;④代数式|x+3|+|x﹣2|最小值是________,当代数式|x+3|+|x﹣2|取最小值时,相应的x的取值范围是________.11. (1分)(2013·茂名) 如图,四条直径把两个同心圆分成八等份,若往圆面投掷飞镖,则飞镖落在白色区域的概率是________.12. (1分) (2015七上·福田期末) 一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利18元,则这件夹克衫的成本价为________元.13. (1分)(2017·宜兴模拟) 如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是________.14. (1分)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是________15. (1分) (2018八上·扬州月考) 如图所示,已知△ABC和△BDE都是等边三角形。
2020年广东省中考数学试卷以及答案2020年广东省初中学业水平考试数学本试卷共4页,满分120分,考试时间90分钟。
在答题卡上填写准考证号、姓名、考场号、座位号,并用2B铅笔涂黑对应号码的标号。
选择题答案用2B铅笔涂黑,非选择题用黑色字迹钢笔或签字笔作答,写在答题卡指定区域内,如需改动,先划掉原来的答案,再写上新的答案,不准使用铅笔和涂改液。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)1.9的相反数是()A。
-9.B。
9.C。
D。
-2.一组数据2、4、3、5、2的中位数是()A。
5.B。
3.5.C。
3.D。
2.53.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A。
(-3,2)。
B。
(-2,3)。
C。
(2,-3)。
D。
(3,-2)4.若一个多边形的内角和是540°,则该多边形的边数为()A。
4.B。
5.C。
6.D。
75.若式子2x-4在实数范围内有意义,则x的取值范围是()A。
x≠2.B。
x≥2.C。
x≤2.D。
x≠-26.已知△ABC的周长为16,点D、E、F分别为△ABC三条边的中点,则△DEF的周长为()A。
8.B。
22.C。
16.D。
47.把函数y=(x-1)²+2的图象向右平移1个单位长度,平移后图象的函数解析式为()A。
y=x²+2.B。
y=(x-1)²+1.C。
y=(x-2)²+2.D。
y=(x-1)²+38.不等式组{2-3x≥-1,x-1≥-2}的解集为()A。
无解。
B。
x≤1.C。
x≥-1.D。
-1≤x≤19.如题9图,在正方形ABCD中,AB=3,点E、F分别在边AB、CD上,△EFD=60°。
若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A。
1.B。
2.C。
3.D。
2√310.如题10图,抛物线y=ax²+bx+c的对称轴是直线x=1.下列结论:△ABC>0,其中A、B、C分别为抛物线与x轴、y轴、顶点的交点。
梅州市2020年初中毕业生学业考试数 学 试 卷题序一二三四五六七八总分得分说 明:本试卷共4页,23小题,满分120分。
考试用时90分钟。
注意事项:1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号,再用2B 铅笔把试室号、座位号的对应数字涂黑。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
5.本试卷不用装订,考完后统一交县招生办(中招办)封存。
参考公式:抛物线y=ax 2+bx+c (a≠0)的对称轴是直线x=―b 2a ,顶点坐标是(―b 2a ,4ac ―b 24a)。
方差S 2=1n[(x ―x 1-2)+(x ―x 2-2)+ … +(x ―x 1-2)]一、选择题:每小题3分,共15分。
每小题给出四个答案,其中只有一个是正确的。
1.―(―12)0=( )A .―2B .2C .1D .―1 2. 下列图形中是轴对称图形的是( )A .B .C .D .3. 某同学为了解梅州市火车站今年“五一”期间每天乘车人数,随机抽查了其中五天的乘车人数,所抽查的这五天中每天乘车人数是这个问题的( ) A .总体 B .个体 C .样本 D .以上都不对4. 如图,在折纸活动中,小明制作了一张⊿ABC 纸片,点D 、E 分别是边AB 、AC 上,将⊿ABC 沿着DE 折叠压平,A 与A ’重合,若∠A=75°,则∠1+∠2=( )A .150°B .210°C .105°D .75°5. 在同一直角坐标系下,直线y=x+1与双曲线y=1x 的交点的个数为( )A .0个B .1个C .2个D .不能确定二、填空题:每小题3分,共24分。
广东省梅州市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)为奖励大学生创业,我市为在开发区创业的每位大学生提供无息贷款145000元,这个数据用科学记数法表示为(精确到万元)()A . 1.45×105B . 1.5×105C . 1.4×105D . 1.5×1062. (2分)(2017·北海) 右图是由6个小正方体搭建而成的几何体,它的俯视图是()A .B .C .D .3. (2分)(2017·江都模拟) 下列运算正确的是()A . ﹣ =B . =﹣3C . a•a2=a2D . (2a3)2=4a64. (2分)桌面上放有6张卡片(卡片除正面的颜色不同外,其余均相同),其中卡片正面的颜色3张是绿色,2张是红色,1张是黑色.现将这6张卡片洗匀后正面向下放在桌面上,从中随机抽取一张,抽出的卡片正面颜色是绿色的概率是().A .B .C .D .5. (2分) (2017七下·郯城期中) 如图,∠1与∠2不是同旁内角的是()A .B .C .D .6. (2分) (2019八上·顺德期末) 某地区汉字听写大赛中,10名学生得分情况如下表:分数50859095人数3421那么这10名学生所得分数的中位数和众数分别是()A . 85和85B . 85.5和85C . 85和82.5D . 85.5和807. (2分)如图,下列说法正确的是()A . 图中共有5条线段B . 直线AB与直线AC是指同一条直线C . 射线AB与射线BA是指同一条射线D . 点O在直线AC上8. (2分) (2020八下·抚宁期中) 若点A(a+2,b-1)在第二象限,则点B(-a,b-1)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (2分)(2019·通州模拟) 下列图形中,是中心对称图形的是()A .B .C .D .10. (2分)如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A . 135°B . 180°C . 270°D . 315°11. (2分)一元一次不等式组的解集在数轴上表示为()A .B .C .D .12. (2分)分式方程的解为().A . 1B . 2C .D . 0二、填空题 (共6题;共6分)13. (1分) (2019八下·诸暨期末) 在反比例函数的图象每一条曲线上,y都随x的增大而减小,则m的取值范围是________.14. (1分)如图,在▱ABCD中,AB=5,AC=6,当BD=________时,四边形ABCD是菱形.15. (1分) (2017九上·平舆期末) 在平面直角坐标系中,将抛物线y=x2﹣x﹣12向上(下)或左(右)平移m个单位,使平移后的抛物线恰巧经过原点,则|m|的最小值为________.16. (1分) (2016九上·姜堰期末) 已知x(x﹣3)=5,则代数式2x2﹣6x﹣5的值为________.17. (1分)(2018·吉林模拟) 如图,在 ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=16cm2 ,S△BQC=25cm2 ,则图中阴影部分的面积为________cm2 .18. (1分)(2012·湖州) 甲、乙两名射击运动员在一次训练中,每人各打10发子弹,根据命中环数求得方差分别是 =0.6, =0.8,则运动员________的成绩比较稳定.三、解答题 (共8题;共57分)19. (5分)某文具店有单价为10元、15元和20元的三种文具盒出售,该商店统计了2014年3月份这三种文具盒的销售情况,并绘制统计图(不完整)如下:(1)这次调查中一共抽取了多少个文具盒?(2)求出图1中表示“15元”的扇形所占圆心角的度数;(3)在图2中把条形统计图补充完整.20. (5分) (2019七下·永寿期末) 如图,在某住房小区的建设中,为了提高业主的直居环境,小区准备在一个长为(4a+3b)米,宽为(2a+3b)米的长方形草坪上修建两条宽为b米的通道.问剩余草坪的面积是多少平方米?21. (5分)分别在直角坐标系中描出点(1)(0,0),(5,4),(3,0),(5,1)(5,﹣1),(3,0),(4,﹣2),(0,0);按描点的顺序连线.(2)(0,0),(10,8),(6,0),(10,2),(10,﹣2),(6,0),(8,﹣4),(0,0)按描点的顺序连线.(3)你得到两个怎样的图形?(4)两个图形有什么特点?(从形状和大小来回答)22. (5分)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?23. (5分)已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF.(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).24. (7分) (2019九下·瑞安月考) 水果商贩小李上水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元,小李购得草莓和苹果共60箱,刚好花费3100元.(1)问草莓、苹果各购买了多少箱?(2)小李有甲、乙两家店铺,每售出一箱草莓或苹果,甲店分别获利14元和20元,乙店分别获利10元和15元;①若小李将购进的60箱水果分配给两家店铺各30箱,设分配给甲店草莓箱,请填写下表:草莓数量(箱)苹果数量(箱)合计(箱)甲店30乙店30小李希望在乙店获利不少于300元的前提下,使自己获取的总利润最大,问应该如何分配水果?最大的总利润是多少?________②若小李希望获得总利润为900元,他分配给甲店箱水果,其中草莓箱,已知,则________(写出一个即可).25. (15分)(2014·茂名) 如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB,OA交⊙O于点E.(1)证明:直线AB与⊙O相切;(2)若AE=a,AB=b,求⊙O的半径;(结果用a,b表示)(3)过点C作弦CD⊥OA于点H,试探究⊙O的直径与OH、OB之间的数量关系,并加以证明.26. (10分)(2020·贵港模拟) 如图,抛物线交x轴于点A,B交y轴于点C,直线经过点A,C.(1)求抛物线的解析式.(2)点P是抛物线上一动点,设点P的横坐标为m.①若点P在直线AV的下方,当的面积最大时,求m的值;②若是以AC为底的等腰三角形,请直接写出的值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共57分)19-1、20-1、21-1、22-1、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。
2020年广东省中考数学试卷一、选择题(本大题共10小题,共30.0分) 1. 9的相反数是( )A. −9B. 9C. 19D. −192. 一组数据2,4,3,5,2的中位数是( )A. 5B. 3.5C. 3D. 2.5 3. 在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A. (−3,2)B. (−2,3)C. (2,−3)D. (3,−2) 4. 一个多边形的内角和是540°,那么这个多边形的边数为( )A. 4B. 5C. 6D. 7 5. 若式子√2x −4在实数范围内有意义,则x 的取值范围是( )A. x ≠2B. x ≥2C. x ≤2D. x ≠−26. 已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( ) A. 8 B. 2√2 C. 16 D. 47. 把函数y =(x −1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为( )A. y =x 2+2B. y =(x −1)2+1C. y =(x −2)2+2D. y =(x −1)2−38. 不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( )A. 无解B. x ≤1C. x ≥−1D. −1≤x ≤19. 如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( ) A. 1 B. √2 C. √3 D. 2 10. 如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①abc >0;②b 2−4ac >0;③8a +c <0;④5a +b +2c >0, 正确的有( ) A. 4个 B. 3个 C. 2个 D. 1个 二、填空题(本大题共7小题,共28.0分) 11. 分解因式:xy −x =______.12. 如果单项式3x m y 与−5x 3y n 是同类项,那么m +n =______. 13. 若√a −2+|b +1|=0,则(a +b)2020=______.14. 已知x =5−y ,xy =2,计算3x +3y −4xy 的值为______. 15. 如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E(作图痕迹如图所示),连接BE ,BD.则∠EBD 的度数为______.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(x+y)2+(x+y)(x−y)−2x2,其中x=√2,y=√3.四、解答题(本大题共7小题,共56.0分)19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.21. 已知关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.(1)求a ,b 的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.22. 如图1,在四边形ABCD 中,AD//BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AE⏜上一点,AD =1,BC =2.求tan∠APE 的值.23. 某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.(x>0)图象上一点,过点B分别向坐标轴作垂线,24.如图,点B是反比例函数y=8x(x>0)的图象经过OB的中点M,与AB,BC分别垂足为A,C.反比例函数y=kx相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=______;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.如图,抛物线y=3+√3x2+bx+c与x轴交于A,B6两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.答案和解析1.【答案】A【解析】解:9的相反数是−9,故选:A.根据相反数的定义即可求解.此题主要考查相反数的定义,比较简单.2.【答案】C【解析】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.【答案】D【解析】解:点(3,2)关于x轴对称的点的坐标为(3,−2).故选:D.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.【答案】B【解析】解:设多边形的边数是n,则(n−2)⋅180°=540°,解得n=5.故选:B.根据多边形的内角和公式(n−2)⋅180°列式进行计算即可求解.本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.【答案】B【解析】解:∵√2x−4在实数范围内有意义,∴2x−4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.【答案】A【解析】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=12AC,DE=12BC,EF=12AC,故△DEF的周长=DE+DF+EF=12(BC+AB+AC)=12×16=8.故选:A.根据中位线定理可得DF=12AC,DE=12BC,EF=12AC,继而结合△ABC的周长为16,可得出△DEF的周长.此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.【答案】C【解析】解:二次函数y=(x−1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x−2)2+2.故选:C.先求出y=(x−1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.【答案】D【解析】解:解不等式2−3x≥−1,得:x≤1,解不等式x−1≥−2(x+2),得:x≥−1,则不等式组的解集为−1≤x≤1,故选:D.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.【答案】D【解析】解:∵四边形ABCD是正方形,∴AB//CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB′=60°,BE=B′E,∴∠AEB′=180°−∠BEF−∠FEB′=60°,∴B′E=2AE,设BE=x,则B′E=x,AE=3−x,∴2(3−x)=x,解得x=2.故选:D.由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB′=60°,BE=B′E,设BE=x,则B′E=x,AE=3−x,由直角三角形的性质可得:2(3−x)=x,解方程求出x即可得出答案.本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.【答案】B【解析】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2−4ac>0,故②正确;=1,可得b=−2a,∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a由图象可知,当x=−2时,y<0,即4a−2b+c<0,∴4a−2×(−2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=−1时,y=a−b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.11.【答案】x(y−1)【解析】解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【答案】4【解析】解:∵单项式3x m y与−5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.本题考查同类项的定义,正确根据同类项的定义得到关于m,n的方程组是解题的关键.13.【答案】1【解析】解:∵√a−2+|b+1|=0,∴a−2=0且b+1=0,解得,a=2,b=−1,∴(a+b)2020=(2−1)2020=1,故答案为:1.根据非负数的意义,求出a、b的值,代入计算即可.本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b的值是解决问题的关键.14.【答案】7【解析】解:∵x=5−y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)−4xy=3×5−4×2=15−8=7,故答案为:7.由x=5−y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)−4xy计算可得.本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含这式子x+y、xy及整体代入思想的运用.15.【答案】45°【解析】解:∵四边形ABCD是菱形,∴AD=AB,(180°−∠A)=75°,∴∠ABD=∠ADB=12由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD−∠ABE=75°−30°=45°,故答案为45°.根据∠EBD=∠ABD−∠ABE,求出∠ABD,∠ABE即可解决问题.本题考查作图−基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】13【解析】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:120π×1,180而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=120π×1,180解得,r=1,3故答案为:1.3求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.【答案】2√5−2【解析】解:如图,连接BE,BD.由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,∴BE=12MN=2,∴点E的运动轨迹是以B为圆心,2为半径的圆,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.故答案为2√5−2.如图,连接BE,BD.求出BE,BD,根据DE≥BD−BE求解即可.本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.【答案】解:(x+y)2+(x+y)(x−y)−2x2,=x2+2xy+y2+x2−y2−2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.【解析】根据整式的混合运算过程,先化简,再代入值求解即可.本题考查了整式的混合运算−化简求值,解决本题的关键是先化简,再代入值求解.19.【答案】解:(1)x=120−(24+72+18)=6;(2)1800×24+72120=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【解析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.【答案】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,{∠DBF=∠ECF ∠BFD=∠CFE BD=CE,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE 和△ACD 中,{∠ABE =∠ACD∠A =∠A BE =CD,∴△ABE≌△ACD(AAS),∴AB =AC ,∴△ABC 是等腰三角形.【解析】先证△BDF≌△CEF(AAS),得出BF =CF ,DF =EF ,则BE =CD ,再证△ABE≌△ACD(AAS),得出AB =AC 即可.本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.21.【答案】解:(1)由题意得,关于x ,y 的方程组的相同解,就是程组{x +y =4x −y =2的解,解得,{x =3y =1,代入原方程组得,a =−4√3,b =12; (2)当a =−4√3,b =12时,关于x 的方程x 2+ax +b =0就变为x 2−4√3x +12=0, 解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.【解析】(1)关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.实际就是方程组{x +y =4x −y =2的解,可求出方程组的解,进而确定a 、b 的值; (2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与2√6为边长,判断三角形的形状.本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.【答案】(1)证明:作OE ⊥CD 于E ,如图1所示:则∠OEC =90°,∵AD//BC ,∠DAB =90°,∴∠OBC =180°−∠DAB =90°,∴∠OEC =∠OBC ,∵CO 平分∠BCD ,∴∠OCE =∠OCB ,在△OCE 和△OCB 中,{∠OEC =∠OBC∠OCE =∠OCB OC =OC,∴△OCE≌△OCB(AAS),∴OE =OB ,又∵OE ⊥CD ,∴直线CD 与⊙O 相切;(2)解:作DF ⊥BC 于F ,连接BE ,如图所示:则四边形ABFD 是矩形,∴AB =DF ,BF =AD =1,∴CF =BC −BF =2−1=1,∵AD//BC ,∠DAB =90°,∴AD ⊥AB ,BC ⊥AB ,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF=√CD2−CF2=√32−12=2√2,∴AB=DF=2√2,∴OB=√2,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH=OBBC =√22.【解析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2√2,则OB=√2,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.【答案】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60x+2=60x⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90−a)个,由题意得:90−a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90−22)×3=10520,答:建造这90个摊位的最大费用是10520元.【解析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90−a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.24.【答案】2【解析】解:(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2,故答案为2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD =12×8−12×2=3;(3)设点D(m,2m ),则点B(4m,2m ),∵点G 与点O 关于点C 对称,故点G(8m,0),则点E(4m,12m ),设直线DE 的表达式为:y =sx +n ,将点D 、E 的坐标代入上式得{2m =ms +n 12m=4ms +n ,解得{k =−12m b =52m , 故直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0), 故FG =8m −5m =3m ,而BD =4m −m =3m =FG ,则FG//BD ,故四边形BDFG 为平行四边形.(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD ,即可求解;(3)确定直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0),即可求解.本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.【答案】解:(1)∵BO =3AO =3,∴点B(3,0),点A(−1,0),∴抛物线解析式为:y =3+√36(x +1)(x −3)=3+√36x 2−3+√33x −3+√32, ∴b =−3+√33,c =−3+√32;(2)如图1,过点D 作DE ⊥AB 于E ,∴CO//DE , ∴BC CD =BO OE , ∵BC =√3CD ,BO =3, ∴√3=3OE ,∴OE =√3,∴点D 横坐标为−√3,∴点D 坐标(−√3,√3+1),设直线BD 的函数解析式为:y =kx +b ,由题意可得:{√3+1=−√3k +b 0=3k +b, 解得:{k =−√33b =√3,∴直线BD 的函数解析式为y =−√33x +√3; (3)∵点B(3,0),点A(−1,0),点D(−√3,√3+1),∴AB =4,AD =2√2,BD =2√3+2,对称轴为直线x =1,∵直线BD :y =−√33x +√3与y 轴交于点C , ∴点C(0,√3),∴OC =√3,∵tan∠COB =COBO =√33, ∴∠COB =30°,如图2,过点A 作AK ⊥BD 于K ,∴AK =12AB =2,∴DK =√AD 2−AK 2=√8−4=2,∴DK =AK ,∴∠ADB =45°,如图,设对称轴与x 轴的交点为N ,即点N(1,0),若∠CBO =∠PBO =30°,∴BN =√3PN =2,BP =2PN , ∴PN =2√33,BP =4√33, 当△BAD∽△BPQ ,∴BP BA =BQBD ,∴BQ =4√33×(2√3+2)4=2+2√33, ∴点Q(1−2√33,0);当△BAD∽△BQP ,∴BP BD =BQAB ,∴BQ =4√33×42√3+2=4−4√33, ∴点Q(−1+4√33,0); 若∠PBO =∠ADB =45°,∴BN =PN =2,BP =√2BN =2√2,当△BAD∽△BPQ ,∴BP AD =BQ BD ,∴√22√2=2√3+2,∴BQ =2√3+2∴点Q(1−2√3,0);当△BAD∽△PQB ,∴BP BD =BQ AD ,∴BQ =√2×2√22√3+2=2√3−2,∴点Q(5−2√3,0);综上所述:满足条件的点Q的坐标为(1−2√33,0)或(−1+4√33,0)或(1−2√3,0)或(5−2√3,0).【解析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=√3,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。
梅州市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择 (共12题;共24分)1. (2分) (2019七下·中山期中) 下列说法正确是()A . 同位角相等B . 过一点有且只有一条直线与已知直线平行C . 正数、负数统称实数D . 在同一平面内,过一点有且只有一条直线与已知直线垂直2. (2分)下列计算正确的是()A . 3a-2a=1B . x2y-2xy2=-xy2C . 3a2+5a2=8a4D . 3ax-2xa=ax3. (2分)(2011·宁波) 不等式x>1在数轴上表示为()A .B .C .D .4. (2分) (2015七上·永定期中) 预计下届世博会将吸引约69 000 000人次参观.将69 000 000用科学记数法表示正确的是()A . 0.69×108B . 6.9×106C . 6.9×107D . 69×1065. (2分)下列函数中,图象一定关于原点对称的图象是()A . y=2xB . y=2x+1C . y=-2x+1D . 以上三种都不可能有6. (2分)(2020·绍兴模拟) 如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是()A . 主视图相同B . 左视图相同C . 俯视图相同D . 三种视图均不同7. (2分)四边形ABCD中,∠A:∠B:∠C:∠D=2:1:1:2,则四边形ABCD的形状是()A . 菱形B . 矩形C . 等腰梯形D . 平行四边形8. (2分) (2018九上·天河期末) 如图,已知CD为圆O的直径,过点D的弦DE平行于半径OA,若角D=50º,则角C的度数是()A . 50ºB . 25ºC . 30ºD . 40º9. (2分)如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长度是()A . 10mB . 10mC . 15mD . 5m10. (2分)(2019·宁波) 如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A . 3.5cmB . 4cmC . 4.5cmD . 5cm11. (2分)如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有()A . 4个B . 5个C . 6个D . 7个12. (2分)(2017·黑龙江模拟) 下列计算正确的是()A . x+x2=x3B . 2x+3x=5x2C . (x2)3=x6D . x6÷x3=x2二、填空题 (共6题;共7分)13. (1分) (2019七下·普陀期末) 用幂的形式来表示 =________.14. (1分)(2020·宽城模拟) 分解因式:x3-16x= ________。
92020 年广东省中考数学试卷一、选择题(本大题 10 小题,每小题 3 分,共 30 分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(3 分)9 的相反数是( )1 A .﹣9B .9C .92.(3 分)一组数据 2,4,3,5,2 的中位数是()D .− 1A .5B .3.5C .3D .2.53.(3 分)在平面直角坐标系中,点(3,2)关于 x 轴对称的点的坐标为( )A .(﹣3,2)B .(﹣2,3)C .(2,﹣3)D .(3,﹣2)4.(3 分)若一个多边形的内角和是 540°,则该多边形的边数为( ) A .4B .5C .6D .75.(3 分)若式子√2x − 4在实数范围内有意义,则 x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .x ≠﹣26.(3 分)已知△ABC 的周长为 16,点 D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( )A .8B .2√2C .16D .47.(3 分)把函数 y =(x ﹣1)2+2 图象向右平移 1 个单位长度,平移后图象的的数解析式为()A .y =x 2+2B .y =(x ﹣1)2+1C .y =(x ﹣2)2+2D .y =(x ﹣1)2﹣38.(3 分)不等式组{2 − 3x ≥ −1,的解集为( )x − 1 ≥ −2(x + 2) A .无解B .x ≤1C .x ≥﹣1D .﹣1≤x ≤19.(3 分)如图,在正方形 ABCD 中,AB =3,点 E ,F 分别在边 AB ,CD 上,∠EFD =60°.若将四边形 EBCF 沿 EF 折叠,点 B 恰好落在 AD 边上,则 BE 的长度为( )A .1B .√2C .√3D .210.(3 分)如图,抛物线 y =ax 2+bx +c 的对称轴是 x =1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4 个B.3 个C.2 个D.1 个二、填空题(本大题7 小题,每小题4 分,共28 分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4 分)分解因式:xy﹣x=.12.(4 分)如果单项式3x m y 与﹣5x3y n 是同类项,那么m+n=.13.(4 分)若√a− 2 +|b+1|=0,则(a+b)2020=.14.(4 分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy 的值为.115.(4 分)如图,在菱形ABCD 中,∠A=30°,取大于AB 的长为半径,分别以点A,B2为圆心作弧相交于两点,过此两点的直线交AD 边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD 的度数为.16.(4分)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.17.(4 分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N 分别在射线BA,BC 上,MN 长度始终保持与 不变,MN =4,E 为 MN 的中点,点 D 到 BA ,BC 的距离分别为 4 和 2.在此滑动过程中,猫与老鼠的距离 DE的最小值为.三、解答题(一)(本大题 3 小题,每小题 6 分,共 18 分)18.(6 分)先化简,再求值:(x +y )2+(x +y )(x ﹣y )﹣2x 2,其中 x = √2,y = √3. 19.(6 分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了 120 名学生的有效问卷,数据整理如下:(1) 求 x 的值;(2) 若该校有学生 1800 人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.(6 分)如图,在△ABC 中,点 D ,E 分别是 AB 、AC 边上的点,BD =CE ,∠ABE =∠ACD ,BE 与 CD 相交于点 F .求证:△ABC 是等腰三角形.四、解答题(二)(本大题 3 小题,每小题 8 分,共 24 分)21.(8 分)已知关于 x ,y 的方程组{ax + 2√3y = −10√3, { x + y = 4x − y = 2,的解相同. x + by = 15(1) 求 a ,b 的值;(2) 若一个三角形的一条边的长为 2√6,另外两条边的长是关于 x 的方程 x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.等级 非常了解 比较了解 基本了解 不太了解人数(人) 247218xx 22.(8 分)如图 1,在四边形 ABCD 中,AD ∥BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1) 求证:直线 CD 与⊙O 相切;(2) 如图 2,记(1)中的切点为 E ,P 为优弧A E 上一点,AD =1,BC =2.求 tan ∠APE 的值.23.(8 分)某社区拟建 A ,B 两类摊位以搞活“地摊经济”,每个 A 类摊位的占地面积比每个 B 类摊位的占地面积多 2 平方米.建 A 类摊位每平方米的费用为 40 元,建 B 类摊位每平方米的费用为 30 元.用 60 平方米建 A 类摊位的个数恰好是用同样面积建 B 类摊位 3个数的 .5(1) 求每个 A ,B 类摊位占地面积各为多少平方米?(2) 该社区拟建 A ,B 两类摊位共 90 个,且 B 类摊位的数量不少于 A 类摊位数量的 3倍.求建造这 90 个摊位的最大费用.五、解答题(三)(本大题 2 小题,每小题 10 分,共 20 分)24.(10 分)如图,点 B 是反比例函数 y = 8(x >0)图象上一点,过点 B 分别向坐标轴作垂线,垂足为 A ,C .反比例函数 y =kx >0)的图象经过 OB 的中点 M ,与 AB ,BC 分x( 别相交于点 D ,E .连接 DE 并延长交 x 轴于点 F ,点 G 与点 O 关于点 C 对称,连接 BF , BG .(1)填空:k =;(2) 求△BDF 的面积;(3) 求证:四边形 BDFG 为平行四边形.625.(10 分)如图,抛物线 y =3+√3x 2+bx +c 与 x 轴交于 A ,B 两点,点 A ,B 分别位于原点的左、右两侧,BO =3AO =3,过点 B 的直线与 y 轴正半轴和抛物线的交点分别为 C ,D , BC = √3CD .(1) 求 b ,c 的值;(2) 求直线 BD 的函数解析式;(3) 点 P 在抛物线的对称轴上且在 x 轴下方,点 Q 在射线 BA 上.当△ABD 与△BPQ相似时,请直接写出所有满足条件的点 Q 的坐标.92020 年广东省中考数学试卷参考答案与试题解析一、选择题(本大题 10 小题,每小题 3 分,共 30 分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(3 分)9 的相反数是( )1 A .﹣9B .9C .9D .− 1【解答】解:9 的相反数是﹣9,故选:A .2.(3 分)一组数据 2,4,3,5,2 的中位数是()A .5B .3.5C .3D .2.5【解答】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是 3,∴这组数据的中位数是 3.故选:C .3.(3 分)在平面直角坐标系中,点(3,2)关于 x 轴对称的点的坐标为()A .(﹣3,2)B .(﹣2,3)C .(2,﹣3)D .(3,﹣2)【解答】解:点(3,2)关于 x 轴对称的点的坐标为(3,﹣2).故选:D .4.(3 分)若一个多边形的内角和是 540°,则该多边形的边数为()A .4B .5C .6D .7【解答】解:设多边形的边数是 n ,则(n ﹣2)•180°=540°,解得 n =5. 故选:B .5.(3 分)若式子√2x − 4在实数范围内有意义,则 x 的取值范围是( ) A .x ≠2B .x ≥2C .x ≤2D .x ≠﹣2【解答】解:∵√2x − 4在实数范围内有意义, ∴2x ﹣4≥0,解得:x ≥2,∴x 的取值范围是:x ≥2.故选:B .6.(3 分)已知△ABC 的周长为 16,点 D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( )A .8B .2√2C .16D .4【解答】解:∵D 、E 、F 分别为△ABC 三边的中点,∴DE 、DF 、EF 都是△ABC 的中位线, ∴DF = 1AC ,DE = 1BC ,EF = 1AC ,222故△DEF 的周长=DE +DF +EF = 1(BC +AB +AC )= 1×16=8.22故选:A .7.(3 分)把函数 y =(x ﹣1)2+2 图象向右平移 1 个单位长度,平移后图象的的数解析式为()A .y =x 2+2B .y =(x ﹣1)2+1C .y =(x ﹣2)2+2D .y =(x ﹣1)2﹣3【解答】解:二次函数 y =(x ﹣1)2+2 的图象的顶点坐标为(1,2), ∴向右平移 1 个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为 y =(x ﹣2)2+2.故选:C .8.(3 分)不等式组{2 − 3x ≥ −1, 的解集为()x − 1 ≥ −2(x + 2) A .无解B .x ≤1C .x ≥﹣1D .﹣1≤x ≤1【解答】解:解不等式 2﹣3x ≥﹣1,得:x ≤1,解不等式 x ﹣1≥﹣2(x +2),得:x ≥﹣1, 则不等式组的解集为﹣1≤x ≤1,故选:D .9.(3 分)如图,在正方形 ABCD 中,AB =3,点 E ,F 分别在边 AB ,CD 上,∠EFD =60°.若将四边形 EBCF 沿 EF 折叠,点 B 恰好落在 AD 边上,则 BE 的长度为()A.1 B.√2 C.√3 D.2【解答】解:∵四边形ABCD 是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.10.(3 分)如图,抛物线y=ax2+bx+c 的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4 个B.3 个C.2 个D.1 个【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y 轴右边可得:a,b 异号,所以b>0,根据抛物线与y 轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x 轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1 是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b=1,可得b=﹣2a,2a由图象可知,当x=﹣2 时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2 时,y=4a+2b+c>0;当x=﹣1 时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3 个,故选:B.二、填空题(本大题7 小题,每小题4 分,共28 分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4 分)分解因式:xy﹣x=x(y﹣1).【解答】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).12.(4 分)如果单项式3x m y 与﹣5x3y n 是同类项,那么m+n= 4 .【解答】解:∵单项式3x m y 与﹣5x3y n 是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.13.(4 分)若√a− 2 +|b+1|=0,则(a+b)2020= 1 .【解答】解:∵√a− 2 +|b+1|=0,∴a﹣2=0 且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.14.(4 分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy 的值为7 .【解答】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2 时,原式=3(x+y)﹣4xy2 =3×5﹣4×2=15﹣8=7,故答案为:7.115.(4 分)如图,在菱形 ABCD 中,∠A =30°,取大于 AB 的长为半径,分别以点 A ,B2 为圆心作弧相交于两点,过此两点的直线交 AD 边于点 E (作图痕迹如图所示),连接 BE , BD .则∠EBD 的度数为 45° .【解答】解:∵四边形 ABCD 是菱形,∴AD =AB ,∴∠ABD =∠ADB = 1(180°﹣∠A )=75°,由作图可知,EA =EB , ∴∠ABE =∠A =30°,∴∠EBD =∠ABD ﹣∠ABE =75°﹣30°=45°,故答案为 45°.16.(4 分)如图,从一块半径为 1m 的圆形铁皮上剪出一个圆周角为 120°的扇形 ABC ,如 1果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m .3【解答】解:由题意得,阴影扇形的半径为 1m ,圆心角的度数为 120°,120π×1则扇形的弧长为:,180而扇形的弧长相当于围成圆锥的底面周长,因此有:318022πr =120π×1,解得,r = 1, 1故答案为: .3 17.(4 分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点 M ,N 分别在射线 BA ,BC 上,MN 长度始终保持不变,MN =4,E 为 MN 的中点,点 D 到 BA ,BC 的距离分别为 4 和 2.在此滑动过程中,猫与老鼠的距离 DE 的最小值为 2√5 −2 .【解答】解:如图,连接 BE ,BD .由题意 BD = √22 + 42 =2√5, ∵∠MBN =90°,MN =4,EM =NE , ∴BE = 1MN =2, ∴点 E 的运动轨迹是以 B 为圆心,2 为半径的圆,∴当点 E 落在线段 BD 上时,DE 的值最小,∴DE 的最小值为 2√5 −2.故答案为 2√5 −2.三、解答题(一)(本大题 3 小题,每小题 6 分,共 18 分)18.(6 分)先化简,再求值:(x +y )2+(x +y )(x ﹣y )﹣2x 2,其中 x = √2,y = √3. 【解答】解:(x +y )2+(x +y )(x ﹣y )﹣2x 2,120 =x 2+2xy +y 2+x 2﹣y 2﹣2x 2 =2xy ,当 x = √2,y = √3时,原式=2× √2 × √3 =2√6.19.(6 分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了 120 名学生的有效问卷,数据整理如下:(1) 求 x 的值;(2) 若该校有学生 1800 人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【解答】解:(1)x =120﹣(24+72+18)=6; (2)1800× 24+72=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440 人.20.(6 分)如图,在△ABC 中,点 D ,E 分别是 AB 、AC 边上的点,BD =CE ,∠ABE =∠ACD ,BE 与 CD 相交于点 F .求证:△ABC 是等腰三角形.【解答】证明:∵∠ABE =∠ACD ,∴∠DBF =∠ECF ,∠DBF = ∠ECF在△BDF 和△CEF 中,{∠BFD = ∠CFE ,BD = CE ∴△BDF ≌△CEF (AAS ),∴BF =CF ,DF =EF ,等级 非常了解 比较了解 基本了解 不太了解人数(人)247218x与 {x − y = 2 ∴BF +EF =CF +DF ,即 BE =CD ,∠ABE = ∠ACD在△ABE 和△ACD 中,{∠A = ∠A,BE = CD ∴△ABE ≌△ACD (AAS ),∴AB =AC ,∴△ABC 是等腰三角形.四、解答题(二)(本大题 3 小题,每小题 8 分,共 24 分)21.(8 分)已知关于 x ,y 的方程组{ax + 2√3y = −10√3, { x + y = 4x − y = 2,的解相同. x + by = 15(1) 求 a ,b 的值;(2) 若一个三角形的一条边的长为 2√6,另外两条边的长是关于 x 的方程 x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.【解答】解:(1)由题意得,关于 x ,y 的方程组的相同解,就是程组 x + y = 4的解,x = 3{y = 1,代入原方程组得,a =﹣4√3,b =12;(2)当 a =﹣4√3,b =12 时,关于 x 的方程 x 2+ax +b =0 就变为 x 2﹣4√3x +12=0,解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以 2√3、2√3、2√6为边的三角形是等腰直角三角形.22.(8 分)如图 1,在四边形 ABCD 中,AD ∥BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1) 求证:直线 CD 与⊙O 相切;(2) 如图 2,记(1)中的切点为 E ,P 为优弧A E 上一点,AD =1,BC =2.求 tan ∠APE 的值.解得,【解答】(1)证明:作OE⊥CD 于E,如图1 所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO 平分∠BCD,∴∠OCE=∠OCB,∠OEC = ∠OBC在△OCE 和△OCB 中,{∠OCE = ∠OCB,OC = OC∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD 与⊙O 相切;(2)解:作DF⊥BC 于F,连接BE,如图所示:则四边形ABFD 是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC 是⊙O 的切线,由(1)得:CD 是⊙O 的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF= √CD2 −CF2 = √32 − 12 =2√2,∴AB=DF=2√2,∴OB= √2,∵CO 平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH =OB= √2BC 2 .23.(8 分)某社区拟建A,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2 平方米.建A 类摊位每平方米的费用为40 元,建B 类摊位每平方米的费用为30 元.用60 平方米建A 类摊位的个数恰好是用同样面积建B 类摊位3个数的.5(1)求每个A,B 类摊位占地面积各为多少平方米?(2)该社区拟建A,B 两类摊位共90 个,且B 类摊位的数量不少于A 类摊位数量的3 倍.求建造这90 个摊位的最大费用.【解答】解:(1)设每个B 类摊位的占地面积为x 平方米,则每个A 类摊位占地面积为(x+2)平方米,60根据题意得:=x+260 3 x⋅5,解得:x=3,经检验x=3 是原方程的解,所以3+2=5,答:每个A 类摊位占地面积为5 平方米,每个B 类摊位的占地面积为3 平方米;x (2)设建 A 摊位 a 个,则建 B 摊位(90﹣a )个,由题意得:90﹣a ≥3a , 解得 a ≤22.5,∵建 A 类摊位每平方米的费用为 40 元,建 B 类摊位每平方米的费用为 30 元,∴要想使建造这 90 个摊位有最大费用,所以要多建造 A 类摊位,即 a 取最大值 22 时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这 90 个摊位的最大费用是 10520 元.五、解答题(三)(本大题 2 小题,每小题 10 分,共 20 分)24.(10 分)如图,点 B 是反比例函数 y = 8(x >0)图象上一点,过点 B 分别向坐标轴作垂线,垂足为 A ,C .反比例函数 y =kx >0)的图象经过 OB 的中点 M ,与 AB ,BC 分x( 别相交于点 D ,E .连接 DE 并延长交 x 轴于点 F ,点 G 与点 O 关于点 C 对称,连接 BF , BG .(1)填空:k = 2 ;(2) 求△BDF 的面积;(3) 求证:四边形 BDFG 为平行四边形.1 1【解答】解:(1)设点 B (s ,t ),st =8,则点 M ( s , t ), 22则 k = 1s 1= 1st =2,2• t 4 2 故答案为 2;(2) △BDF 的面积=△OBD 的面积=S △BOA ﹣S △OAD = 1 ×8− 1×2=3;2 22 (3) 设点 D (m , 2),则点 B (4m , ),m m2m6∵点 G 与点 O 关于点 C 对称,故点 G (8m ,0), 1 则点 E (4m ,),2m2= ms + n 设直线 DE 的表达式为:y =sx +n ,将点 D 、E 的坐标代入上式得{m1= 4ms + n ,解得 k = − 12{ 2m , 5 b = 2m故直线 DE 的表达式为:y = −12 x +5,令 y =0,则 x =5m ,故点 F (5m ,0),2m2m故 FG =8m ﹣5m =3m ,而 BD =4m ﹣m =3m =FG ,则 FG ∥BD ,故四边形 BDFG 为平行四边形. 25.(10 分)如图,抛物线 y = 3+√3x 2+bx +c 与 x 轴交于 A ,B 两点,点 A ,B 分别位于原点的左、右两侧,BO =3AO =3,过点 B 的直线与 y 轴正半轴和抛物线的交点分别为 C ,D , BC = √3CD .(1) 求 b ,c 的值;(2) 求直线 BD 的函数解析式;(3) 点 P 在抛物线的对称轴上且在 x 轴下方,点 Q 在射线 BA 上.当△ABD 与△BPQ相似时,请直接写出所有满足条件的点 Q 的坐标.【解答】解:(1)∵BO =3AO =3,∴点 B (3,0),点 A (﹣1,0),∴抛物线解析式为:y =3+√3(x +1)(x ﹣3)=3+√3x 2 3+√3x 3+√3, 6∴b =3+√3,c =3+√3;6 3 232(2)如图 1,过点 D 作 DE ⊥AB 于 E ,OE 3 3∴CO ∥DE , BC ∴CDBO =OE,∵BC = √3CD ,BO =3, ∴√3 = 3,∴OE = √3,∴点 D 横坐标为−√3,∴点 D 坐标(−√3,√3 +1), 设直线 BD 的函数解析式为:y =kx +b ,由题意可得:{√3 + 1 = −√3k + b ,0 = 3k + bk √3解得:{ 3 ,b = √3∴直线 BD 的函数解析式为 y = − √3x +√3;(3)∵点 B (3,0),点 A (﹣1,0),点 D (−√3,√3 +1),∴AB =4,AD =2√2,BD =2√3 +2,对称轴为直线 x =1,∵直线 BD :y = − √3x +√3与 y 轴交于点 C ,∴点 C (0,√3), ∴OC = √3,∵tan ∠COB =CO = √3,BO3∴∠COB =30°,如图 2,过点 A 作 AK ⊥BD 于 K ,23 ,3∴AK = 1AB =2,∴DK = √AD 2 − AK 2 = √8 − 4 =2, ∴DK =AK ,∴∠ADB =45°,如图,设对称轴与 x 轴的交点为 N ,即点 N (1,0),若∠CBO =∠PBO =30°,∴BN = √3PN =2,BP =2PN ,∴PN = 2√3 BP =4√3 3 ,当△BAD ∽△BPQ , BP ∴BABQ=BD ,4√3×(2√3+2)2√3∴BQ =34=2+ 3 ,∴点 Q (1− 2√3,0);当△BAD ∽△BQP , BP ∴BDBQ = AB,第 21 页(共 21 页) 3 4√3×4 ∴BQ = 3 =4− 2√3+24√3, 3 ∴点 Q (﹣1+ 4√3,0);若∠PBO =∠ADB =45°,∴BN =PN =2,BP = √2BN =2√2,当△BAD ∽△BPQ , BP ∴BQ= , AD 2√2 ∴ BD BQ = , 2√2 2√3+2∴BQ =2√3 +2∴点 Q (1﹣2√3,0);当△BAD ∽△PQB , BP ∴BD BQ= AD ,∴BQ = 2√2×2√2 =2√3 −2, 2√3+2 ∴点 Q (5﹣2√3,0); 综上所述:满足条件的点 Q 的坐标为(1− 2√30)或(﹣1+ 4√3,0)或(1﹣2√3,0)或(5﹣2√3,0). 3 , 3。
梅州市 初中毕业生学业考试数 学 试 卷说 明:本试卷共4页,23小题,满分120分。
考试用时90分钟。
注意事项:1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号,再用2B 铅笔把试室号、座位号的对应数字涂黑。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
5.本试卷不用装订,考完后统一交县招生办(中招办)封存。
参考公式:抛物线y=ax 2+bx+c (a≠0)的对称轴是直线x=―b 2a ,顶点坐标是(―b 2a ,4ac ―b 24a )。
方差S 2=1n[(x ―x 1-2)+(x ―x 2-2)+…+(x ―x 1-2)] 一、选择题:每小题3分,共15分。
每小题给出四个答案,其中只有一个是正确的。
1.―(―12)0=( ) A .―2 B .2 C .1 D .―12. 下列图形中是轴对称图形的是( )A .B .C .D .3. 某同学为了解梅州市火车站今年“五一”期间每天乘车人数,随机抽查了其中五天的乘车人数,所抽查的这五天中每天乘车人数是这个问题的( )A .总体B .个体C .样本D .以上都不对4. 如图,在折纸活动中,小明制作了一张⊿ABC 纸片,点D 、E 分别是边AB 、AC 上,将⊿ABC 沿着DE 折叠压平,A 与A ’重合,若∠A=75°,则∠1+∠2=( )A .150°B .210°C .105°D .75°5. 在同一直角坐标系下,直线y=x+1与双曲线y=1x的交点的个数为( ) A .0个 B .1个 C .2个 D .不能确定.xkb 1二、填空题:每小题3分,共24分。
2020年广东省梅州市中考数学试卷一、选择题(本大题共10小题,共30.0分) 1. 9的相反数是( )A. −9B. 9C. 19D. −192. 一组数据2,4,3,5,2的中位数是( )A. 5B. 3.5C. 3D. 2.5 3. 在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A. (−3,2)B. (−2,3)C. (2,−3)D. (3,−2) 4. 一个多边形的内角和是540°,那么这个多边形的边数为( )A. 4B. 5C. 6D. 7 5. 若式子√2x −4在实数范围内有意义,则x 的取值范围是( )A. x ≠2B. x ≥2C. x ≤2D. x ≠−26. 已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( ) A. 8 B. 2√2 C. 16 D. 47. 把函数y =(x −1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为( )A. y =x 2+2B. y =(x −1)2+1C. y =(x −2)2+2D. y =(x −1)2−38. 不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( )A. 无解B. x ≤1C. x ≥−1D. −1≤x ≤19. 如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( ) A. 1 B. √2 C. √3 D. 2 10. 如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①abc >0;②b 2−4ac >0;③8a +c <0;④5a +b +2c >0, 正确的有( ) A. 4个 B. 3个 C. 2个 D. 1个 二、填空题(本大题共7小题,共28.0分) 11. 分解因式:xy −x =______.12. 如果单项式3x m y 与−5x 3y n 是同类项,那么m +n =______. 13. 若√a −2+|b +1|=0,则(a +b)2020=______.14. 已知x =5−y ,xy =2,计算3x +3y −4xy 的值为______. 15. 如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E(作图痕迹如图所示),连接BE ,BD.则∠EBD 的度数为______.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(x+y)2+(x+y)(x−y)−2x2,其中x=√2,y=√3.四、解答题(本大题共7小题,共56.0分)19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.21. 已知关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.(1)求a ,b 的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.22. 如图1,在四边形ABCD 中,AD//BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AE⏜上一点,AD =1,BC =2.求tan∠APE 的值.23. 某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.(x>0)图象上一点,过点B分别向坐标轴作垂线,24.如图,点B是反比例函数y=8x(x>0)的图象经过OB的中点M,与AB,BC分别垂足为A,C.反比例函数y=kx相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=______;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.如图,抛物线y=3+√3x2+bx+c与x轴交于A,B6两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.答案和解析1.【答案】A【解析】解:9的相反数是−9,故选:A.根据相反数的定义即可求解.此题主要考查相反数的定义,比较简单.2.【答案】C【解析】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.【答案】D【解析】解:点(3,2)关于x轴对称的点的坐标为(3,−2).故选:D.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.【答案】B【解析】解:设多边形的边数是n,则(n−2)⋅180°=540°,解得n=5.故选:B.根据多边形的内角和公式(n−2)⋅180°列式进行计算即可求解.本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.【答案】B【解析】解:∵√2x−4在实数范围内有意义,∴2x−4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.【答案】A【解析】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=12AC,DE=12BC,EF=12AC,故△DEF的周长=DE+DF+EF=12(BC+AB+AC)=12×16=8.故选:A.根据中位线定理可得DF=12AC,DE=12BC,EF=12AC,继而结合△ABC的周长为16,可得出△DEF的周长.此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.【答案】C【解析】解:二次函数y=(x−1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x−2)2+2.故选:C.先求出y=(x−1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.【答案】D【解析】解:解不等式2−3x≥−1,得:x≤1,解不等式x−1≥−2(x+2),得:x≥−1,则不等式组的解集为−1≤x≤1,故选:D.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.【答案】D【解析】解:∵四边形ABCD是正方形,∴AB//CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB′=60°,BE=B′E,∴∠AEB′=180°−∠BEF−∠FEB′=60°,∴B′E=2AE,设BE=x,则B′E=x,AE=3−x,∴2(3−x)=x,解得x=2.故选:D.由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB′=60°,BE=B′E,设BE=x,则B′E=x,AE=3−x,由直角三角形的性质可得:2(3−x)=x,解方程求出x即可得出答案.本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.【答案】B【解析】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2−4ac>0,故②正确;=1,可得b=−2a,∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a由图象可知,当x=−2时,y<0,即4a−2b+c<0,∴4a−2×(−2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=−1时,y=a−b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.11.【答案】x(y−1)【解析】解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【答案】4【解析】解:∵单项式3x m y与−5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.本题考查同类项的定义,正确根据同类项的定义得到关于m,n的方程组是解题的关键.13.【答案】1【解析】解:∵√a−2+|b+1|=0,∴a−2=0且b+1=0,解得,a=2,b=−1,∴(a+b)2020=(2−1)2020=1,故答案为:1.根据非负数的意义,求出a、b的值,代入计算即可.本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b的值是解决问题的关键.14.【答案】7【解析】解:∵x=5−y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)−4xy=3×5−4×2=15−8=7,故答案为:7.由x=5−y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)−4xy计算可得.本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含这式子x+y、xy及整体代入思想的运用.15.【答案】45°【解析】解:∵四边形ABCD是菱形,∴AD=AB,(180°−∠A)=75°,∴∠ABD=∠ADB=12由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD−∠ABE=75°−30°=45°,故答案为45°.根据∠EBD=∠ABD−∠ABE,求出∠ABD,∠ABE即可解决问题.本题考查作图−基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】13【解析】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:120π×1,180而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=120π×1,180解得,r=1,3故答案为:1.3求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.【答案】2√5−2【解析】解:如图,连接BE,BD.由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,∴BE=12MN=2,∴点E的运动轨迹是以B为圆心,2为半径的圆,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.故答案为2√5−2.如图,连接BE,BD.求出BE,BD,根据DE≥BD−BE求解即可.本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.【答案】解:(x+y)2+(x+y)(x−y)−2x2,=x2+2xy+y2+x2−y2−2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.【解析】根据整式的混合运算过程,先化简,再代入值求解即可.本题考查了整式的混合运算−化简求值,解决本题的关键是先化简,再代入值求解.19.【答案】解:(1)x=120−(24+72+18)=6;(2)1800×24+72120=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【解析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.【答案】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,{∠DBF=∠ECF ∠BFD=∠CFE BD=CE,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE 和△ACD 中,{∠ABE =∠ACD∠A =∠A BE =CD,∴△ABE≌△ACD(AAS),∴AB =AC ,∴△ABC 是等腰三角形.【解析】先证△BDF≌△CEF(AAS),得出BF =CF ,DF =EF ,则BE =CD ,再证△ABE≌△ACD(AAS),得出AB =AC 即可.本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.21.【答案】解:(1)由题意得,关于x ,y 的方程组的相同解,就是程组{x +y =4x −y =2的解,解得,{x =3y =1,代入原方程组得,a =−4√3,b =12; (2)当a =−4√3,b =12时,关于x 的方程x 2+ax +b =0就变为x 2−4√3x +12=0, 解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.【解析】(1)关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.实际就是方程组{x +y =4x −y =2的解,可求出方程组的解,进而确定a 、b 的值; (2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与2√6为边长,判断三角形的形状.本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.【答案】(1)证明:作OE ⊥CD 于E ,如图1所示:则∠OEC =90°,∵AD//BC ,∠DAB =90°,∴∠OBC =180°−∠DAB =90°,∴∠OEC =∠OBC ,∵CO 平分∠BCD ,∴∠OCE =∠OCB ,在△OCE 和△OCB 中,{∠OEC =∠OBC∠OCE =∠OCB OC =OC,∴△OCE≌△OCB(AAS),∴OE =OB ,又∵OE ⊥CD ,∴直线CD 与⊙O 相切;(2)解:作DF ⊥BC 于F ,连接BE ,如图所示:则四边形ABFD 是矩形,∴AB =DF ,BF =AD =1,∴CF =BC −BF =2−1=1,∵AD//BC ,∠DAB =90°,∴AD ⊥AB ,BC ⊥AB ,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF=√CD2−CF2=√32−12=2√2,∴AB=DF=2√2,∴OB=√2,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH=OBBC =√22.【解析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2√2,则OB=√2,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.【答案】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60x+2=60x⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90−a)个,由题意得:90−a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90−22)×3=10520,答:建造这90个摊位的最大费用是10520元.【解析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90−a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.24.【答案】2【解析】解:(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2,故答案为2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD =12×8−12×2=3;(3)设点D(m,2m ),则点B(4m,2m ),∵点G 与点O 关于点C 对称,故点G(8m,0),则点E(4m,12m ),设直线DE 的表达式为:y =sx +n ,将点D 、E 的坐标代入上式得{2m =ms +n 12m=4ms +n ,解得{k =−12m b =52m , 故直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0), 故FG =8m −5m =3m ,而BD =4m −m =3m =FG ,则FG//BD ,故四边形BDFG 为平行四边形.(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD ,即可求解;(3)确定直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0),即可求解.本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.【答案】解:(1)∵BO =3AO =3,∴点B(3,0),点A(−1,0),∴抛物线解析式为:y =3+√36(x +1)(x −3)=3+√36x 2−3+√33x −3+√32, ∴b =−3+√33,c =−3+√32;(2)如图1,过点D 作DE ⊥AB 于E ,∴CO//DE , ∴BC CD =BO OE , ∵BC =√3CD ,BO =3, ∴√3=3OE ,∴OE =√3,∴点D 横坐标为−√3,∴点D 坐标(−√3,√3+1),设直线BD 的函数解析式为:y =kx +b ,由题意可得:{√3+1=−√3k +b 0=3k +b, 解得:{k =−√33b =√3,∴直线BD 的函数解析式为y =−√33x +√3; (3)∵点B(3,0),点A(−1,0),点D(−√3,√3+1),∴AB =4,AD =2√2,BD =2√3+2,对称轴为直线x =1,∵直线BD :y =−√33x +√3与y 轴交于点C , ∴点C(0,√3),∴OC =√3,∵tan∠COB =COBO =√33, ∴∠COB =30°,如图2,过点A 作AK ⊥BD 于K ,∴AK =12AB =2,∴DK =√AD 2−AK 2=√8−4=2,∴DK =AK ,∴∠ADB =45°,如图,设对称轴与x 轴的交点为N ,即点N(1,0),若∠CBO =∠PBO =30°,∴BN =√3PN =2,BP =2PN , ∴PN =2√33,BP =4√33, 当△BAD∽△BPQ ,∴BP BA =BQBD ,∴BQ =4√33×(2√3+2)4=2+2√33, ∴点Q(1−2√33,0);当△BAD∽△BQP ,∴BP BD =BQAB ,∴BQ =4√33×42√3+2=4−4√33, ∴点Q(−1+4√33,0); 若∠PBO =∠ADB =45°,∴BN =PN =2,BP =√2BN =2√2,当△BAD∽△BPQ ,∴BP AD =BQ BD ,∴√22√2=2√3+2,∴BQ =2√3+2∴点Q(1−2√3,0);当△BAD∽△PQB ,∴BP BD =BQ AD ,∴BQ =√2×2√22√3+2=2√3−2,∴点Q(5−2√3,0);综上所述:满足条件的点Q的坐标为(1−2√33,0)或(−1+4√33,0)或(1−2√3,0)或(5−2√3,0).【解析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=√3,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。
广东省梅州市中考数学试卷(2020年复习专题用)一、选择题:每小题3分,共21分,每小题给出四个答案,其中只有一个是正确的. 1.21的相反数是( ) A .2 B .-2 C .21D .21-考点:相反数.分析:根据只有符号不同的两个数叫做互为相反数解答. 解答:解:的相反数是﹣. 故选D .点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.下图所示几何体的左视图为( )DC B A第2题图考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案. 解答:解:从左边看第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故选:A . 点评:本题考查了简单组合体的三视图,从左边看看得到的图形是左视图. 3.下列计算正确的是( )A .32x x x =+B .632x x x =⋅C .623)(x x = D .339x x x =÷ 考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A 、原式不能合并,错误;B 、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C 、原式利用幂的乘方运算法则计算得到结果,即可做出判断;D 、原式利用同底数幂的除法法则计算得到结果,即可做出判断. 解答:解:A 、原式不能合并,错误; B 、原式=x 5,错误; C 、原式=x 6,正确; D 、原式=x 6,错误. 故选C .点评:此题考查了同底数幂的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键. 4.下列说法正确的是( )A .掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是4.02=甲S ,6.02=乙S ,则甲的射击成绩较稳定C .“明天降雨的概率为21”,表示明天有半天都在降雨 D .了解一批电视机的使用寿命,适合用普查的方式考点:方差;全面调查与抽样调查;随机事件;概率的意义. 分析:利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断. 解答:解:A 、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事件,此选项错误; B 、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定,此选项正确;C 、“明天降雨的概率为”,表示明天有可能降雨,此选项错误;D 、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;故选B .点评:本题主要考查了方差、全面调查与抽样调查、随机事件以及概率的意义等知识,解答本题的关键是熟练掌握方差性质、概率的意义以及抽样调查与普查的特点,此题难度不大. 5.下列命题正确的是( )A .对角线互相垂直的四边形是菱形B .一组对边相等,另一组对边平等的四边形是平行四边形C .对角线相等的四边形是矩形D .对角线互相垂直平分且相等的四边形是正方形 考点:命题与定理.分析:根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案. 解答:解:A 、对角线互相垂直的四边形不一定是菱形,故本选项错误;B 、一组对边相等,另一组对边平行的四边形不一定是平行四边形,也可能是等腰梯形,故本选项错误;C 、对角线相等的四边形不一定是矩形,例如等腰梯形,故本选项错误;D 、对角线互相垂直平分且相等的四边形是正方形,故本选项正确.故选D .点评:本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的性质,此题难度不大.6.如图,AB 是⊙O 的弦,AC 是⊙Or 切线,A 为切点,BC 经过圆心.若∠B=20°,则∠C 的大小等于( )A .20°B .25° C . 40° D .50°考点:切线的性质.分析:连接OA ,根据切线的性质,即可求得∠C 的度数. 解答:解:如图,连接OA ,∵AC 是⊙O 的切线,ACBO∴∠OAC=90°, ∵OA=OB , ∴∠B=∠OAB=20°, ∴∠AOC=40°, ∴∠C=50°. 故选:D .点评:本题考查了圆的切线性质,以及等腰三角形的性质,掌握已知切线时常用的辅助线是连接圆心与切点是解题的关键.7.对于二次函数x x y 22+-=.有下列四个结论:①它的对称轴是直线1=x ;②设12112x x y +-=,22222x x y +-=,则当12x x >时,有12y y >;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当20<<x 时,0>y .其中正确的结论的个数为( )A .1B .2C .3D .4 考点:二次函数的性质.分析:利用配方法求出二次函数对称轴,再求出图象与x 轴交点坐标,进而结合二次函数性质得出答案.解答:解:y=﹣x 2+2x=﹣(x ﹣1)2+1,故①它的对称轴是直线x=1,正确;②∵直线x=1两旁部分增减性不一样,∴设y 1=﹣x 12+2x 1,y 2=﹣x 22+2x 2,则当x 2>x 1时,有y 2>y 1,错误;③当y=0,则x (﹣x+2)=0,解得:x 1=0,x 2=2,故它的图象与x 轴的两个交点是(0,0)和(2,0),正确; ④∵a=﹣1<0, ∴抛物线开口向下,∵它的图象与x 轴的两个交点是(0,0)和(2,0), ∴当0<x <2时,y >0,正确. 故选:C .点评:此题主要考查了二次函数的性质以及一元二次方程的解法,得出抛物线的对称轴和其交点坐标是解题关键.二、填空题:每小题3分,共24分. 8.函数1-=x y 的自变量x 的取值范围是 .考点:函数自变量的取值范围;二次根式有意义的条件. 分析:根据二次根式的意义,被开方数不能为负数,据此求解. 解答:解:根据题意,得x≥0. 故答案为:x≥0.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数为非负数.9.分解因式:=-m m 3. 考点:提公因式法与公式法的综合运用. 专题:压轴题.分析:先提取公因式m ,再对余下的多项式利用平方差公式继续分解. 解答:解:m 3﹣m , =m (m 2﹣1),=m(m+1)(m﹣1).点评:本题考查提公因式法分解因式和利用平方差公式分解因式,关键在于需要进行二次分解因式.10.据统计,2014年我市常住人口约为4320000人,这个数用科学计数法表示为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于4320000有7位,所以可以确定n=7﹣1=6.解答:解:4320000=4.32×106,故答案为:4.32×106.点评:本题主要考查了科学计数法:熟记规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0是解题的关键.11.一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则女生当选组长的概率是.考点:概率公式.分析:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用女生的人数除以这个学习兴趣小组的总人数,求出女生当选组长的概率是多少即可.解答:解:女生当选组长的概率是:4÷10=.故答案为:.点评:此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.12.已知:△ABC中,点E是AB边的中点,点F在AC边上,若以A,E,F为顶点的三角形与△ABC相似,则需要增加的一个条件是.(写出一个即可)考点:相似三角形的判定.专题:开放型.分析:根据相似三角形对应边成比例或相似三角形的对应角相等进行解答;由于没有确定三角形相似的对应角,故应分类讨论.解答:解:分两种情况:①∵△AEF∽△ABC,∴AE:AB=AF:AC,即1:2=AF:AC,∴AF=AC;②∵△AFE∽△ACB,∴∠AFE=∠ABC.∴要使以A、E、F为顶点的三角形与△ABC相似,则AF=AC或∠AFE=∠ABC.故答案为:AF=AC或∠AFE=∠ABC.点评:本题很简单,考查了相似三角形的性质,在解答此类题目时要找出对应的角和边.13.如图,在□ABCD 中,BE 平分∠ABC ,BC=6,DE=2,则□ABCD 的周长等于 .考点:平行四边形的性质.分析:根据四边形ABCD 为平行四边形可得AE ∥BC ,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB ,继而可得AB=AE ,然后根据已知可求得结果. 解答:解:∵四边形ABCD 为平行四边形, ∴AE ∥BC ,AD=BC ,AD=BC , ∴∠AEB=∠EBC , ∵BE 平分∠ABC , ∴∠ABE=∠EBC , ∴∠ABE=∠AEB , ∴AB=AE ,∴AE+DE=AD=BC=6, ∴AE+2=6, ∴AE=4, ∴AB=CD=4,∴▱ABCD 的周长=4+4+6+6=20, 故答案为:20.点评:本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出∠ABE=∠AEB .14.如图,将矩形纸片ABCD 折叠,使点A 与点C 重合,折痕为EF ,若AB=4,BC=2,那么线段EF 的长为 . 考点:翻折变换(折叠问题).分析:如图,AC 交EF 于点O ,由勾股定理先求出AC 的长度,根据折叠的性质可判断出RT△EOC ∽RT △ABC ,从而利用相似三角形的对应边成比例可求出OE ,再由EF=2OE 可得出EF 的长度解答:解:如图所示,AC 交EF 于点O , 由勾股定理知AC=2,又∵折叠矩形使C 与A 重合时有EF ⊥AC , 则Rt △AOE ∽Rt △ABC , ∴, ∴OE=故EF=2OE=. 故答案为:.第13题图DB第14题图EFCD点评:此题考查了翻折变换、勾股定理及矩形的性质,难度一般,解答本题的关键是判断出RT △AOE ∽RT △ABC ,利用相似三角形的性质得出OE 的长.15.若1212)12)(12(1++-=+-n bn a n n ,对任意自然数n 都成立,则=a ,=b ;计算:=⨯++⨯+⨯+⨯=21191751531311Λm .考点:分式的加减法.专题:计算题.分析:已知等式右边通分并利用同分母分式的加法法则计算,根据题意确定出a 与b 的值即可;原式利用拆项法变形,计算即可确定出m 的值. 解答:解:=+=,可得2n (a+b )+a ﹣b=1,即,解得:a=,b=﹣; m=(1﹣+﹣+…+﹣)=(1﹣)=,故答案为:;﹣;.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.三、解答下列各题:本大题有9小题,共75分,解答应写文字说明、推理过程或演算步骤. 16.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图.请根据相关信息,解答下列问题:(直接填写结果)(1)这次调查获取的样本数据的众数是 ; (2)这次调查获取的样本数据的中位数是 ; (3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有 人.考点:条形统计图;用样本估计总体;中位数;众数.分析:(1)众数就是出现次数最多的数,据此即可判断; (2)中位数就是大小处于中间位置的数,根据定义判断;(3)求得调查的总人数,然后利用1000乘以本学期计划购买课外书花费50元的学生所占的比例即可求解.解答:解:(1)众数是:30元,故答案是:30元; (2)中位数是:50元,故答案是:50元; (3)调查的总人数是:6+12+10+8+4=40(人),/元则估计本学期计划购买课外书花费50元的学生有:1000×=250(人).故答案是:250.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.17.计算:01)22015()31(3228+---+-. 考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用绝对值的代数意义化简,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果. 解答:解:原式=2+3﹣2﹣3﹣1=﹣1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.已知2-=+b a ,求代数式a b a b a 2)2()1(2+++-的值. 考点:整式的混合运算—化简求值.专题:计算题. 分析:原式利用完全平方公式及单项式乘以多项式法则计算,将已知等式代入计算即可求出值.解答:解:原式=a 2﹣2a+1+2ab+b 2+2a=(a+b )2+1,把a+b=﹣代入得:原式=2+1=3.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键. 19.已知关于x 的方程x 2+2x +a ﹣2=0(1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)若该方程的一个根为1,求a 的值及该方程的另一根.考点:根的判别式;一元二次方程的解;根与系数的关系.分析:(1)关于x 的方程x 2﹣2x+a ﹣2=0有两个不相等的实数根,即判别式△=b 2﹣4ac >0.即可得到关于a 的不等式,从而求得a 的范围.(2)设方程的另一根为x 1,根据根与系数的关系列出方程组,求出a 的值和方程的另一根. 解答:解:(1)∵b 2﹣4ac=(﹣2)2﹣4×1×(a ﹣2)=12﹣4a >0, 解得:a <3.∴a 的取值范围是a <3;(2)设方程的另一根为x 1,由根与系数的关系得:,解得:,则a 的值是﹣1,该方程的另一根为﹣3.点评:本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20.如图,已知△ABC .按如下步骤作图:①以A 为圆心,AB 长为半径画弧;②以C 为圆心,CB 长为半径画弧,两弧相交于点D ;③连结BD ,与AC 交于点E ,连结AD ,CD . (1)求证:△ABC ≌△ADC ;(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE 的长.BDE CA考点:全等三角形的判定与性质;作图—复杂作图.分析:(1)利用SSS 定理证得结论;(2)设BE=x ,利用特殊角的三角函数易得AE 的长,由∠BCA=45°易得CE=BE=x ,解得x ,得CE 的长.解答:(1)证明:在△ABC 与△ADC 中,,∴△ABC ≌△ADC (SSS );(2)解:设BE=x , ∵∠BAC=30°, ∴∠ABE=60°, ∴AE=tan60°•x=x , ∵△ABC ≌△ADC , ∴CB=CD ,∠BCA=∠DCA , ∵∠BCA=45°, ∴∠BCA=∠DCA=90°, ∴∠CBD=∠CDB=45°, ∴CE=BE=x , ∴x+x=4, ∴x=2﹣2,∴BE=2﹣2.点评:本题主要考查了全等三角形的判定及性质,特殊角的三角函数,利用方程思想,综合运用全等三角形的性质和判定定理是解答此题的关键. 21.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价(元/件) 100 110 120 130 … 月销量(件) 200 180 160 140 …(1)请用含x 的式子表示:①销售该运动服每件的利润是 元;②月销量是 件;(直接写出结果)(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?考点:二次函数的应用.分析:(1)根据利润=售价﹣进价求出利润,运用待定系数法求出月销量;(2)根据月利润=每件的利润×月销量列出函数关系式,根据二次函数的性质求出最大利润.解答:解:(1)①销售该运动服每件的利润是(x﹣60)元;②设月销量W与x的关系式为w=kx+b,由题意得,,解得,,∴W=﹣2x+400;(2)由题意得,y=(x﹣60)(﹣2x+400)=﹣2x2+520x﹣24000=﹣2(x﹣130)2+9800,∴售价为130元时,当月的利润最大,最大利润是9800元.点评:本题考查的是二次函数的应用,掌握待定系数法求函数解析式和二次函数的性质以及最值的求法是解题的关键.22.如图,直线l经过点A(4,0),B(0,3).(1)求直线l的函数表达式;(2)若圆M的半径为2,圆心M在y轴上,当圆M与直线l相切时,求点M的坐标.yxO考点:切线的性质;待定系数法求一次函数解析式.分析:(1)把点A(4,0),B(0,3)代入直线l的解析式y=kx+b,即可求出结果.(2)先画出示意图,在Rt△ABM中求出sin∠BAM,然后在Rt△AMC中,利用锐角三角函数的定义求出AM,继而可得点M的坐标.解答:解:(1)∵直线l经过点A(4,0),B(0,3),∴设直线l的解析式为:y=kx+b,∴∴.∴直线l的解析式为:y=﹣x+3;(2)∵直线l经过点A(4,0),B(0,3),∴OA=4,OB=3,∴AB=5,①如图所示,此时⊙M与此直线l相切,切点为C,连接MC,则MC⊥AB,在Rt△ABM中,sin∠BAM==,在Rt△AMC中,∵sin∠MAC=,∴AM===4,∴点M的坐标为(0,0).②此时⊙M'与此直线l相切,切点为C',连接M'C',则M'C'⊥AB,∴∠M′C′B=∠MCB=90°,在△M′C′B与△CMB中,,∴BM'=BM=3,∴点M'的坐标为(0,6).综上可得:当⊙M与此直线l相切时点M的坐标是(0,0),(0,6).点评:本题考查了用待定系数法求函数的解析式,切线的性质,解答本题的关键是画出示意图,熟练掌握切线的性质及锐角三角函数的定义,难度一般.23.在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是AB,AC的中点.若等腰Rt△ADE 绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)如图1,当α=90°时,线段BD1的长等于,线段CE1的长等于;(直接填写结果)(2)如图2,当α=135°时,求证:BD1= CE1,且BD1⊥CE1;(3)①设BC的中点为M,则线段PM的长为;②点P到AB所在直线的距离的最大值为.(直接填写结果)E 1B C E D (D 1)A PE 1BCED D 1A考点:几何变换综合题. 分析:(1)利用等腰直角三角形的性质结合勾股定理分别得出BD 1的长和CE 1的长;(2)根据旋转的性质得出,∠D 1AB=∠E 1AC=135°,进而求出△D 1AB ≌△E 1AC (SAS ),即可得出答案;(3)①直接利用直角三角形的性质得出PM=BC 得出答案即可;②首先作PG ⊥AB ,交AB 所在直线于点G ,则D 1,E 1在以A 为圆心,AD 为半径的圆上,当BD 1所在直线与⊙A 相切时,直线BD 1与CE 1的交点P 到直线AB 的距离最大,此时四边形AD 1PE 1是正方形,进而求出PG 的长. 解答:解:(1)∵∠A=90°,AC=AB=4,D ,E 分别是边AB ,AC 的中点,∴AE=AD=2,∵等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°), ∴当α=90°时,AE 1=2,∠E 1AE=90°,∴BD 1==2,E 1C==2;故答案为:2,2; (2)证明:当α=135°时,如图2,∵Rt △AD 1E 是由Rt △ADE 绕点A 逆时针旋转135°得到,∴AD 1=AE 1,∠D 1AB=∠E 1AC=135°,在△D 1AB 和△E 1AC 中∵,∴△D 1AB ≌△E 1AC (SAS ),∴BD 1=CE 1,且∠D 1BA=∠E 1CA ,记直线BD 1与AC 交于点F ,∴∠BFA=∠CFP ,∴∠CPF=∠FAB=90°,∴BD 1⊥CE 1;(3)解:①∵∠CPB=∠CAB=90°,BC 的中点为M ,∴PM=BC ,∴PM==2,故答案为:2;②如图3,作PG ⊥AB ,交AB 所在直线于点G ,∵D 1,E 1在以A 为圆心,AD 为半径的圆上,当BD 1所在直线与⊙A 相切时,直线BD 1与CE 1的交点P 到直线AB 的距离最大, 此时四边形AD 1PE 1是正方形,PD 1=2,则BD 1==2,故∠ABP=30°,则PB=2+2,故点P 到AB 所在直线的距离的最大值为:PG=1+. 故答案为:1+.点评:此题主要考查了几何变换以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG 的最长时P 点的位置是解题关键.24.如图,过原点的直线x k y 1=和x k y 2=与反比例函数xy 1=的图象分别交于两点A ,C 和B ,D ,连结AB ,BC ,CD ,DA .(1)四边形ABCD 一定是 四边形;(直接填写结果)(2)四边形ABCD 可能是矩形吗?若可能,试求此时1k 和2k 之间的关系式;若不可能,说明理由;(3)设P (1x ,1y ),Q (2x ,2y )(012>>x x )是函数xy 1=图象上的任意两点,221y y a +=,212x x b +=,试判断a ,b 的大小关系,并说明理由.y x DC B AO y xO考点:反比例函数综合题. 分析:(1)由直线y=k 1x 和y=k 2x 与反比例函数y=的图象关于原点对称,即可得到结论.(2)联立方程求得A 、B 点的坐标,然后根据OA=OB ,依据勾股定理得出 =,两边平分得+k 1=+k 2,整理后得(k 1﹣k 2)(k 1k 2﹣1)=0,根据k 1≠k 2,则k 1k 2﹣1=0,即可求得; (3)由P (x 1,y 1),Q (x 2,y 2)(x 2>x 1>0)是函数y=图象上的任意两点,得到y 1=,y 2=,求出a===,得到a ﹣b=﹣==>0,即可得到结果.解答:解:(1)∵直线y=k 1x 和y=k 2x 与反比例函数y=的图象关于原点对称,∴OA=OC ,OB=OD ,∴四边形ABCD 是平行四边形;故答案为:平行;(2)解:∵正比例函数y=k 1x (k 1>0)与反比例函数y=的图象在第一象限相交于A , ∴k 1x=,解得x=(因为交于第一象限,所以负根舍去,只保留正根)将x=带入y=k 1x 得y=,故A 点的坐标为(,)同理则B 点坐标为(,),又∵OA=OB,∴=,两边平分得得+k1=+k2,整理后得(k1﹣k2)(k1k2﹣1)=0,∵k1≠k2,所以k1k2﹣1=0,即k1k2=1;(3)∵P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y=图象上的任意两点,∴y1=,y2=,∴a===,∴a﹣b=﹣==,∵x2>x1>0,∴>0,x1x2>0,(x1+x2)>0,∴>0,∴a﹣b>0,∴a>b.点评:本题考查了反比例函数的性质,平行四边形的判定,矩形的判定和性质,比较代数式的大小,掌握反比例函数图形上点的坐标的特征是解题的关键.。
2020年广东省中考数学试卷和答案解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9的相反数是()A.﹣9B.9C.D.﹣解析:】根据相反数的定义即可求解.参考答案:解:9的相反数是﹣9,故选:A.点拨:此题主要考查相反数的定义,比较简单.2.(3分)一组数据2,4,3,5,2的中位数是()A.5B.3.5C.3D.2.5解析:】中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.参考答案:解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.点拨:本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.(3分)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)解析:】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.参考答案:解:点(3,2)关于x轴对称的点的坐标为(3,﹣2).故选:D.点拨:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.7解析:】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.参考答案:解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.点拨:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣2解析:】根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.参考答案:解:∵在实数范围内有意义,∴2x﹣4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.点拨:此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.(3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8B.2C.16D.4解析:】根据中位线定理可得DF=AC,DE=BC,EF=AC,继而结合△ABC的周长为16,可得出△DEF的周长.参考答案:解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=AC,DE=BC,EF=AC,故△DEF的周长=DE+DF+EF=(BC+AB+AC)=16=8.故选:A.点拨:此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.(3分)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2﹣3解析:】先求出y=(x﹣1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.参考答案:解:二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x﹣2)2+2.故选:C.点拨:本题主要考查的是函数图象的平移,求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.(3分)不等式组的解集为()A.无解B.x≤1C.x≥﹣1D.﹣1≤x≤1解析:】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.参考答案:解:解不等式2﹣3x≥﹣1,得:x≤1,解不等式x﹣1≥﹣2(x+2),得:x≥﹣1,则不等式组的解集为﹣1≤x≤1,故选:D.点拨:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(3分)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B 恰好落在AD边上,则BE的长度为()A.1B.C.D.2解析:】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE =3﹣x,由直角三角形的性质可得:2(3﹣x)=x,解方程求出x 即可得出答案.参考答案:解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.点拨:本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.(3分)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个解析:】根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.参考答案:解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.点拨:本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy﹣x=x(y﹣1).解析:】直接提取公因式x,进而分解因式得出答案.参考答案:解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).点拨:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(4分)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.解析:】根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.参考答案:解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.点拨:本题考查同类项的定义,正确根据同类项的定义得到m,n 的值是解题的关键.13.(4分)若+|b+1|=0,则(a+b)2020=1.解析:】根据非负数的意义,求出a、b的值,代入计算即可.参考答案:解:∵+|b+1|=0,∴a﹣2=0且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.点拨:本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b的值是解决问题的关键.14.(4分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为7.解析:】由x=5﹣y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)﹣4xy计算可得.参考答案:解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2=15﹣8=7,故答案为:7.点拨:本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含式子x+y、xy及整体代入思想的运用.15.(4分)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD 的度数为45°.解析:】根据∠EBD=∠ABD﹣∠ABE,求出∠ABD,∠ABE即可解决问题.参考答案:解:∵四边形ABCD是菱形,∴AD=AB,∴∠ABD=∠ADB=(180°﹣∠A)=75°,由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°,故答案为45°.点拨:本题考查作图﹣基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(4分)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.解析:】求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.参考答案:解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:,而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=,解得,r=,故答案为:.点拨:本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2﹣2.解析:】如图,连接BE,BD.求出BE,BD,根据DE≥BD﹣BE 求解即可.参考答案:解:如图,连接BE,BD.由题意BD==2,∵∠MBN=90°,MN=4,EM=NE,∴BE=MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2﹣2.故答案为2﹣2.点拨:本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.解析:】根据整式的混合运算过程,先化简,再代入值求解即可.参考答案:解:(x+y)2+(x+y)(x﹣y)﹣2x2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=,y=时,原式=2××=2.点拨:本题考查了整式的混合运算﹣化简求值,解决本题的关键是先化简,再代入值求解.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?解析:】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.参考答案:解:(1)x=120﹣(24+72+18)=6;(2)1800×=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.点拨:本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC 是等腰三角形.解析:】先证△BDF≌△CEF(AAS),得出BF=CF,DF=EF,则BE=CD,再证△ABE≌△ACD(AAS),得出AB=AC即可.参考答案:证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.点拨:本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x 的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.解析:】(1)关于x,y的方程组与的解相同.实际就是方程组的解,可求出方程组的解,进而确定a、b的值;(2)将a、b的值代入关于x的方程x2+ax+b=0,求出方程的解,再根据方程的两个解与2为边长,判断三角形的形状.参考答案:解:(1)由题意得,关于x,y的方程组的相同解,就是程组的解,解得,,代入原方程组得,a=﹣4,b=12;(2)当a=﹣4,b=12时,关于x的方程x2+ax+b=0就变为x2﹣4x+12=0,解得,x1=x2=2,又∵(2)2+(2)2=(2)2,∴以2、2、2为边的三角形是等腰直角三角形.点拨:本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.解析:】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB =DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2,则OB=,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.参考答案:(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,,∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF===2,∴AB=DF=2,∴OB=,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH==.点拨:本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.解析:】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90﹣a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.参考答案:解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.点拨:本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x >0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=2;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.解析:】(1)设点B(s,t),st=8,则点M(s,t),则k=s •t=st=2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD,即可求解;(3)确定直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),即可求解.参考答案:解:(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2,故答案为2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD=×8﹣×2=3;(3)设点D(m,),则点B(4m,),∵点G与点O关于点C对称,故点G(8m,0),则点E(4m,),设直线DE的表达式为:y=sx+n,将点D、E的坐标代入上式得,解得,故直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),故FG=8m﹣5m=3m,而BD=4m﹣m=3m=FG,则FG∥BD,故四边形BDFG为平行四边形.点拨:本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.解析:】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP =30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.参考答案:解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,∴CO∥DE,∴,∵BC=CD,BO=3,∴=,∴OE=,∴点D横坐标为﹣,∴点D坐标(﹣,+1),设直线BD的函数解析式为:y=kx+b,由题意可得:,解得:,∴直线BD的函数解析式为y=﹣x+;(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,∵直线BD:y=﹣x+与y轴交于点C,∴点C(0,),∴OC=,∵tan∠CBO==,∴∠CBO=30°,如图2,过点A作AK⊥BD于K,∴AK=AB=2,∴DK===2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO=∠PBO=30°,∴BN=PN=2,BP=2PN,∴PN=,BP=,当△BAD∽△BPQ,∴,∴BQ==2+,∴点Q(1﹣,0);当△BAD∽△BQP,∴,∴BQ==4﹣,∴点Q(﹣1+,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=BN=2,当△BAD∽△BPQ,∴,∴,∴BQ=2+2∴点Q(1﹣2,0);当△BAD∽△PQB,∴,∴BQ==2﹣2,∴点Q(5﹣2,0);综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).点拨:本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。
EDCBA2020~2020学年度第一学期广东省梅州市梅州中学初三中段考试数学试卷说 明:本试卷共4页,23小题,满分120分.考试用时90分钟.注意事项:1.答题前,考生务必在答卷上用钢笔或签字笔填写姓名、班级、座位号。
2.必须用钢笔或签字笔作答,答案必须写在答卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔(作图题除外)和涂改液.不按以上要求作答的答案无效.3.考生必须保持答卷的整洁.考试结束后,只要求交回答卷. 一、选择题:每小题3分,共15分.每小题给出四个答案,其中只有一个是正确的.1、一元二次方程2560x x --=的根是( )A 、x 1=1,x 2=6B 、x 1=2,x 2=3C 、x 1=-1,x 2=6D 、x 1=1,x 2=-6 2、如图,D 在AB 上,E 在AC 上,且∠B=∠C,那么补充下列条件后,仍无法判断△ABE≌△ACD 的是( )A 、AD=AEB 、∠AEB=∠ADC C 、BE=CD D 、AB=AC3、给出下列命题:①四条边相等的四边形是正方形;②两组邻边分别相等的四边形是平行四边形;③有一个角是直角的平行四边形是矩形;④两条对角线互相垂直且平分的四边形是菱形.其中错误命题的个数是( )A 、1B 、2C 、3D 、4 4、小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为( )A 、上午12时B 、上午10时C 、上午9时30分D 、上午8xyOAB时5、如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时,OAB △的面积将会( ) A 、逐渐减小 B 、不变 C 、逐渐增大 D 、先增大后减小EBCGDFA C ′ADCB20° 二、填空题:每小题3分,共24分.6、在直角三角形中,若两条直角边长分别为6cm 和8cm ,则斜边上的中线长为 cm ;7、已知函数22(1)m y m x -=+是反比例函数,则m 的值为 ; 8、依次连接等腰梯形各边中点所得到的四边形是 ; 9、在某时刻的阳光照耀下,身高160cm 的小华的影长为80cm ,•她的身旁的旗杆影长10m ,则旗杆高为______m ; 10、已知直线mx y =与双曲线xky =的一个交点A 的坐标为(-1,-2),它们的另一个交点坐标是_____ _;11、“等腰三角形两腰上的高相等”的逆命题是__________________________ __;12、定义新运算“*”,规则:()()a a b a b b a b ≥⎧*=⎨<⎩,如122*=,(522-=。
梅州市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列说法正确的是()A . 带根号的数就是无理数B . 开方开不尽的数叫做无理数C . 是无理数D . 两个无理数的和仍是无理数2. (2分) 2010年4月20日晚,“支援青海玉树抗震救灾义演晚会”在莱芜市政府广场成功举行,热心企业和现场观众踊跃捐款31083.58元.将31083.58元保留两位有效数字可记为()A . 3.1×106元B . 3.11×104元C . 3.1×104元D . 3.10×105元3. (2分)边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A . m+3B . m+6C . 2m+3D . 2m+64. (2分)(2017·河南模拟) 如图所示,该几何体的俯视图是()A .B .C .D .5. (2分) (2019七下·涡阳期末) 不等式组的最小整数解是()A . -3B . -2C . 0D . 16. (2分) (2020八下·福田期中) 如图,是由绕点顺时针旋转后得到的图形,若点恰好落在上,且的度数为()A .B .C .D .7. (2分) (2017八下·泉山期末) 如图,点P是轴正半轴上的一个动点,过点P作PQ⊥轴交双曲线(x>0)于点Q,连结OQ. 当点P沿轴的正方向运动时,Rt△QOP的面积().A . 保持不变B . 逐渐减小C . 逐渐增大D . 无法确定8. (2分)已知梯形ABCD的四个顶点的坐标分別为A(-1,0),B(5,0),C(2,2),D(0,2),直线y=kx+2将梯形分成面积相等的两部分,则k的值为()A . -B . -C . -D . -9. (2分)如图所示,抛物线y=ax2+bx+c的对称轴为x= ,与x轴的一个交点A( ,0),抛物线的顶点B纵坐标1<yB<2,则以下结论:①abc<0;②b2-4ac>0;③3a-b=0;④4a+c<0;⑤ <a< .其中正确结论的个数是()A . 2B . 3C . 4D . 510. (2分) (2020八上·苏州期末) 在如图所示的正方形网格中,已知小正方形的边长为1,△ABC与△DEF 的顶点均为格点,边AC、DF交于点G.下面有四个结论:①△ABC≌△DEF;②图中阴影部分(即△ABC与△DEF重叠部分)的面积为1.5;③△DCG为等边三角形;④AG=DG.其中结论正确的个数为()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)11. (1分)分解因式:a3﹣a=________ .12. (1分)(2020·嘉定模拟) 方程 3的根是________.13. (1分)(2018·金华模拟) 若一组数据2,1, a,2,-2,1的唯一众数为2,则这组数据的平均数为________.14. (1分)若一个圆锥形零件的母线长为5cm,底面半径为3cm,则这个零件的侧面展开图的圆心角为________°.15. (1分)(2019·诸暨模拟) 如图,将一块直角三角板OAB放在平面直角坐标系中,B(2,0),∠AOB=60°,点A在第一象限,过点A的双曲线为y= ,在x轴上取一点P,过点P作直线OA的垂线l,以直线l为对称轴,线段OB经轴对称变换后的像是O′B′.设P(t,0)当O′B′与双曲线有交点时,t的取值范围是________.16. (1分) (2020九下·江岸月考) 抛物线y=(a2+1)x2+bx+c经过点A(﹣3,t)、B(4,t)两点,则不等式(a2+1)(x-2)2+bx<2b-c+t的解集是________.三、解答题 (共8题;共91分)17. (5分) (2019七下·武昌期中) 已知:实数a、b满足条件 +(ab﹣2)2=0.试求 ++ +…+ 的值.18. (15分) (2019九上·天河月考) 如图,△ABC中,D是AB上一点,DE⊥AC于点E , F是AD的中点,FG⊥BC于点G ,与DE交于点H ,若FG=AF , AG平分∠CAB ,连接GE , GD .(1)求证:△ECG≌△GHD;(2)小亮同学经过探究发现:AD=AC+EC .请你帮助小亮同学证明这一结论.(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.19. (15分)(2014·衢州) 学了统计知识后,小刚就本班同学上学“喜欢的出行方式”进行了一次调查.图(1)和图(2)是他根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数;(2)如果全年级共600名同学,请估算全年级步行上学的学生人数;(3)若由3名“喜欢乘车”的学生,1名“喜欢步行”的学生,1名“喜欢骑车”的学生组队参加一项活动,欲从中选出2人担任组长(不分正副),列出所有可能的情况,并求出2人都是“喜欢乘车”的学生的概率.20. (15分) (2016九上·达州期末) 如图:抛物线y=- +bx+c与x轴交于A、B两点,与y轴交于点C,且∠BAC=α,∠ABC= ,tanα-tanβ=2,∠ACB=90°.(1)求点C的坐标;(2)求抛物线的解析式;(3)若抛物线的顶点为P,求四边形ABPC的面积.21. (10分)(2019·宁江模拟) 如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm。
梅州市2020年初中毕业生学业考试数 学 试 卷说 明:本试卷共4页,24题,满分120分. 考试用时90分钟.注意事项:1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓 名、试室号、座位号,再用2B 铅笔把试室号、座位号的对应数字涂黑. 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需 改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上. 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目 指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答 案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 5.本试卷不用装订,考完后统一交县招生办(中招办)封存.参考公式:抛物线c bx ax y ++=2的对称轴是直线ab x 2-=,顶点是)44,2(2ab ac a b --. 一、选择题:每小题3分,共21分.每小题给出四个答案,其中只有一个是正确的. 1.计算(﹣3)+4的结果是A . ﹣7B . ﹣1C . 1D . 7 2.若一组数据3,x ,4,5,6的众数是3,则这组数据的中位数为 A .3 B .4 C .5 D .6 3.如图,几何体的俯视图是4.分解因式32bb a - 结果正确的是 A . ))((b a b a b -+ B .2)(b a b - C .)(22b a b - D .2)(b a b +5.如图,BC ⊥AE 于点C ,CD ∥AB ,∠B =55°,则∠1等于 A .55° B .45°C .35°D .25°6.二次根式x -2有意义,则x 的取值范围是A .2>xB .2<xC .2≥xD .2≤x 7.对于实数a 、b ,定义一种新运算“⊗”为:21b a b a -=⊗,这里等式右边是实数运算.例如:81311312-=-=⊗.则方程142)2(--=-⊗x x 的解是 A . 4=x B .5=x C .6=xD .7=xA .B .C .D .二、填空题:每小题3分,共24分. 8.比较大小:﹣2______﹣3.9.在一个不透明的口袋中,装有若干个除颜色不同外,其余都相同的小球.如果口袋中装 有3个红球且从中随机摸出一个球是红球的概率为51,那么口袋中小球共有_______个. 10.流经我市的汀江,在青溪水库的正常库容是6880万立方米.6880万用科学记数法表示 为__________________________.11.已知点P (3﹣m ,m )在第二象限,则m 的取值范围是____________________. 12.用一条长40cm 的绳子围成一个面积为64cm 2的矩形. 设矩形的一边长为x cm ,则可列方程为 _____________. 13.如图,在平行四边形ABCD 中,点E 是边AD 的 中点,EC 交对角线BD 于点F ,若3=∆DEC S , 则=∆BCF S ________.14.如图,抛物线322++-=x x y 与y 轴交于点C ,点D (0,1),点P 是抛物线上的动点.若△PCD 是以CD 为底的等腰三角形,则点P 的坐标为_________. 15.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处, 点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置, 点A 2在x 轴上,依次进行下去….若点A (23,0),B (0,2),则点B 2020的坐标 为______________.三、解答下列各题:本题有9小题,共75分.解答应写文字说明、推理过程或演算步骤.计算:10)21(345cos 2)5(-+--︒+-π.17. 本题满分7分.我市某校开展了以“梦想中国”为主题的摄影大赛,要求参赛学生每人交一件作品.现将从中挑选的50件参赛作品的成绩(单位:分)统计如下:等级成绩(用m 表示) 频数频率 A 90≤ m ≤100 x0.08B 80≤ m <9034 yCm <8012 0.24 合计501请根据上表提供的信息,解答下列问题:(1)表中x 的值为_____________,y 的值为______________;(直接填写结果) (2)将本次参赛作品获得A 等级的学生依次用A 1、A 2、A 3……表示.现该校决定从本 次参赛作品获得A 等级的学生中,随机抽取两名学生谈谈他们的参赛体会,则恰好抽到 学生A 1和A 2的概率为____________.(直接填写结果) 18. 本题满分7分.如图,在平行四边形ABCD 中,以点A 为圆心,AB 长为半径画弧交AD 于点F ,再分别以点B 、F 为圆心,大于BF 21长为半径画弧,两弧交于一点P ,连接AP 并延长交BC 于点E ,连接EF .(1) 四边形ABEF 是_______;(选填矩形、菱形、 正方形、无法确定)(直接填写结果)(2)AE ,BF 相交于点O ,若四边形ABEF 的周长为40,BF =10,则AE 的长为________,∠ABC =________°.(直接填写结果) 19. 本题满分7分.如图,已知在平面直角坐标系中,O 是坐标原点,点A (2,5)在反比例函数xky =的图象上.一次函数b x y += 的图象过点A ,且与反比例函数图象的另一交点为B . (1)求k 和b 的值;(2)设反比例函数值为1y ,一次函数值为2y ,求21y y >时x 的取值范围.如图,点D 在⊙O 的直径AB 的延长线上,点C 在 ⊙O 上,AC =CD ,∠ACD =120°. (1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为2,求图中阴影部分的面积. 21. 本题满分9分.关于x 的一元二次方程01)12(22=++++k x k x 有两个不等实根1x 、2x . (1)求实数k 的取值范围;(2)若方程两实根1x 、2x 满足2121x x x x ⋅-=+,求k 的值. 22. 本题满分9分.如图,平行四边形ABCD 中,BD ⊥AD ,∠A =45°,E 、F 分别是AB 、CD 上的点,且BE=DF ,连接EF 交BD 于O . (1)求证:BO=DO ;(2)若EF ⊥AB ,延长EF 交AD 的延长线于G ,当FG =1 时,求AE 的长.23. 本题满分10分.(为方便答题,可在答题卡上画出你认为必要的图形) 如图,在R t △ABC 中,∠ACB =90°,AC =5cm ,∠BAC =60°, 动点M 从点B 出发,在BA 边上以每秒2cm 的速度向点 A 匀速运动,同时动点N 从点C 出发,在CB 边上以每 秒3cm 的速度向点B 匀速运动,设运动时间为t 秒 (05≤≤t ),连接MN . (1)若BM =BN ,求t 的值;(2)若△MBN 与△ABC 相似,求t 的值; (3)当t 为何值时,四边形ACNM 的面积最小? 并求出最小值.24. 本题满分10分.(为方便答题,可在答题卡上画出你认为必要的图形)如图,在平面直角坐标系中,已知抛物线c bx x y ++=2过A ,B ,C 三点,点A 的坐 标是)0,3(,点C 的坐标是)3,0(-,动点P 在抛物线上.(1)b =_________,c =_________,点B 的坐标为_____________;(直接填写结果)(2)是否存在点P ,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;(3)过动点P 作PE 垂直y 轴于点E ,交直线AC 于点D ,过点D 作x 轴的垂线.垂足为F ,连接EF ,当线段EF 的长度最短时,求出点P 的坐标.梅州市2020年初中毕业生学业考试数学试卷参考答案与评分意见一、选择题:本题共7小题,每小题3分,共21分.每小题给出四个答案,其中只有一个是正确的.1.C ; 2.B ; 3.D ; 4.A ; 5.C ; 6.D ; 7.B . 二、填空题:本题共8小题,每小题3分,共24分.8.> ; 9.15; 10.71088.6⨯; 11.3>m ; 12.64)20(=-x x ; 13.4; 14.)2,21(±;(写对一个给2分) 15.(6048,2).三、解答下列各题:本题共9小题,共75分.解答应写出文字说明、推理过程或演算步骤. 16.解:原式=232221+-⨯+ ………………………4分 =2311+-+ ………………………6分=1. ………………………7分 17.解:(1)4,0.68 ; ………………………4分(每空2分) (2)61. ………………………7分 18.解:(1)菱形 ………………………3分(2)310,120 ………………………7分(每空2分)19.解:(1)把A (2,5)分别代入xky =和b x y +=, 得⎪⎩⎪⎨⎧=+=5252b k , ……………2分(各1分)解得10=k ,3=b ; ………………………3分 (2)由(1)得,直线AB 的解析式为3+=x y ,反比例函数的解析式为xy 10=. ……………………………4分由⎪⎩⎪⎨⎧+==310x y x y ,解得:⎩⎨⎧==52y x 或⎩⎨⎧-=-=25y x . ……………………………5分则点B 的坐标为)2,5(--.由图象可知,当21y y >时,x 的取值范围是5-<x 或20<<x . ………7分20.(1)证明:连接O C . ………………………1分∵AC =CD ,∠ACD =120°,∴∠CAD =∠D =30°. ………………………2分 ∵OA =OC ,∴∠2=∠CAD =30°.(或 ∠ACO =∠CAD =30° ) ……………3分 ∴∠OCD =∠ACD —∠ACO =90°,即OC ⊥CD . ∴CD 是⊙O 的切线. ………………………4分 (2)解:由(1)知∠2=∠CAD =30°.(或 ∠ACO =∠CAD =30° ), ∴∠1=60°.(或∠COD =60°) …………………5分 ∴323602602ππ=⨯=BOCS 扇形. ………………………6分在R t △OCD 中,∵OCCD=︒60tan ,2=OC∴32=CD . ………………………7分∴323222121=⨯⨯=⨯=∆CD OC S OCDRt,…………………8分 ∴图中阴影部分的面积为3232π-=阴影S . …………………9分 21.解:(1)∵原方程有两个不相等的实数根,∴034)1(4)12(22>-=+-+=∆k k k , ……………………3分 解得:43>k . ……………………4分 (2)由根与系数的关系,得)12(21+-=+k x x ,1221+=⋅k x x . ……………6分∵2121x x x x ⋅-=+, ∴)1()12(2+-=+-k k ,解得:0=k 或2=k , ………………………8分 又∵43>k , ∴2=k . ………………………9分22.(1)证明:∵四边形ABCD 是平行四边形,∴DC ∥AB , ………………………1分 ∴∠OBE =∠ODF . ………………………2分 在△OBE 与△ODF 中,∵ ⎪⎩⎪⎨⎧=∠=∠∠=∠DF BE DOF BOE ODFOBE∴△OBE ≌△ODF (AAS ).………………………3分 ∴BO =DO . ………………………4分 (2)解:∵EF ⊥AB ,AB ∥DC , ∴∠GEA=∠GFD =90°. ∵∠A =45°,∴∠G =∠A =45°. …………………5分 ∴AE =GE ……………6分 ∵BD ⊥AD ,∴∠ADB =∠GDO =90°.∴∠GOD =∠G =45°. ……………7分 ∴DG =DO∴OF =FG = 1 ……………8分 由(1)可知,OE = OF =1 ∴GE =OE +OF +FG =3∴AE =3 ……………9分 (本题有多种解法,请参照此评分标准给分.)23.解:(1)∵在Rt △ABC 中,∠ACB =90°,AC =5,∠BAC =60°, ∴10=AB ,35=BC . ………………………1分 由题意知t BM 2=,t CN 3=,t BN 335-=,由BM =BN 得t t 3352-=,………………………2分 解得:153103235-=+=t .………………………3分(2)①当△MBN ∽△ABC 时, ∴BC BN AB MB =,即35335102tt -=,解得:25=t .…………5分 ②当△NBM ∽△ABC 时, ∴BC BM AB NB =, 即35210335tt =-,解得:715=t . ∴当25=t 或715=t 时,△MBN 与△ABC 相似.………………………7分(3)过M 作MD ⊥BC 于点D ,可得:t MD =.……………8分 设四边形ACNM 的面积为y , ∴MD BN BC AC S S y BMN ABC ⋅-⋅=-=∆∆2121 t t ⋅--⨯⨯=)335(2135521 2325235232+-=t t……………9分3875)25(232+-=t .∴根据二次函数的性质可知,当25=t 时,y 的值最小. 此时,3875=最小y ………………………10分 24.解:(1)2-,3-, ),(01-.………………………3分(每空1分) (2)存在. ………………………4分第一种情况,当以C 为直角顶点时,过点C 作CP 1⊥AC ,交抛物线于点P 1.过点P 1作y 轴的垂线,垂足是M .∵OA =OC ,∠AOC =90° ∴∠OCA =∠OAC =45°. ∵∠ACP 1=90°,∴∠MCP 1 =90°-45°=45°=∠C P 1M . ∴MC =MP 1.………………5分由(1)可得抛物线为322--=x x y . 设)32,(21--m m m P ,则)32(32----=m m m ,解得:01=m (舍去),12=m . ∴4322-=--m m .则P 1的坐标是)41(-,. ………………………6分第二种情况,当以A 为直角顶点时,过点A 作AP 2⊥AC ,交抛物线于点P 2,过点P 2作y 轴的垂线,垂足是N ,AP 2交y 轴于点F .∴P 2N ∥x 轴. 由∠CAO =45°, ∴∠OAP 2=45°.∴∠FP 2N =45°,AO =OF=3. ∴P 2N =NF .设)32,(21--n n n P ,则3)32(2---=-n n n .解得:31=n (舍去),22-=n . ∴5322=--n n , 则P 2的坐标是)5-2(,.综上所述,P 的坐标是)41(-,或)5-2(,.………………………7分 (本题有多种解法,请参照此评分标准给分.)(3)连接OD ,由题意可知,四边形OFDE 是矩形,则OD =EF .根据垂线段最短,可得当OD ⊥AC 时,OD 最短,即EF 最短.……………8分 由(1)可知,在Rt △AOC 中, ∵OC =OA =3,OD ⊥AC , ∴ D 是AC 的中点. 又∵DF ∥OC ,∴2321==OC DF . ∴点P 的纵坐标是23-.………………9分则23322-=--x x , 解得:2102±=x .∴当EF 最短时,点P 的坐标是:(2102+,23-)或(2102-,23-). ……………10分。
梅州市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) -的绝对值等于()A .B . 4C .D . -42. (2分) (2020七上·浦北期末) 如图所示的几何体,从上面看到的平面图形是()A . 正方形B . 长方形C . 圆D . 圆柱3. (2分)(2019·容县模拟) 为了加快网络建设,我市电信运营企业将根据各自发展规划,今年预计完成投入约28000000元,将28000000用科学记数法表示为()A .B .C .D .4. (2分)(2018·龙东模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .5. (2分)如图,直线a、b与直线相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°,其中能判断a∥b的是()A . ①③;B . ①③④;C . ②④;D . ①②③④.6. (2分) (2017七下·永春期中) 若关于的不等式的整数解共有4个,则的取值范围是()A .B .C .D .7. (2分)(2019·喀什模拟) 一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程()A . 10%x=330B . (1﹣10%)x=330C . (1﹣10%)2x=330D . (1+10%)x=3308. (2分)(2017·深圳模拟) 如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于 BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A . 90°B . 95°C . 100°D . 105°9. (2分)下列命题是真命题的是()A . 平行四边形的对角线相等B . 三角形的重心是三条边的垂直平分线的交点C . 五边形的内角和是540°D . 圆内接四边形的对角相等10. (2分)下列说法正确的是A . 一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B . 为了了解全国中学生的心理健康状况,应采用普查的方式C . 一组数据0,1,2,1,1的众数和中位数都是1D . 若甲组数据的方差甲=0.2 ,乙组数据的方差乙=0.5,则乙组数据比甲组数据稳定11. (2分)(2017·绵阳) 如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC 于E,F两点.若AC=2 ,∠AEO=120°,则FC的长度为()A . 1B . 2C .D .12. (2分)(2018·福田模拟) 如图,正方形ABCD的边长是,连接交于点O,并分别与边交于点,连接AE,下列结论:;;;当时,,其中正确结论的个数是()A . 1B . 2C . 3D . 4二、填空题 (共4题;共4分)13. (1分)(2018·东营模拟) 分解因式: ________14. (1分)(2016·毕节) 掷两枚质地均匀的骰子,其点数之和大于10的概率为________.15. (1分)(2018·巴中) 对于任意实数a、b,定义:a◆b=a2+ab+b2 .若方程(x◆2)﹣5=0的两根记为m、n,则m2+n2=________.16. (1分) (2019八上·句容期末) 已知等腰中,,,,在线段上,是线段上的动点,的最小值是________.三、解答题 (共7题;共40分)17. (5分)(2016·金华) 计算:﹣(﹣1)2016﹣3tan60°+(﹣2016)0 .18. (5分)先化简(),然后从﹣3≤x≤3的范围内选取一个合适的整数作为x 的值代入求值.19. (10分)某农户承包荒山种了44棵苹果树.现在进入第三年收获期.收获时,先随意摘了5棵树上的苹果,称得每棵树摘得的苹果重量如下(单位:千克)35 35 34 39 37(1)在这个问题中,总体指的是?个体指的是?样本是?样本容量是?(2)试根据样本平均数去估计总体情况,你认为该农户可收获苹果大约多少千克?20. (5分) (2019九上·南山期末) 学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如表所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数销售价格不超过30件单价40元超过30件每多买1件,购买的所有物品单价将降低0.5元,但单价不得低于30元21. (5分) (2017八下·广州期中) 如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.22. (5分)(2018·南通) 如图,小明一家自驾到古镇游玩,到达地后,导航显示车辆应沿北偏西方向行驶12 千米至地,再沿北偏东方向行驶一段距离到达古镇,小明发现古镇恰好在地的正北方向,求两地的距离.(结果保留根号)23. (5分)(2017·金乡模拟) 已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共40分)17-1、18-1、19-1、19-2、20-1、21-1、22-1、23-1、。
2020年梅州市初中毕业生学业考试数学说明:本试卷共 4 页,23 小题,满分 120 分.考试用时 90 分钟.一、选择题:每小题 3分,共 15 分.每小题给出四个答案,其中只有一个是正确的. 1.(09梅州)12-的倒数为( ) A .12B .2C .2-D .1-2.(09梅州)下列图案是我国几家银行的标志,其中不是..轴对称图形的是( ) 3.(09梅州)数学老师布置10道填空题,测验后得到如下统计表: 答对题数 7 8 9 10 人 数420188根据表中数据可知,全班同学答对的题数所组成的样本的中位数和众数分别是( ) A .8、8 B . 8、9 C .9、9 D .9、8 4.(09梅州)下列函数:①y x =-;②2y x =;③1y x=-;④2y x =.当0x <时,y 随x 的增大而减小的函数有( )A .1 个B .2 个C .3 个D .4 个 5.(09梅州)一个正方体的表面展开图可以是下列图形中的( )二、填空题:每小题 3分,共 24 分. 6.(09梅州)计算:2()a a -÷= .7.(09梅州)梅州是中国著名侨乡,祖籍在梅州的华侨华人及港澳台同胞超过360万人,360万用科学计数法表示为 . 8.(09梅州)如图1,在O ⊙中,20ACB ∠=°,则AOB ∠=_______度.A .B .C .D . A . B . C . D .O C A O9.(09梅州)如图2 所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O 至少经过____________次旋转而得到, 每一次旋转_______度. 10.(09梅州)小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图3所示.根据图中的信息,小张和小李两人中成绩较稳定的是 .11.(09梅州)已知一元二次方程22310x x --=的两根为12x x ,,则12x x =___________.12.(09梅州)如图4,把一个长方形纸片沿EF 折叠后,点D C 、分别落在11 D C 、的位置.若65EFB ∠=°,则1AED ∠等于_______度.13.(09梅州) 如图5,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个. 三、解答下列各题:本题有 10 小题,共 81 分.解答应写出文字说明、推理过程或演算步骤. 14.(09梅州)本题满分 7 分. 如图 6,已知线段AB ,分别以A B 、为圆心,大于12AB 长为半径画弧,两弧相交于点C 、Q ,连结CQ 与AB 相交于点D ,连结AC ,BC .那么: (1)∠ ADC =________度;(2)当线段460AB ACB =∠=,°时,ACD ∠= ______度,ABC 的面积等于_________(面积单位).15.(09梅州)本题满分 7 分.星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离y (千米)与时间t (分钟)的关系如图7所示.图3A E D C FB D 1C 1 图4… … 第1幅 第2幅 第3幅 第n 幅 图5C BD A 图6y (千米)3根据图象回答下列问题:(1)小明家离图书馆的距离是____________千米; (2)小明在图书馆看书的时间为___________小时;(3)小明去图书馆时的速度是______________千米/小时. 16.(09梅州)本题满分 7 分.171819.(09梅州)本题满分 8 分.如图 8,梯形ABCD 中,AB CD ∥,点F 在BC 上,连DF 与AB 的延长线交于点G . (1)求证:CDF BGF △∽△; (2)当点F 是BC 的中点时,过F 作EF CD ∥交AD 于点E ,若6cm 4cm AB EF ==,,求CD 的长.D C FE A B G20.(09梅州)本题满分 8 分.“五·一”假期,梅河公司组织部分员工到A 、B 、C 三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图9.根据统计图回答下列问题:(1)前往 A 地的车票有_____张,前往C 地的车票占全部车票的________%;(2)若公司决定采用随机抽取的方式把车票分配给 100 名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去 B 地车票的概率为______;(字21C . (((22.(09梅州)本题满分 10 分.如图 11,矩形ABCD 中,53AB AD ==,.点E 是CD 上的动点,以AE 为直径的O ⊙与AB 交于点F ,过点F 作FG BE ⊥于点G . (1)当E 是CD 的中点时:①tan EAB ∠的值为______________; ② 证明:FG 是O ⊙的切线;(2)试探究:BE 能否与O ⊙相切?若能,求出此时DE 的长;若不能,请说明理由.23.(09梅州)本题满分 11 分.(提示:为了方便答题和评卷,建议在答题卡上画出你认为必须的图形)交((S (2009年梅州市初中毕业生学业考试数学参考答案及评分意见一、选择题:每小题 3分,共 15 分.每小题给出四个答案,其中只有一个是正确的. 1.C 2.B 3.D 4.B 5.C 二、填空题:每小题 3分,共 24 分.6.a 7.63.610⨯ 8.40 9.4(1分),72(2分)C B 图1110.小张 11.12-12.50 13.7(1分),21n -(2分) 三、解答下列各题:本题有 10 小题,共 81 分.解答应写出文字说明、推理过程或演算步骤.14.本题满分7分. (1)90 ········································································································ 2分 (2)30 ········································································································ 4分··································································································· 7分 15( 2分 ( 4分 ( 7分 16 4分 6分 7分 17 2分 由分 分 分 18 3分 2x =- 6分 当32x =时,原式3226322⨯==--. ······································································ 8分19.本题满分8 分.(1)证明:∵梯形ABCD ,AB CD ∥, ∴CDF FGB DCF GBF ∠=∠∠=∠,, ················· 2 分 ∴CDF BGF △∽△. ······················3分DC FE(2) 由(1)CDF BGF △∽△, 又F 是BC 的中点,BF FC = ∴CDF BGF △≌△, ∴DF FG CD BG ==, ······································ 6分 又∵EF CD ∥,AB CD ∥,∴EF AG ∥,得2EF BG AB BG ==+. ∴22462BG EF AB =-=⨯-=, ∴2cm CD BG ==. ···················································································· 8分 20.本题满分 8 分. 解:(1)30;20. ······················································································ 2 分(1)解:令0x =,得y =(0C . ············································ 1分令0y =,得2033x x -+=,解得1213x x =-=,, ∴(10)(30)A B -,,,. ·············································································· 3分(2)法一:证明:因为22214AC =+=,M 1222231216BC AB =+==,, ··················· 4分∴222AB AC BC =+, ····································· 5分 ∴ABC △是直角三角形. ································· 6分法二:因为13OC OA OB ===,, ∴2OC OA OB =, ························································································ 4分5分 分1.5 8分分 6分 EC BC 53x -整理得2590x x -+=. ················································································· 8 分 ∵242536110b ac -=-=-<, ∴该方程无实数根.∴点E 不存在,BE 不能与O ⊙相切. ································· 10分 法二: 若BE 能与O ⊙相切,因AE 是O ⊙的直径,则90AE BE AEB ∠=⊥,°, 设DE x =,则5EC x =-,由勾股定理得:222AE EB AB +=,即22(9)[(5)9]25x x ++-+=, 整理得2590x x -+=, ······························ 8分∵242536110b ac -=-=-<, ∴该方程无实数根.∴点E 不存在,BE 不能与O ⊙相切. ································· 10分 (法三:本题可以通过判断以AB 为直径的圆与DC 是否有交点来求解,参照前一解法给分) 23.本题满分 11 分.(1)1y x =- ······························································································· 2分 (∴ 3分 ∴∴4分当 6分 (1C ,O 两点关于直线L 对称,所以1AC OA ==,得(11)C ,. ····································· 7 分 下证90PQC ∠=°.连CB ,则四边形OACB 是正方形.法一:(i )当点P 在线段OB 上,Q 在线段AB 上 (Q 与B C 、不重合)时,如图–1.L 1由对称性,得BCQ QOP QPO QOP ∠=∠∠=∠,, ∴ 180QPB QCB QPB QPO ∠+∠=∠+∠=°,∴ 360()90PQC QPB QCB PBC ∠=-∠+∠+∠=°°. ······································ 8分 (ii )当点P 在线段OB 的延长线上,Q 在线段AB 上时,如图–2,如图–3∵12QPB QCB ∠=∠∠=∠,, ∴90PQC PBC ∠=∠=°. ····················· 9分 (1 分C ,O 分 (∴四边形OMNA 和四边形MNCB 都是矩形,AQN △和QBM △都是等腰直角三角形. ∴90NC MB MQ NQ AN OM QNC QMB ====∠=∠=,,°. 又∵OM MP =, ∴MP QN =, ∴QNC QMP △≌△, ∴MPQ NQC ∠=∠,L 1又∵90MQP MPQ ∠+∠=°,∴90MQP NQC ∠+∠=°.∴90CQP ∠=°. ····················································································· 8分(ii )当点Q 与点B 重合时,显然90PQC ∠=°. ···································· 9分 (iii )Q 在线段AB 的延长线上时,如图–5,∵分9分 连∴22222(1)122PC PB BC t t t =+=-+=-+,2222222211222t t t OQ OP CQ OM MQ t ⎛⎫⎛⎫===+=+-=-+ ⎪ ⎪⎝⎭⎝⎭. ∴222PC OP QC =+,∴90CQP ∠=°. ························································ 10分 ∴在1L 上存在点(11)C ,,使得CPQ △是以Q 为直角顶点的等腰直角三角形. ········ 11分。