材料性能学名词解释
- 格式:docx
- 大小:37.02 KB
- 文档页数:7
一、名词解释第一章力学1.真实应变一根长度为L 的杆,在单向拉应力作用下被拉长到L ,则ε = ,为真实应变。
2.名义应变一根长度为L 的杆,在单向拉应力作用下被拉长到L ,则ε=L –L /L =△L/L , ε为名义应变。
3.弹性模量材料在阶段,其和应变成线性关系(即符合),其称为弹性模量。
对各向同性体为一常数。
是原子间结合强度的一个标志。
4.弹性柔顺系数弹性体在单位应力下所发生的应变,是弹性体柔性的千种量度。
S =-μ/E ,其下标十位数为应变方向,个位数为所受应力的方向。
5.材料的蠕变对粘弹性体施加恒定应力σ时,其应变随时间而增加。
6.材料的弛豫对粘弹性体施加恒定应变ε时,则应力将随时间而减小。
7.位错增殖系数 n个位错通过试样边界时引起位错增殖,使通过边界的位错数增加到nc个,c即为位错增殖系数。
8.滞弹性一些非晶体,有时甚至多晶体在比较小的应力时可以同时表现出弹性和粘性。
9.粘弹性无机固体和金属的与时间有关的弹性,即弹性形变的产生与消除需要有限时间。
10.粘性系数(粘度) 单位接触面积、单位速度梯度下两层液体间的内摩擦力。
单位Pa·S. 是流体抵抗流动的量度。
11.脆性断裂构件未经明显的变形而发生的断裂。
断裂时材料几乎没有发生过塑性变形。
在外力作用下,任意一个结构单元上主应力面的拉应力足够大超过材料的临界拉应力值时,会产生裂纹或缺陷的扩展,导致脆性断裂。
与此同时,外力引起的平均剪应力尚小于临界值,不足以产生明显的塑性变形或粘性流动。
12.裂纹亚临界生长裂纹在使用应力下,随时间的推移而缓慢扩展。
其结果是裂纹尺寸逐渐加大,一旦达到临界尺寸就会失稳扩展而破坏。
13.材料的理论结合强度根据Orowan提出的原子间约束力随原子间的距离x的变化曲线(正弦曲线),得到σ=σ×sin2πx/λ,σ为理论结合强度。
单位面积的原子平面分开所作的功应等于产生两个单位面积的新表面所需的表面能,材料才能断裂,根据公式得出σ = Eγ/a 。
材料性能学名词解释大全第一章:弹性比功:材料在弹性变形过程中吸取变形功的能力。
包申格效应:是指金属材料经预先加载产生少量塑性变形,而后再同向加载,规定残余伸长应力增加,反向加载,规定残余伸长应力降低的现象。
滞弹性:是材料在加速加载或者卸载后,随时刻的延长而产生的附加应变的性能,是应变落后于应力的现象。
粘弹性:是指材料在外力的作用下,弹性和粘性两种变形机理同时存在的力学行为。
内耗:在非理想弹性变形过程中,一部分被材料所吸取的加载变形功。
塑性:材料断裂前产生塑性变形的能力。
韧性:是材料力学性能,是指材料断裂前吸取塑性变形攻和断裂功的能力。
银纹:是高分子材料在变形过程中产生的一种缺陷,由于它密度低,对光线反射高为银色。
超塑性:材料在一定条件下出现专门大的伸长率〔约1000%〕而不发生缩颈和断裂的现象。
脆性断裂:是材料断裂前差不多不产生明显的宏观塑性变形,没有明显预兆,而是突然发生的快速断裂过程。
韧性断裂:是指材料断裂前及断裂过程中产生明显宏观塑性变形的断裂过程。
解理断裂:在正应力作用下,由于原子间结合键的破坏引起的沿特定晶面发生的脆性穿晶断裂。
剪切断裂:是材料在切应力作用下沿滑移面滑移分离而造成的断裂。
河流花样:两相互平行但出于不同高度上的解理裂纹,通过次生解理或撕裂的方式相互连接形成台阶,同号台阶相遇变汇合长大,异号台阶相遇那么相互抵消。
当台阶足够高时,便形成河流花样。
解理台阶:不能高度解理面之间存在的台阶韧窝:新的微孔在变形带内形核、长大、集合,当其与已产生的裂纹连接时,裂纹便向前扩展形成纤维区,纤维区所在平面垂直于拉伸应力方向,纤维区的微观断口特点为韧窝。
2 材料的弹性模数要紧取决因素:1)键合方式和原子结构2)晶体结构3)化学成分4)微观组织5)温度6)加载方式3决定金属材料屈服强度的因素1)晶体结构2)晶界与亚结构3)溶质元素4)第二相5)温度6)应变速率与应力状态4 金属的应变硬化的实际意义1)在加工方面:利用应变硬化和塑性变形的合理配合,可使金属进行平均的塑性变形,保证冷变形工艺的顺利实施2) 在材料应用方面:应变硬化能够使金属机件具有一定的抗偶然过载能力,保证机件的安全使用。
一、名词解释第一章力学1.真实应变一根长度为L 的杆,在单向拉应力作用下被拉长到L ,则ε= ,为真实应变。
2.名义应变一根长度为L 的杆,在单向拉应力作用下被拉长到L ,则ε=L –L /L =△L/L ,ε为名义应变。
3.弹性模量材料在弹性变形阶段,其应力和应变成线性关系(即符合胡克定律),其比例系数称为弹性模量。
对各向同性体为一常数。
是原子间结合强度的一个标志。
4.弹性柔顺系数弹性体在单位应力下所发生的应变,是弹性体柔性的千种量度。
S =-μ/E ,其下标十位数为应变方向,个位数为所受应力的方向。
5.材料的蠕变对粘弹性体施加恒定应力σ时,其应变随时间而增加。
6.材料的弛豫对粘弹性体施加恒定应变ε时,则应力将随时间而减小。
7.位错增殖系数n个位错通过试样边界时引起位错增殖,使通过边界的位错数增加到nc个,c即为位错增殖系数。
8.滞弹性一些非晶体,有时甚至多晶体在比较小的应力时可以同时表现出弹性和粘性。
9.粘弹性无机固体和金属的与时间有关的弹性,即弹性形变的产生与消除需要有限时间。
10.粘性系数(粘度) 单位接触面积、单位速度梯度下两层液体间的内摩擦力。
单位Pa·S. 是流体抵抗流动的量度。
11.脆性断裂构件未经明显的变形而发生的断裂。
断裂时材料几乎没有发生过塑性变形。
在外力作用下,任意一个结构单元上主应力面的拉应力足够大超过材料的临界拉应力值时,会产生裂纹或缺陷的扩展,导致脆性断裂。
与此同时,外力引起的平均剪应力尚小于临界值,不足以产生明显的塑性变形或粘性流动。
12.裂纹亚临界生长裂纹在使用应力下,随时间的推移而缓慢扩展。
其结果是裂纹尺寸逐渐加大,一旦达到临界尺寸就会失稳扩展而破坏。
13.材料的理论结合强度根据Orowan提出的原子间约束力随原子间的距离x的变化曲线(正弦曲线),得到σ=σ×sin2πx/λ,σ为理论结合强度。
单位面积的原子平面分开所作的功应等于产生两个单位面积的新表面所需的表面能,材料才能断裂,根据公式得出σ= Eγ/a 。
工程材料名词解释一、性能㈠使用性能1、力学性能⑴刚度:材料抵抗弹性变形的能力。
指标为弹性模量:⑵强度:材料抵抗变形和破坏的能力。
指标:抗拉强度σ b—材料断裂前承受的最大应力。
屈服强度σ s—材料产生微量塑性变形时的应力。
条件屈服强度σ 0.2—残余塑变为0.2%时的应力。
疲劳强度σ -1—无数次交变应力作用下不发生破坏的最大应力。
⑶塑性:材料断裂前承受最大塑性变形的能力。
指标为⑷硬度:材料抵抗局部塑性变形的能力。
指标为HB、HRC。
⑸冲击韧性:材料抵抗冲击破坏的能力。
指标为αk.材料的使用温度应在冷脆转变温度以上。
⑹断裂韧性:材料抵抗内部裂纹扩展的能力。
指标为K1C。
2、化学性能⑴耐蚀性:材料在介质中抵抗腐蚀的能力。
⑵抗氧化性:材料在高温下抵抗氧化作用的能力。
3、耐磨性:材料抵抗磨损的能力。
㈡工艺性能1、铸造性能:液态金属的流动性、填充性、收缩率、偏析倾向。
2、锻造性能:成型性与变形抗力。
3、切削性能:对刀具的磨损、断屑能力及导热性。
4、焊接性能:产生焊接缺陷的倾向。
5、热处理性能:淬透性、耐回火性、二次硬化、回火脆性。
二、晶体结构㈠纯金属的晶体结构1、理想金属⑴晶体:原子呈规则排列的固体。
晶格:表示原子排列规律的空间格架。
晶胞:晶格中代表原子排列规律的最小几何单元.⑵三种常见纯金属的晶体结构⑶立方晶系的晶面指数和晶向指数①晶面指数:晶面三坐标截距值倒数取整加()②晶向指数:晶向上任一点坐标值取整加[ ]立方晶系常见的晶面和晶向⑷晶面族与晶向族指数不同但原子排列完全相同的晶面或晶向。
⑸密排面和密排方向——同滑移面与滑移方向在立方晶系中,指数相同的晶面与晶向相互垂直。
2、实际金属⑴多晶体结构:由多晶粒组成的晶体结构。
晶粒:组成金属的方位不同、外形不规则的小晶体.晶界:晶粒之间的交界面。
⑵晶体缺陷—晶格不完整的部位①点缺陷空位:晶格中的空结点。
间隙原子:挤进晶格间隙中的原子。
置换原子:取代原来原子位置的外来原子。
材料力学性能及名词解释材料力学性能及名词解释1.屈服点(σs)钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。
设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2)2.屈服强度(σ0.2)有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。
3.抗拉强度(σb)材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。
它表示钢材抵抗断裂的能力大小。
与抗拉强度相应的还有抗压强度、抗弯强度等。
设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。
4.伸长率(δs)材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。
5.屈强比(σs/σb)钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。
屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。
6.硬度硬度表示材料抵抗硬物体压入其表面的能力。
它是金属材料的重要性能指标之一。
一般硬度越高,耐磨性越好。
常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。
⑴布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。
⑵洛氏硬度(HR)当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。
它是用一个支持角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。
材料性能学材料性能学是材料科学的一个重要分支领域,研究材料的性能与结构之间的关系。
材料性能包括力学性能、热学性能、电学性能、磁学性能、光学性能等多个方面。
材料性能的优劣直接影响材料的应用范围和效果。
力学性能是材料性能学的重要内容之一,涉及材料的强度、硬度、韧性、耐磨性等指标。
力学性能的研究可以通过各种试验方法来获得。
常见的试验包括拉伸试验、冲击试验、硬度试验等。
力学性能的好坏决定了材料在受力领域的应用范围,优秀的力学性能可以使材料承受更大的载荷,具有很好的抗疲劳和耐磨损能力。
热学性能是材料在热环境下的性能表现,主要包括热导率、热膨胀系数、热稳定性等指标。
热学性能的研究对于材料在高温、低温环境下的应用具有重要意义。
例如,高导热材料可以应用于散热器、热交换器等领域,而低热膨胀系数的材料则适用于高精度仪器、光学设备等需要保持稳定尺寸的领域。
电学性能是材料导电性能的表现,主要包括电导率、介电常数、电阻率等指标。
电学性能是材料应用于电子、电力工程等领域的基础。
例如,电导率高的材料可以用作导线、电极等;而具有高介电常数的材料适用于电容器、绝缘材料等。
磁学性能是材料在磁场中的性能表现,主要包括磁导率、磁饱和强度、磁滞损耗等指标。
材料的磁学性能在电子、通信、磁存储等领域有广泛应用。
例如,磁导率高的材料可以用于制造电感器件、变压器等。
光学性能是材料在光学领域的表现,主要包括透光性、折射率、反射率等指标。
材料的光学性能对于光学器件、光学传感器等的设计和制造非常重要。
例如,透明度高的材料可以用于玻璃、光电子器件等;而具有特定折射率的材料可以用于制造透镜、光纤等。
综上所述,材料性能学研究材料的力学性能、热学性能、电学性能、磁学性能、光学性能等多个方面。
材料性能的好坏直接影响材料的应用范围和效果。
在材料设计和应用领域中,常常需要从以上多个方面综合考虑,选择合适的材料。
第一章材料的弹性变形一、填空题:1.金属材料的力学性能是指在载荷作用下其抵抗变形或断裂的能力。
2. 低碳钢拉伸试验的过程可以分为弹性变形、塑性变形和断裂三个阶段。
3. 线性无定形高聚物的三种力学状态是玻璃态、高弹态、粘流态,它们的基本运动单元相应是链节或侧基、链段、大分子链,它们相应是塑料、橡胶、流动树脂(胶粘剂的使用状态。
二、名词解释1.弹性变形:去除外力,物体恢复原形状。
弹性变形是可逆的2.弹性模量:拉伸时σ=EεE:弹性模量(杨氏模数)切变时τ=GγG:切变模量3.虎克定律:在弹性变形阶段,应力和应变间的关系为线性关系。
4.弹性比功定义:材料在弹性变形过程中吸收变形功的能力,又称为弹性比能或应变比能,表示材料的弹性好坏。
三、简答:1.金属材料、陶瓷、高分子弹性变形的本质。
答:金属和陶瓷材料的弹性变形主要是指其中的原子偏离平衡位置所作的微小的位移,这部分位移在撤除外力后可以恢复为0。
对高分子材料弹性变形在玻璃态时主要是指键角键长的微小变化,而在高弹态则是由于分子链的构型发生变化,由链段移动引起,这时弹性变形可以很大。
2.非理想弹性的概念及种类。
答:非理想弹性是应力、应变不同时响应的弹性变形,是与时间有关的弹性变形。
表现为应力应变不同步,应力和应变的关系不是单值关系。
种类主要包括滞弹性,粘弹性,伪弹性和包申格效应。
3.什么是高分子材料强度和模数的时-温等效原理?答:高分子材料的强度和模数强烈的依赖于温度和加载速率。
加载速率一定时,随温度的升高,高分子材料的会从玻璃态到高弹态再到粘流态变化,其强度和模数降低;而在温度一定时,玻璃态的高聚物又会随着加载速率的降低,加载时间的加长,同样出现从玻璃态到高弹态再到粘流态的变化,其强度和模数降低。
时间和温度对材料的强度和模数起着相同作用称为时=温等效原理。
四、计算题:气孔率对陶瓷弹性模量的影响用下式表示:E=E0(1—1.9P+0.9P2) E0为无气孔时的弹性模量;P为气孔率,适用于P≤50 %。
材料的性能这个概念的理解
材料的性能是指材料在特定条件下表现出的特性、能力和表现力。
它包括以下几个方面的理解:
1. 强度:强度是材料抵抗外力破坏的能力。
它反映了材料在承受荷载时的稳定性和可靠性。
2. 刚度:刚度是材料对形变的抵抗能力。
刚度高的材料具有较小的变形程度,能够保持形状稳定。
3. 韧性:韧性是材料在应力作用下能够发生塑性变形的能力。
韧性高的材料能够吸收大量能量,具有较好的耐冲击性。
4. 耐磨性:材料的耐磨性是指其抵抗磨损和磨蚀的能力。
这对于一些需要长时间使用或经常摩擦的材料来说非常重要。
5. 导热性:材料的导热性是指其传导热量的能力。
导热性好的材料能够迅速传导热量,具有较好的散热性能。
6. 导电性:导电性是指材料对电流的导电能力。
导电性好的材料适用于电子元件等需要传导电流的应用。
7. 耐腐蚀性:耐腐蚀性是指材料抵抗化学物质腐蚀侵蚀的能力。
耐腐蚀性好的材料能够减少在酸碱、溶剂等环境中的损害。
8. 寿命:寿命是指材料在使用条件下的持久性。
寿命长的材料能够延长使用寿命,降低维修和更换成本。
这些性能指标往往相互关联,不同的应用领域和需求会有不同的性能要求。
因此,在选择材料时,必须根据具体情况权衡各种性能指标,并找到最适合的材料。
材料性能学名词解释第⼀章(单向静载下⼒学性能)弹性变形:材料受载后产⽣变形,卸载后这部分变形消逝,材料恢复到原来的状态的性质。
塑性变形:微观结构的相邻部分产⽣永久性位移,并不引起材料破裂的现象弹性极限:弹性变形过度到弹-塑性变形(屈服变形)时的应⼒。
弹性⽐功:弹性变形过程中吸收变形功的能⼒。
包申格效应:材料预先加载产⽣少量塑性变形,卸载后再同向加载,规定残余应⼒(弹性极限或屈服强度)增加;反向加载,规定残余应⼒降低的现象。
弹性模量:⼯程上被称为材料的刚度,表征材料对弹性变形的抗⼒。
实质是产⽣100%弹性变形所需的应⼒。
滞弹性:快速加载或卸载后,材料随时间的延长⽽产⽣的附加弹性应变的性能。
内耗:加载时材料吸收的变形功⼤于卸载是材料释放的变形功,即有部分变形功倍材料吸收,这部分被吸收的功称为材料的内耗。
韧性:材料断裂前吸收塑性变形功和断裂功的能⼒。
超塑性:在⼀定条件下,呈现⾮常⼤的伸长率(约1000%)⽽不发⽣缩颈和断裂的现象。
韧窝:微孔聚集形断裂后的微观断⼝。
第⼆章(其他静载下⼒学性能)应⼒状态软性系数:不同加载条件下材料中最⼤切应⼒与正应⼒的⽐值。
剪切弹性模量:材料在扭转过程中,扭矩与切应变的⽐值。
缺⼝敏感度:常⽤试样的抗拉强度与缺⼝试样的抗拉强度的⽐值。
NSR硬度:表征材料软硬程度的⼀种性能。
⼀般认为⼀定体积内材料表⾯抵抗变形或破裂的能⼒。
抗弯强度:指材料抵抗弯曲不断裂的能⼒,主要⽤于考察陶瓷等脆性材料的强度。
第三章(冲击韧性低温脆性)冲击韧度:⼀次冲断时,冲击功与缺⼝处截⾯积的⽐值。
冲击吸收功:冲击弯曲试验中,试样变形和断裂所吸收的功。
低温脆性:当试验温度低于某⼀温度时,材料由韧性状态转变为脆性状态。
韧脆转变温度:材料在某⼀温度t下由韧变脆,冲击功明显下降。
该温度即韧脆转变温度。
迟屈服:⽤⾼于材料屈服极限的载荷以⾼加载速度作⽤于体⼼⽴⽅结构材料时,瞬间并不屈服,需在该应⼒下保持⼀段时间后才屈服的现象。
力学性能指标及定义:脆性材料:弹性变形,然后断裂塑性材料:弹性变形,塑性变形低塑性变形材料:无颈缩高塑性材料:有颈缩弹性:是材料的可逆变形。
本质:晶体点阵内的原子具有抵抗相互分开、接近或剪切移动的性质。
弹性模量Ε:表明材料对弹性形变的抗力,代表了材料的刚度。
(斜率)弹性极限ζe:材料发生最大弹性形变时的应力值。
弹性比功W e:材料吸收变形功而又不发生永久变形的能力。
W e=1/2ζeεe=εe2/2Ε(面积)普弹形变(高分子):应力与应变的关系符合胡克定律,变形由分子链内部键长和键角发生变化产生。
高弹形变(高分子):分子链在外力作用下,原先卷曲的链沿受力方向逐渐伸展产生,伸展长度与应力不成线性关系。
弹性的不完整性:应变滞后于应力。
本质:组织的不均匀性,使材料受应力作用时各晶粒的应变不均匀或应变明显受时间的影响。
弹性后效:加载时应变落后于应力而和时间有关的现象称为正弹性后效;反之,卸载时应变落后于应力的现象称为反弹性后效。
弹性滞后:由于正反弹性后效使得应力-应变得到的封闭回线内耗:加载时消耗于材料的的变形功大于卸载时材料所放出的变形功,因而有部分变形功被材料所吸收,这被吸收的功为内耗。
(例子:①音响效果好的元件要求内耗小such as音叉、琴弦等②机件在运转时常伴有振动,需要良好的消振材料such as灰口铸铁)包申格效应:金属材料预先经少量塑性变形后再同向加载,弹性极限升高,反之降低的现象。
与位错运动所受阻力有关。
(例子:高速运转部件预先进行高速离心处理,有利于提高材料的抗变形能力。
)超弹性材料:材料在外力作用下产生远大于其弹性极限时的应变量,外力去除自动恢复其变形的现象。
脆性:弹性极限前断裂(断裂前不产生塑性变形的性质)韧性:断裂前单位体积材料所吸收的变性能和断裂能,即外力所作的功①弹性变形能②塑性变形能③断裂能塑性:材料在断裂前发生的永久型变形(不可逆变形)塑性变形:位错在外力的作用下发生滑移和孪生。
第一篇材料的力学性能第一章材料的弹性变形一、名词解释1、弹性变形:外力去除后,变形消失而恢复原状的变形。
P42弹性模量:表示材料对弹性变形的抗力,即材料在弹性变形范兩内,产生单位弹性应变的需应力。
P103、比例极限:是保证材料的弹性变形按正比例关系变化的最大应力。
P154、弹性极限:是材料只发生弹性变形所能承受的最大应力。
P155、弹性比功:是材料在弹性变形过程中吸收变形功的能力。
P156、包格申效应:是指金属材料经预先加载产生少量塑性变形(残余应变小于4%), 而后再同向加载,规定残余伸长应力增加,反向加载,规定残余伸长应力降低的现象。
P207、内耗:在加载变形过程中,被材料吸收的功称为内耗。
P21二、填空题1、金属材料的力学性能是指在载荷作用下其抵抗(变形)和(断裂)的能力。
P22、低碳钢拉伸试验的过程可以分为(弹性变形)、(塑性变形)和(断裂)三个阶段。
P2三、选择题1、表示金属材料刚度的性能指标是(B )。
P10A比例极限B弹性模量C弹性比功2、弹簧作为广泛应用的减振或储能元件,应具有较高的(C )<> P16A塑性B弹性模量C弹性比功D硬度3、下列材料中(C )最适宜制作弹簧。
A 08 钢B 45 钢C 60Si:Mn C T12 钢4、下列因素中,对金属材料弹性模量影响最小的因素是(D )。
A化学成分B键合方式C晶体结构D晶粒大小四、问答题影响金属材料弹性模量的因素有哪些?为什么说它是组织不敬感参数?答:影响金属材料弹性模量的因素有:键合方式和原子结构、晶体结构、化学成分、温度及加载方式和速度。
弹性模量是组织不敬感参数,材料的晶粒大小和热处理对弹性模量的影响很小。
因为它是原子间结合力的反映和度量。
P11第二章材料的塑性变形一、名词解释1、塑性变形:材料在外力的作用于下,产生的不能恢复的永久变形。
P242、塑性:材料在外力作用下,能产生永久变形而不断裂的能力。
P523、屈服强度:表征材料抵抗起始塑性变形或产生微量塑性变形的能力。
材料性能学总复习资料第一章 作业11.掌握以下物理概念:强度、屈服强度、抗拉强度、塑性、弹性、延伸率、断面收缩率、弹性模量、比例极限、弹性极限、弹性比功、包申格效应、弹性后效、弹性滞后环强度:指的是构件抵抗破坏的能力。
屈服强度:材料屈服时对应的应力值也就是材料抵抗起始塑性变形或产生微量塑性变形的能力,这一应力值称为材料的屈服强度。
抗拉强度:材料最大均匀塑性变形的抗力。
塑性:是指在外力作用下,材料能稳定地发生永久变形而不破坏其完整性的能力。
弹性:材料受载后产生一定的变形,而卸载后这部分变形消逝,材料恢复到原来的状态的性质称为材料的弹性。
延伸率:材料拉伸后的截面面积变化量与原始截面面积的比值。
断面收缩率:材料拉断后,缩颈处横截面积的最大减缩量与原始截面面积的百分比。
弹性模量:弹性模数是产生100%弹性变形所需的应力。
比例极限:是保证材料的弹性变形按正比关系变化的最大应力。
弹性极限:是材料由弹性变形过渡到弹-塑性变形时的应力。
弹性比功:又称为弹性必能,是材料在弹性变形过程中吸收变形功的能力。
包申格效应:是指金属材料经预先加载产生少量塑性变形,而后再同向加载,规定残余伸长应力增加,反向加载,规定残余伸长应力降低的现象。
弹性后效:又称滞弹性,是指材料在快速加载或卸载后,随时间的延长而产生的附加弹性应变的性能。
弹性滞后环:在非理想弹性的情况下,由于应力和应变不同步,是加载线与卸载线不重合而形成一封闭回线,这个封闭回线称为弹性滞后环。
2、衡量弹性的高低用什么指标,为什么提高材料的弹性极限能够改善弹性? 衡量弹性的高低通常用弹性比功来衡量E a e e 22σ=,所以提高弹性极限可以提高弹性比功。
3、材料的弹性模数主要取决哪些因素?凡是影响键合强度的因素均能影响材料的弹性模数。
主要有:键合方式、晶体结构、化学成分、微观组织、温度及加载方式和速度。
4、一直径2.5mm ,长度为200.0mm 的杆,在2000N 的载荷作用下,直径缩至2.2mm ,试求(1)杆的最终长度;(2)在该载荷作用下的真实应力和真实应变;(3)在该载荷作用下的工程应力和工程应变。
一、名词解释低温脆性:材料随着温度下降,脆性增加,当其低于某一温度时,材料由韧性状态变为脆性状态,这种现象为低温脆性。
疲劳条带:每个应力周期内疲劳裂纹扩展过程中在疲劳断口上留下相互平行的沟槽状花样。
韧性:材料断裂前吸收塑性变形功和断裂功的能力。
缺口强化:缺口的存在使得其呈现屈服应力比单向拉伸时高的现象。
50%FATT:冲击试验中采用结晶区面积占整个断口面积 50%时所应的温度表征的韧脆转变温度。
破损安全:构件内部即使存在裂纹也不导致断裂的情况。
应力疲劳:疲劳寿命N>105 的高周疲劳称为低应力疲劳,又称应力疲劳。
韧脆转化温度:在一定的加载方式下,当温度冷却到某一温度或温度范围时,出现韧性断裂向脆性断裂的转变,该温度称为韧脆转化温度。
应力状态软性系数:在各种加载条件下最大切应力与最大当量正应力的比值,通常用α表示。
疲劳强度:通常指规定的应力循环周次下试件不发生疲劳破坏所承受的上限应力值。
内耗:材料在弹性范围内加载时由于一部分变形功被材料吸收,则这部份能量称为内耗。
滞弹性: 在快速加载、卸载后,随着时间的延长产生附加弹性应变的现象。
缺口敏感度:常用缺口试样的抗拉强度与等截面尺寸的光滑试样的抗拉强度的比值表征材料缺口敏感性的指标,往往又称为缺口强度比。
断裂功:裂纹产生、扩展所消耗的能量。
比强度::按单位质量计算的材料的强度,其值等于材料强度与其密度之比,是衡量材料轻质高强性能的重要指标。
.缺口效应:构件由于存在缺口(广义缺口)引起外形突变处应力急剧上升,应力分布和塑性变形行为出现变化的现象。
解理断裂:材料在拉应力的作用下原于间结合破坏,沿一定的结晶学平面(即所谓“解理面”)劈开的断裂过程。
应力集中系数:构件中最大应力与名义应力(或者平均应力)的比值,写为KT。
高周疲劳:在较低的应力水平下经过很高的循环次数后(通常N>105)试件发生的疲劳现象。
弹性比功:又称弹性应变能密度,指金属吸收变形功不发生永久变形的能力,是开始塑性变形前单位体积金属所能吸收的最大弹性变形功。
中原工学院材料与化工学院材料性能学《材控专业课后习题》第一章材料在单向拉伸时的力学性能1-1名词解释1.弹性比功:材料在弹性变形过程中吸收变形功的能力.2.包申格效应:金属材料经预先加载产生少量塑性变形,而后再同向加载,规定残余伸长应力增加,反向加载,规定残余伸长应力降低的现象.其来源于金属材料中的位错运动所受阻力的变化。
可通过热处理(再结晶退火)消除。
3.塑性:材料断裂前产生塑性变形的能力4.韧性:材料变形时吸收变形力的能力5.脆性断裂(弹性断裂):材料断裂前不发生塑性变形,而裂纹的扩展速度往往很快。
断口呈现与正应力垂直,宏观上比较齐平光亮,为放射状或结晶状。
6.韧性断裂(延性断裂或者塑性断裂):材料断裂前及断裂过程中产生明显塑性变形的断裂过程。
断口呈现暗灰色、纤维状。
7.剪切断裂:材料在切应力作用下沿滑移面分离而造成断裂.断口呈现锋利的楔形或微孔聚集型,即出现大量韧窝。
8.河流花样:解理裂缝相交处会形成台阶,呈现出形似地球上的河流状形貌9.解理台阶:解理裂纹的扩展往往是沿晶面指数相同的一族相互平行,但位于“不同高度”的晶面进行的。
不同高度的解理面存在台阶。
10.韧窝:通过孔洞形核、长大和连接而导致韧性断裂的断口1—3材料的弹性模数主要取决于什么因素?答:影响弹性模数的因素:键合方式和原子结构、晶体结构、化学成分、微观组织、温度、加载条件和负荷持续时间1—4决定金属材料屈服强度的主要因素有哪些?答:1、晶体结构:屈服是位错运动,因此单晶体理论屈服强度=临界切应力2、晶界和亚结构:晶界是位错运动的重要障碍,晶界越多,常温时材料的屈服强度增加。
晶粒越细小,亚结构越多,位错运动受阻越多,屈服强度越大。
3、溶质元素:由于溶质原子与溶剂原子直径不同,在溶质原子周围形成晶格畸变应力场,其与位错应力场相互作用,使位错运动受阻,增大屈服强度.固溶强化、柯氏气团强化、沉淀强化、时效强化、弥散强化4、第二相:弥散分布的均匀细小的第二相有利于提高屈服强度5、环境因素对屈服强度的影响1)温度的影响:温度升高,屈服强度降低,但变化趋势因不同晶格类型而异。
1.刚度:指材料或结构在受力时抵抗弹性变形的能力。
工程商,弹性模量被称为材料的刚度。
2.形变强化:随着塑性变形量的增加,金属流变强度也增加,这种现象称为形变强化或加工硬化。
3.弹性极限:材料有弹性形变过渡到弹-塑性变形时的应力。
4.滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。
5.包申格效应:金属材料经过预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服强度)增加;反向加载,规定残余伸长应为降低(特别是弹性极限在反向加载时几乎降低到0)的现象。
6.弹性变形:材料在外力作用下产生变形,当外力取消后,材料变形即可消失并能完全恢复原来形状的性质称为弹性。
这种可恢复的变形称为弹性变形。
7.弹性比功:表示单位体积金属材料吸收弹性变形功的能力,又称弹性比应变能。
8.抗拉强度:韧性金属式样拉断过程中最大力所对应的应力,称为抗拉强度。
9.韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
10.脆性断裂:是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆。
11.磨损:机件表面相接触并做相对运动时,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐损失,造成表面损伤的现象。
12.冲击韧性:在冲击载荷作用下,金属材料断裂前吸收塑性变形功和断裂功的能力。
13.应力腐蚀开裂:金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆断现象,称为应力腐蚀断裂。
14.等温强度:晶粒强度与晶界强度相等的温度。
15.缺口效应:绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。
16.腐蚀疲劳:化工设备中许多金属材料构件都工作在腐蚀的环境中,同时还承受着交变载荷的作用。
名词解释第一章:弹性比功:材料在弹性变形过程中吸收变形功的能力。
包申格效应:是指金属材料经预先加载产生少量塑性变形,而后再同向加载,规定残余伸长应力增加,反向加载,规定残余伸长应力降低的现象。
滞弹性:是材料在加速加载或者卸载后,随时间的延长而产生的附加应变的性能,是应变落后于应力的现象。
粘弹性:是指材料在外力的作用下,弹性和粘性两种变形机理同时存在的力学行为。
内耗:在非理想弹性变形过程中,一部分被材料所吸收的加载变形功。
塑性:材料断裂前产生塑性变形的能力。
韧性:是材料力学性能,是指材料断裂前吸取塑性变形攻和断裂功的能力。
银纹:是高分子材料在变形过程中产生的一种缺陷,由于它密度低,对光线反射高为银色。
超塑性:材料在一定条件下呈现非常大的伸长率(约1000% )而不发生缩颈和断裂的现象。
脆性断裂:是材料断裂前基本不产生明显的宏观塑性变形,没有明显预兆,而是突然发生的快速断裂过程。
韧性断裂:是指材料断裂前及断裂过程中产生明显宏观塑性变形的断裂过程。
解理断裂:在正应力作用下,由于原子间结合键的破坏引起的沿特定晶面发生的脆性穿晶断裂。
剪切断裂:是材料在切应力作用下沿滑移面滑移分离而造成的断裂。
河流花样:两相互平行但出于不同高度上的解理裂纹,通过次生解理或撕裂的方式相互连接形成台阶,同号台阶相遇变汇合长大,异号台阶相遇则相互抵消。
当台阶足够高时,便形成河流花样。
解理台阶:不能高度解理面之间存在的台阶韧窝:新的微孔在变形带内形核、长大、聚集,当其与已产生的裂纹连接时,裂纹便向前扩展形成纤维区,纤维区所在平面垂直于拉伸应力方向,纤维区的微观断口特征为韧窝。
2 材料的弹性模数主要取决因素:1) 键合方式和原子结构2) 晶体结构3) 化学成分4) 微观组织5) 温度6) 加载方式3 决定金属材料屈服强度的因素1) 晶体结构2) 晶界与亚结构3) 溶质元素4) 第二相5) 温度6) 应变速率与应力状态4 金属的应变硬化的实际意义1) 在加工方面:利用应变硬化和塑性变形的合理配合,可使金属进行均匀的塑性变形,保证冷变形工艺的顺利实施2) 在材料应用方面:应变硬化可以使金属机件具有一定的抗偶然过载能力,保证机件的安全使用。
3) 应变硬化也是一种强化金属的重要手段,尤其对不能进行热处理的材料5 静拉伸断口:1) 按照锻炼前后的宏观塑性变形的程度:脆性断裂和塑性断裂2) 按照晶体材料断裂时裂纹的扩展途径:穿晶断裂和沿晶断裂3) 按照微观断裂机理:解理断裂和剪切断裂4) 按照作用力的性质:正断和切断韧性断裂:材料断裂前和断裂过程中产生明显的宏观塑性变形的断裂过程。
断口往往呈暗灰色、纤维状。
脆性断裂:材料断裂前基本上不产生明显的宏观塑性变形。
断口一般与正应力垂直,宏观上比较齐平光亮,常呈放射状或结晶状穿晶断裂:可以是韧断,也可以是脆断沿晶断裂:多数为脆性断裂,断口形貌一般呈结晶状。
剪切断裂:剪切断裂是材料在切应力作用下沿滑移面滑移分离造成的断裂。
纯剪切断裂:断口呈锋利的楔形。
大单晶体上用肉眼可以观察到很多直线状的滑移痕迹。
多晶体上呈现“蛇形滑动”花样微孔聚集型断裂:暗灰色,纤维状,断口花样特征是断口上分布大量“韧窝”解理断裂:在正应力的作用下,由于原子间结合键的破坏引起的沿特定晶面发生的脆性穿晶断裂。
断口应该是极平坦的镜面。
准解理断裂:是解理断裂的变种。
符号意义:0.2 表示没有明显屈服平台卸载以后,材料残余变形为0.2% 对应的应力值,用此表示没有屈服平台材料的屈服强度。
r (规定残余伸长应力)是指试样卸除拉伸力后,其标距部分的残余伸长达到规定原始标距百分比时的应力t (规定总伸长应力)是指标距部分的总伸长达到规定的原始标距百分比时的应力。
6证明F K A n e因为颈缩形成点对于工程应力应变曲线上的最大载荷点所以dF=0F nFdF dA de 0AedL dAdeLAneS b Ke b n K n nF b b A0 S b A b Kn n A bn A b第二章:应力状态软性系数:最大切应力与最大正应力的比值。
缺口效应:缺口造成应力应变集中,这是缺口第一效应;缺口改变了缺口前方的应力状态,使平板中材料所受的应力由原来的单向拉伸变为两向或三向拉伸,这是缺口第二效应;在有缺口的条件下,出现了三向应力,试样的屈服应力比单向拉伸要高,缺口使材料得到“强化”,这是缺口第三效应。
缺口敏感度:试验时常用试样的抗拉强度与等截面尺寸光滑试样的抗拉强度的比值称为缺口敏感度。
布氏硬度:单位压痕面积承受的平均应力。
洛氏硬度:以测量压痕深度值的大小来表示材料的硬度值。
维氏硬度:采用压头为两相对面夹角为136 度的金刚石四棱锥体,根据压痕单位面积所承受的载荷来计算硬度值。
努氏硬度:用一定大小的载荷F 的两相对面夹角不等的金刚石四棱锥体压入试样表面,得到长、短对角线长度比为7.11 的棱形压痕。
载荷F 除以压痕投影面积之商作为硬度值。
2 扭转、弯曲、压缩的特点和应用扭转的特点及应用:1) 扭转的应力状态软性系数较拉伸的应力状态软性系数高,故可用来测定那些在拉伸时呈现脆性的材料的强度和塑性2) 扭转试验时试样截面的应力分布为表面最大,愈往心部愈小,故此方法对材料表面硬度化及表面缺陷的反映十分敏感。
利用这个特性,可以对各种表面强化工艺进行研究和对机件的热处理表面质量进行检验3) 圆柱形试样在扭转试验时,整个试样长度上始终不产生缩颈现象,塑性变形始终是均匀的,其截面及标距长度也基本上保持原尺寸不变,故可用来精确评价那些拉伸时出现颈缩的高塑性材料的变形能力和形变抗力。
4) 扭转试验时,正应力与切应力大致相等,所以是测定材料的切断强度的可靠方法,此外根据断口特征还可以区分材料最终的断裂方式是正断还是切断弯曲的特点及应用:1) 弯曲加载时受拉的一侧应力状态基本上与静拉伸时相同,且不存在如拉伸时的所谓试样偏斜对试验结果的影响。
因此弯曲试验常用于测定那些由于太硬难于加工成拉伸试样的脆性材料的断裂强度,并能显示出它们的塑性差别2)弯曲试验时,截面上的应力分布也是表面上应力最大,故可灵敏的反映材料的表面缺陷,因此,常用来比较和评定材料表面处理层的质量3)由弯曲图可以看出弯曲试验不能使这些材料断裂,在这种情况下虽可以测定非比例弯曲应力,但实际上很少使用。
压缩试验的特点及应用:1)单向压缩的应力状态软性系数=2,因此,压缩试验主要用于脆性材料,以显示其在静拉伸时缩不能反映的材料在韧性状态下的力学行为。
2)压缩与拉伸受力方向不仅相反,且两种试验所得的载荷变形曲线、塑性及断裂形态也存在较大的差别,特别是压缩不能使塑性材料断裂。
故塑性材料一般不采用压缩方法检验。
3)多向不等压缩试验的应力状态软性系数2,故此方法适用于脆性更大的材料,它可以反映此类材料的微小塑性差异。
此外对于接触表面处承受多向压缩的机件,也可以采用多向压缩试验,使试验条件与实验服役条件更接近。
3 布氏与维氏硬度试验原理的异同,并比较布氏,洛氏及维氏硬度试验的优缺点和应用范围布氏维氏硬度相同点:都是根据压痕面积缩承受的载荷来计算硬度值不同点:布氏硬度试验所用的压头是直径为D 的淬火钢球或硬质合金球维氏硬度试验所用的压头是两相对面夹角为136 度的金刚石四棱椎体。
布氏硬度的优点:测量数值稳定准确,能较真实地反映材料的平均硬度缺点:压痕较大,操作慢,不适用批量生产的成品件和薄形件适用范围:用于原材料与半成品硬度测量,可用于测量铸铁、有色金属、硬度较低的钢常用符号:HBW(压头为硬质合金球)HRS(淬火钢球)10mm 淬火钢球在3000kgf 载荷的作用下保持30 s 测量的硬度值为280 ,记为280 HBS 10/3000/30 10 到15s 时间不标洛氏硬度的优点:压痕少,操作简单,易直接读出数据,不存在压头变形的问题,测量效率高,可以消除表面微小的不平度对试验结果的影响。
缺点:不同标尺的洛氏硬度值无法相互比较,由于压痕小,所以洛氏硬度对材料组织部不均匀性质很敏感,测试结果比较分散,重复性差,分散度大适用范围:不宜用来测定极薄工作或经各种表面处理后工件的表面层硬度,可以测定各种软硬不同和薄厚不一试样的硬度。
常用符号:HR(常用的有HRA HRB HRC )维氏硬度的优点:采用了四方椎体压头,当载荷改变时,压入角恒定不变,因此可以任意选择载荷,而不存在布氏硬度那种载荷F 与压球直径D 之间的关系约束,此外也不存在洛氏硬度那种不同标尺的硬度无法统一的问题。
测量范围宽,软硬材料都可测,压痕轮廓清晰,对角线长度易于测量,精确度高。
缺点:测量方法较为麻烦,工作效率低,压痕面积小,代表性差,不宜用于成批生产的常规检验适用范围:适用各种软硬不同,厚薄不一试样的硬度。
常用符号:HV 载荷30kgf 作用下持续20s测得的维氏硬度为640 为640 HV30/204 布氏硬度与维氏硬度测出的硬度值相差不大的原因都是根据压痕单位面积所承受的载荷来计算硬度值。
5 (此处相当多没准确答案)(1)渗碳层的硬度分布HV(2)淬火钢HRC(3)灰铸铁HRE(4)硬质合金HRA(5)钢中的隐晶马氏体和参与奥氏体显微硬度试验(6)仪表小黄铜齿轮HRB(7)龙门刨床导轨HV(8)氮化层显微硬度(9)火车弹簧HRA(10 )高速钢刀具HRC(11)退火状态下软钢HRB第三章:低温脆性:在试验温度低于某一温度t k 时,材料会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集型变为穿晶解理,断口特征由纤维状变为结晶状,这就是低温脆性。
韧脆转变温度:转变温度t k 称为韧脆转变温度。
蓝脆:碳钢和某些合金钢在冲击载荷作用或静载荷作用下,在一定的温度范围内出现脆性。
因为在该温度范围内加热钢时,表面氧化色为蓝色,故此现象称为蓝脆迟屈服:对材料施加某一大于s 的高速载荷时材料并不立即产生屈服,而需要经过一段孕育期才开始塑性变形。
1 冲击载荷下金属变形和断裂的特点1)应变速率对金属材料弹性行为及弹性行为及弹性模量没有影响。
2)普通摆锤冲击试验的绝对变形速度为5~5.5m/s3)应变速率对塑性变形、断裂及有关的力学性能有显著的影响:A 静载荷作用时:塑性变形比较均匀的分布在各个晶粒中;B 冲击载荷作用时:塑性变形则比较集中于某一局部区域,反映了塑性变形不均匀。
C 这种不均匀限制了塑性变形的发展,导致了屈服强度、抗拉强度的提高低温脆性产生的原因:宏观上低温脆性的产生与其屈服强度裂强度c随温度的变化有关。
c 随温度的变化很小,s对温度变化十分敏感。
微观上,体心立方金属的低温脆性与位错在晶体中的运动阻力i对温度变化非常敏感有关,i在低温下增加,故该类材料在低温下常处于脆性状态。
面心立方金属因位错宽度比较大,i 对温度变化不敏感,故一般不显示低温脆性。