压电陶瓷粉体的制备与测试
- 格式:doc
- 大小:80.00 KB
- 文档页数:2
一、实验目的1. 了解压电陶瓷的基本性能、结构、用途、制备方法。
2. 掌握压电陶瓷常见的表征方法及检测手段。
3. 通过实验,掌握压电陶瓷的性能测试方法,并对实验数据进行处理和分析。
二、实验原理压电陶瓷是一种具有压电效应的陶瓷材料,当受到外力作用时,会在其表面产生电荷;反之,当施加电场时,压电陶瓷会产生形变。
压电陶瓷的性能主要包括压电系数、介电常数、损耗角正切、机械品质因数等。
三、实验材料与仪器1. 实验材料:压电陶瓷样品2. 实验仪器:(1)电容测微仪(2)机械标定仪(3)直流电源(4)扫描隧道显微镜(5)谐振法测定仪(6)准静态法测定仪四、实验步骤1. 样品准备:将压电陶瓷样品清洗干净,并用无水乙醇进行脱脂处理。
2. 压电陶瓷性能测试:(1)电容测微仪测试:将压电陶瓷样品固定在电容测微仪上,通过改变直流电压,观察样品的轴向变形和弯曲变形。
(2)谐振法测定:将压电陶瓷样品固定在谐振法测定仪上,测量样品的频率响应曲线和压电耦合系数。
(3)准静态法测定:将压电陶瓷样品固定在准静态法测定仪上,测量样品的压电常数d33。
3. 数据处理与分析:将实验数据输入计算机,进行数据处理和分析,得出压电陶瓷的性能参数。
五、实验结果与分析1. 电容测微仪测试结果:通过电容测微仪测试,得出压电陶瓷样品的轴向变形和弯曲变形与电压的关系曲线。
根据曲线,计算出样品的压电系数。
2. 谐振法测定结果:通过谐振法测定,得出压电陶瓷样品的频率响应曲线和压电耦合系数。
根据曲线,计算出样品的介电常数和损耗角正切。
3. 准静态法测定结果:通过准静态法测定,得出压电陶瓷样品的压电常数d33。
根据测定结果,分析样品的压电性能。
六、实验结论1. 压电陶瓷样品具有良好的压电性能,满足实验要求。
2. 实验过程中,通过电容测微仪、谐振法测定和准静态法测定,分别获得了压电陶瓷样品的轴向变形、弯曲变形、频率响应曲线、压电耦合系数、介电常数、损耗角正切和压电常数等性能参数。
一、实验目的本实验旨在探究无铅压电陶瓷的制备工艺、性能测试及其在压电应用中的潜在价值。
通过实验,了解无铅压电陶瓷的物理化学性质,掌握其制备过程,并评估其在压电性能方面的表现。
二、实验材料与设备1. 实验材料:- 钛酸铋钠(Na0.5Bi0.5TiO3,简称NBT)- 钛酸锶钡(BaxSr1-xTiO3,简称BST)- 氧化铋(Bi2O3)- 氧化钡(BaO)- 氧化钠(Na2O)- 氧化钾(K2O)- 氧化锂(Li2O)2. 实验设备:- 搅拌机- 烧结炉- 压电测试仪- 扫描电子显微镜(SEM)- X射线衍射仪(XRD)- 能量色散谱仪(EDS)三、实验步骤1. 粉体合成:将上述原料按一定比例混合,在搅拌机中充分混合均匀,制备成粉末。
2. 烧结:将混合好的粉末装入模具,在烧结炉中加热至一定温度,保温一段时间后冷却。
3. 性能测试:利用压电测试仪测试样品的压电性能,包括介电常数、介电损耗、压电系数等。
利用SEM、XRD和EDS分析样品的微观结构和物相组成。
四、实验结果与分析1. 介电性能:实验结果表明,NBT基无铅压电陶瓷具有较高的介电常数(εr=1000-3000),介电损耗较低(tanδ=0.001-0.02),表现出良好的介电性能。
2. 压电性能:实验结果表明,NBT基无铅压电陶瓷具有较高的压电系数(d33=300-500pC/N),在压电应用中具有较高的潜力。
3. 微观结构:SEM结果表明,样品具有良好的晶粒结构,晶粒尺寸约为1-2 μm。
XRD结果表明,样品主要由NBT相组成,并伴有少量其他相。
EDS结果表明,样品中元素分布均匀。
4. 性能优化:通过调整原料比例、烧结温度等参数,可以进一步优化无铅压电陶瓷的性能。
例如,增加氧化铋的含量可以提高材料的压电系数,降低烧结温度可以缩短烧结时间。
五、结论本实验成功制备了NBT基无铅压电陶瓷,并对其性能进行了测试。
结果表明,NBT基无铅压电陶瓷具有较高的介电常数、压电系数和良好的微观结构,具有在压电应用中的潜力。
PZT陶瓷制备一、PZT陶瓷制备的工艺流程压电陶瓷生产的工艺流程(以传统固相烧结为例)为:配料→球磨→过滤、干燥→预烧→二次球磨→过滤、干燥→过筛→成型→排塑→烧结→精修→上电极→烧银→极化→测试。
1、原料处理首先,根据化学反应式配料。
所用的原料大多数是金属氧化物,少数也可以是碳酸盐(预烧时可分解为氧化物)。
为使生成压电陶瓷的化学反应顺利进行,要求原料细度一般不超过2μm(平均直径)。
提高原料纯度有利于提高产品质量。
通常使用转动球磨机或震动球磨机进行原料混合及粉碎。
另外,在生产中往往还使用气流粉碎法,用高压气流的强力破碎作用,使粉料形成雾状,由于不用球石,可以避免杂质混入,且效率高。
2、预烧中的反应过程预烧过程一般需要经过四个阶段:线性膨胀(室温—400℃)固相反应(400—750℃)收缩(750—850℃)晶粒生长(800-900℃以上)在固相反应过程中,反应可分为四个区域,如图1[1]所示,分别对应于如下的化学过程:区域Ⅰ:未反应;区域Ⅱ:Pb+TiO2→PbTiO3;区域Ⅲ:PbTiO3+PbO+ZrO2→Pb(Zr1-x Ti x)O3;区域Ⅳ:Pb(Zr1-x Ti x)O3系统的反应区域+PbTiO3→Pb(Zr1-x’Ti x’)O3(x<x’)。
图1 2PbO-TiO2-ZrO2系统的反应区域●—X射线测得点;○化学分析测得点,旁边数字代表已反应的PbO的百分数,烧结时间为零指刚到炉温的时刻;P—正交PbO;Z—单斜ZrO2;T—四方TiO2;PT—四方PbTiO3;PZT—Pb(Zr1-x Ti x)O3固定保温时间2h,改变预烧温度,随着温度的升高,在540℃左右,进入区域Ⅱ,形成PbTiO3;在650℃左右,进入区域Ⅲ,TiO2消失,Pb(Zr,Ti)O3形成;在710℃左右,进入区域Ⅳ,PbO和ZrO2消失;到1200℃时,PbTiO3消失,成为单相的Pb(Zr,Ti)O3。
PZT陶瓷制备一、PZT陶瓷制备的工艺流程压电陶瓷生产的工艺流程(以传统固相烧结为例)为:配料→球磨→过滤、干燥→预烧→二次球磨→过滤、干燥→过筛→成型→排塑→烧结→精修→上电极→烧银→极化→测试。
1、原料处理首先,根据化学反应式配料。
所用的原料大多数是金属氧化物,少数也可以是碳酸盐(预烧时可分解为氧化物)。
为使生成压电陶瓷的化学反应顺利进行,要求原料细度一般不超过2μm(平均直径)。
提高原料纯度有利于提高产品质量。
通常使用转动球磨机或震动球磨机进行原料混合及粉碎。
另外,在生产中往往还使用气流粉碎法,用高压气流的强力破碎作用,使粉料形成雾状,由于不用球石,可以避免杂质混入,且效率高。
2、预烧中的反应过程预烧过程一般需要经过四个阶段:线性膨胀(室温—400℃)固相反应(400—750℃)收缩(750—850℃)晶粒生长(800-900℃以上)在固相反应过程中,反应可分为四个区域,如图1[1]所示,分别对应于如下的化学过程:区域Ⅰ:未反应;区域Ⅱ:Pb+TiO2→PbTiO3;区域Ⅲ:PbTiO3+PbO+ZrO2→Pb(Zr1-x Ti x)O3;区域Ⅳ:Pb(Zr1-x Ti x)O3系统的反应区域+PbTiO3→Pb(Zr1-x’Ti x’)O3(x<x’)。
图1 2PbO-TiO2-ZrO2系统的反应区域●—X射线测得点;○化学分析测得点,旁边数字代表已反应的PbO的百分数,烧结时间为零指刚到炉温的时刻;P—正交PbO;Z—单斜ZrO2;T—四方TiO2;PT—四方PbTiO3;PZT—Pb(Zr1-x Ti x)O3固定保温时间2h,改变预烧温度,随着温度的升高,在540℃左右,进入区域Ⅱ,形成PbTiO3;在650℃左右,进入区域Ⅲ,TiO2消失,Pb(Zr,Ti)O3形成;在710℃左右,进入区域Ⅳ,PbO和ZrO2消失;到1200℃时,PbTiO3消失,成为单相的Pb(Zr,Ti)O3。
材料测试方法举例——压电陶瓷压电陶瓷是一种能够产生压电效应的陶瓷材料,具有压电、电致伸缩和压电声发射等特性。
为了评估压电陶瓷的性能和质量,需要进行一系列的材料测试方法。
下面是针对压电陶瓷的几种常用测试方法举例,供参考。
1.压电常数测试:压电常数是评价压电陶瓷的重要指标之一,用于描述材料对外力作用下电荷产生的比例关系。
测试之前,首先需将压电陶瓷样品制成规定的尺寸,然后通过设备施加压力,测量在不同压力下的电荷大小,进而计算压电常数。
常用的测试方法包括电荷常数法、弯曲法和悬臂梁法等。
2.电机械耦合系数测试:电机械耦合系数是反映压电陶瓷在电场作用下的振动和机械功率输出之间关系的指标。
测试时,将压电陶瓷样品固定在振动台上,通过施加电压激励材料振动,测量振动的频率和幅值,然后计算电机械耦合系数。
3.管路声发射测试:压电陶瓷可以应用于声发射传感器,用于检测管路中的泄漏或其他故障。
测试时,将压电陶瓷传感器安装在管路上,并进行正常运行的测试过程。
通过监测传感器产生的压电信号变化,可以识别管路中是否存在泄漏或故障。
4.微观结构分析:压电陶瓷的微观结构对其性能具有重要影响,因此需要进行微观结构分析。
常用的方法包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射(XRD)等。
通过这些技术,可以观察到材料的晶粒结构、晶格畸变和缺陷等信息,从而评估材料的质量和性能。
5.稳态和瞬态性能测试:为了确定压电陶瓷的稳态和瞬态性能,需要进行相应的测试。
稳态性能测试主要包括电压-位移曲线测试和电压-电荷曲线测试,通过施加不同的电压并测量相应的位移或电荷,来评估材料对电场刺激的响应。
瞬态性能测试主要包括步进响应测试和冲击响应测试,通过输入瞬态电压或冲击信号,测量材料的响应时间和能量转换效率。
上述仅是压电陶瓷测试方法的一小部分举例,实际测试方法应根据具体应用和需求进行选择和设计。
测试方法的选取应考虑准确性、重复性、可靠性和可操作性等因素,以确保对压电陶瓷材料进行准确全面的评估。
陶瓷粉体的制备及性能测定实验一、实验目的1、掌握陶瓷粉体制备的原理和常用方法及设备;2、了解影响陶瓷粉体制备的各种因素;3、掌握粉料颗粒分成的表示方法和测定方法;二、实验原理粉体的制备方法分两种。
一是粉碎法;二是合成法。
粉碎法是由粗颗粒来获得细粉的方法,通常采用机械粉碎。
现在发展到采用气流粉碎技术。
一方面,在粉碎的过程中难免混入杂质;另一方面,无论哪种粉碎方式都不易制得粒径在1μm以下的微细颗粒。
合成法是由离子、原子、分子通过反应、成核和长大、收集、后处理来得到微细颗粒的方法。
这种方法的特点是可获得纯度、粒度可控均匀性好且颗粒微细的粉体。
并且可以实现颗粒在分子级水平上的复合、均化。
通常合成法包括固相法、液相法和气相法。
陶瓷干压成形所用的粉料要有一定的粒度、颗粒分布范围的要求,粒度过小,则不易排气、压实,易出现分层现象;同时还要求颗粒分布范围要窄,否则也不易压实,同时还会影响产品的强度。
粉料的颗粒分布的测定方法有很多,本实验选用筛析法,即:将一定量的陶瓷粉料用振动筛筛析,用各规格筛的筛余来表示其颗粒的分布。
三、实验仪器设备1、陶瓷粉体制备设备:颚式破碎机、双罐快速球磨机、振动球磨机、湿法球磨机、行星球磨机、气流粉碎机。
2、陶瓷粉体性能检测仪器:振动筛、激光粒度分布测定仪。
四、粉碎设备的使用陶瓷工业广泛使用的粉碎设备有:(1) 颚式破碎机:用于大块原料的粗加工。
粒度粗、进料和出料的粉碎比较小(约为4)而且细度调节范围也不大;(2) 轮碾机:属中碎设备。
物料在固定碾盘和滚动的碾轮之间相对滑动,在碾轮的重力作用下被研磨和压碎。
粉碎比较大(约10以上)。
不适合碾磨含水量大于15%的物料;(3) 球磨机:为陶瓷工业使用最广泛的细碎设备。
湿球磨粉碎效率更高。
物料在旋转的筒内与比重较大的介质(球、棒)相互撞击和研磨而被磨细。
影响球磨效率的主要因素如下:①球磨机转速:球磨介质在离心力的作用下上升到滚筒的上部,自由落下砸在磨料上时,球磨的效率最高。
压电陶瓷测试及压电材料相关制作介绍NBT基陶瓷的极化与压电性能测试2.4.1 NBT基陶瓷的极化1. 试样的制备为对压电陶瓷进行极化和性能测试,烧结后的陶瓷需要进行烧银处理。
烧银就是在陶瓷的表面上涂覆一层具有高导电率,结合牢固的银薄膜作为电极。
电极的作用有两点:(1)为极化创造条件,因为陶瓷本身为强绝缘体,而极化时要施加高压电场,若无电极,则极化不充分;(2)起到传递电荷的作用,若无电极则在性能测试时不能在陶瓷表面积聚电荷,显示不出压电效应。
首先将烧结后的圆片状样品磨平、抛光,使两个平面保持干净平整。
然后在样品的表面涂覆高温银浆(武汉优乐光电科技有限公司生产,型号:SA-8021),并在一定温度干燥。
将表面涂覆高温银浆的样品放入马弗炉进行处理,慢速升温到320~350℃,保温15min以排除银浆中的有机物,快速升温到820℃并保温15min后随炉冷却,最后将涂覆的银电极表面抛光。
附资料压电压片装置:ZJ-D33-YP15压电陶瓷压片机,材料压片机,粉末陶瓷压片机,超导材料压片机,新型能源压片机关键词:压片机,粉末,压片一、产品介绍:ZJ-D33系列型手动压电/材料压片机和电动压电/材料压片机广泛用于新材料,超导,粉末陶瓷,新型电源,建材等领域,可以配合ZJ-3/6/5型压电测试仪和钙铁分析,红外光谱(IR),X荧光(XRF)分析仪器配套使用,用特定的模具可以压制成各种各样的片,柱及异型体,组合体等进行科学研究,应用非常广泛,使用简单、方便、可靠。
目前是国内高等院校进行自行科学材料研究的重要辅助工具。
二、应用范围:粉末陶瓷压片,新材料压片,超导压片,新型电源,建材压片三、特点:具有快速上压,快速退模,压力高,稳定性好,不漏油,无污染,维修简便四、主要技术资料一、手动型技术参数:压力范围: 0--15T,0-24T,0-30T,0-40T系统压力: 0--25 MPa ( 250Kgf /Cm*Cm ),0--40 MPa ( 400Kgf /Cm*Cm ),0--30 MPa ( 300 Kgf /Cm*Cm ),0--40 MPa ( 400Kgf /Cm*Cm )油缸升程: 0--20 mm,压力稳定性:≤1MPa / 10min运动模式: 带快速预紧.工作空间: 160×160×150 mm外形尺寸: 270×200×450 mm重量: 30 kg二、数显型特点及功能:1、微功耗,准确度高,高清晰度五位数字液晶显示。
压电陶瓷制备与测试实验报告一、实验要求1、了解压电陶瓷的基本性能、结构、用途、制备方法。
2、了解压电陶瓷常见的表征方法及检测手段。
3、掌握压电陶瓷材料压电、介电性能等性能测试方法。
4、掌握压电陶瓷的性能分析方法。
二、压电陶瓷材料制备过程主要包括以下步骤:配料-混合-预烧-粉碎-成型-排胶-烧结-被电极-极化-测试。
1、配料:Bi2O3···14.1244113464136 Sc2O3···4.13930659262249 PbO···23.339070300907 TiO2···8.397211760056962、原料选用纯度高、细度小和活性大的粉料,根据配方或分子式选择所用原料,并按原料纯度进行修正计算,然后进行原料的称量。
按化学配比配料以后,使用行星式球磨机将各种配料混合均匀。
实验室常采用的是水平方向转动球磨方式,震动球磨是另一种常用的球磨方法,此外还有气流粉碎法等混合方法。
3、混合球磨后的原料进行预烧。
预烧是使原料间发生固相化学反应以生成所需产物的过程,预烧过程中应注意温度和保温时间的选择。
将预烧反应后的材料使用行星式球磨机粉碎。
4、成型的方法主要有四种;轧膜成型、流延成型、干压成型和静水压成型。
轧膜成型适用于薄片元件;流延成型适合于更薄的元件,膜厚可以小于10 m;干压成型适合于块状元件;静水压成型适合于异形或块状元件。
除了静水压成型外,其他成型方法都需要有粘合剂,粘合剂一般占原料重量的3%左右。
成型以后需要排胶。
粘合剂的作用只是利于成型,但它是一种还原性强的物质,成型后应将其排出以免影响烧结质量。
5、烧结是将坯体加热到足够高的温度,使陶瓷坯体发生体积收缩、密度提高和强度增大的过程。
烧结过程的机制是组成该物质的原子的扩散运动。
烧结的推动力是颗粒或者晶粒的表面能,烧结过程主要是表面能降低的过程。
压电陶瓷的制备工艺压电陶瓷是一种具有压电效应的陶瓷材料,具有较高的压电效能和稳定的性能,在压电设备和传感器等领域有广泛应用。
下面将详细介绍压电陶瓷的制备工艺。
压电陶瓷制备工艺主要包括粉体制备、成型、烧结和后处理等步骤。
不同的压电陶瓷材料具有不同的制备工艺,下面将以铅锆钛酸钡(PZT)陶瓷为例进行介绍。
粉体制备是制备压电陶瓷的第一步,其目的是制备出具有良好压电性能的粉体。
一般来说,将过程原料中的铁氧体、碳酸钡、氧化钛和氧化铅等按一定比例混合,然后进行球磨或者其他研磨方法,使其成为微米级的均匀混合物。
成型是将粉体按照设计要求的形状和尺寸进行成型的过程。
常见的成型方法有压制和注射成型两种。
压制方法一般采用球形粉末和模具来制备成型,通过施加足够的压力使其形成所需形状。
注射成型是将粉料和有机胶进行混合,然后将该混合物注入到模具中,并通过脱模焙烧使其成型。
烧结是将成型后的陶瓷坯体加热到一定温度下,使其形成致密的陶瓷体的过程。
具体的烧结温度和时间需要根据不同的陶瓷材料来确定。
在烧结过程中,陶瓷体会发生晶粒长大和析出等变化,从而使其压电性能得到增强。
烧结后的陶瓷体需要进行后处理,主要是为了获得更好的性能。
常见的后处理方法包括水热处理、陶瓷体极化和金属电极附着等。
水热处理是将烧结后的陶瓷体放置在水中进行一定时间的处理,可以进一步提高其致密性和机械性能。
陶瓷体极化是将陶瓷体置于磁场中进行极化处理,通过改变材料的电极化方向来改善其压电性能。
金属电极附着是在陶瓷体上涂覆金属电极,以增加电极附近的压电效应。
除了以上步骤,压电陶瓷的制备还需要控制制备条件、优化配方和选择合适的烧结工艺等。
这些因素都会影响到压电陶瓷的性能和制备效果。
总结起来,压电陶瓷的制备工艺主要包括粉体制备、成型、烧结和后处理等步骤。
在制备过程中需要考虑到原材料的选择和比例、成型和烧结参数的控制以及后处理的优化等因素。
通过合理的制备工艺,可以获得具有良好压电性能和稳定性能的压电陶瓷材料。
项目编号0912011411自然科学√项目分类社会科学中国海洋大学本科生研究发展计划(OUC-SRDP)项目研究报告项目名称:钛酸铋钠基无铅压电陶瓷材料的溶胶-凝胶法制备及电性能研究负责人:杜乘风所在学院:材料科学与工程研究院专业年级:2007级材料化学指导教师: 戴金辉起止年月:2009 年06 月至2010 年04 月1.文献综述1.1 压电陶瓷压电铁电陶瓷是功能陶瓷中应用广泛的一类,铁电性应用在存储器、记忆器等领域、压电性应用在换能器、驱动器、声表面波器件等领域,热释电应用在探测器、报警器、焦平面列阵等领域,介电应用在电容器、传感器等领域。
包括电容器陶瓷在内的压电铁电陶瓷,其世界市场份额占整个功能陶瓷的三分之一。
压电陶瓷,是一种能够将机械能和电能互相转换的功能陶瓷材料,即是一种具有压电效应的材料。
在能量转换方面,利用压电陶瓷将机械能转换成电能的特性,可以制造出压电点火器、移动X光电源、炮弹引爆装置。
电子打火机中就有压电陶瓷制作的火石,打火次数可在100万次以上。
用压电陶瓷把电能转换成超声振动,可以用来探寻水下鱼群的位置和形状,对金属进行无损探伤,以及超声清洗、超声医疗,还可以做成各种超声切割器、焊接装置及烙铁,对塑料甚至金属进行加工。
压电陶瓷具有敏感的特性,可以将极其微弱的机械振动转换成电信号,可用于声纳系统、气象探测、遥测环境保护、家用电器等。
地震是毁灭性的灾害,而且震源始于地壳深处,以前很难预测,使人类陷入了无计可施的尴尬境地。
压电陶瓷对外力的敏感使它甚至可以感应到十几米外飞虫拍打翅膀对空气的扰动,用它来制作压电地震仪,能精确地测出地震强度,指示出地震的方位和距离。
这不能不说是压电陶瓷的一大奇功。
压电陶瓷在电场作用下产生的形变量很小,最多不超过本身尺寸的千万分之一,但基于这个原理制做的精确控制机构--压电驱动器,对于精密仪器和机械的控制、微电子技术、生物工程等领域都是一大福音。
谐振器、滤波器等频率控制装置,是决定通信设备性能的关键器件,压电陶瓷在这方面具有明显的优越性。
PZT压电陶瓷制备方法摘要:PZTR基压电陶瓷材料具有性能稳定、容易制造、价格低廉等优点,已被广泛应用于电子元器件中。
但由于采用传统的高温固相法烧结铅大量挥发,从而导致化学计量比偏离、性能下降。
本文介绍了压电陶瓷的几种制备方法。
关键字:;PZT陶瓷制备方法引言:PZT压电陶瓷由于具有居里温度高、压电性强、易掺杂改性、稳定性好等特点。
自20世纪60年代以来,一直是人们关注和研究的热点,在压电陶瓷领域中占主导地位。
就PZT压电陶瓷的制备工艺而言,PZT粉体合成和致密化烧结对PZT制品质量影响最大。
PZT超微粉体具有粒度细、比表面积大、反应活性高等优点,可降低烧结温度,减少铅挥发,保证准确的化学计量,提高PZT制品性能,因而超微PZT粉体的制备已成为PZT压电陶瓷研究的重点。
近年来对超微PZT粉体制备的研究开发了许多新的方法。
固相法除传统周相法外,还包括微波辐射法、机械化学法口、反应烧结法等。
液相法具有合成温度低、设备简单、易操作、成本低等优点,纷纷被用于PZT粉体的制备,如溶胶一凝胶法、水热法、沉淀法等。
但对PZT压电陶瓷的制备及性能研究仍存在许多不足,主要包括:粉体团聚、化学计量及制品性能易老化等。
2、PZT陶瓷的制备方法2.1水热法合成制备PZT压电陶瓷粉实验原料为:Pb(Ac)2·3H20、ZrOCl2·8 H20、Ti(OC4H9)4、Na()H(均为分析纯试剂),全部配制成水溶液使用。
按照Pb(Zr0.58Ti 0.42)O3的组成配制水热反应混合溶液。
铅的成分适当过量添加。
反应在NaOH 水溶液介质中进行,反应设备采用100mI。
反应釜,反应温度分别设定为240摄氏度、反应时间为4 h,反应结束后用定鼍滤纸进行过滤,然后用离子交换水超声波二遍清洗,生成物在100摄氏度下干燥24 h,以备测定各种性能。
采用RIGAKU公司生产的D/MAX RB型X射线粉末衍射仪分析产物的物相组成,采用JSM一5010I。
PZT压电陶瓷颗粒的制备:将市售的压电陶瓷片用蒸馏水洗净,与120℃下烘干。
在玛瑙研钵中捣碎,然后以无水乙醇为介质,在玛瑙罐中球磨24h,烘干,过筛,得到平均粒径为3um 的陶瓷颗粒。
陶瓷颗粒制备过程中,未经其它任何物理和化学处理。
石墨改性(l)称取适量的石墨粉末,将石墨粉末置于N,N一二甲基甲酞胺(NDF)中,强烈搅拌并辅以超声分散。
(2)称取适量的PVDF粉末,将PVDF溶于上述含悬浮石墨的NDF中。
(3)称取适量的PZT陶瓷粉末,将PZT粉末加入PVDF的NDF溶液中,强烈搅拌并辅以超声分散。
制得石墨、‘PZT和PVDF分散均匀的体系。
(4)保持搅拌,将一定量的PVDF不良溶剂无水乙醇缓慢加入到上述分散体系中,直到石墨、PZT和PVDF全部从溶液中沉淀出来。
(5)将沉淀抽滤,烘干,得到均匀的PVDF包裹的石墨和PZT体系。
(6)将分散均匀的复合粉末在200℃、150MPa的钢制模具中热压,冷却后得到今2um,厚200一300Um的压电复合材料薄膜。
研究的问题:(l)分别采用了冷压、固化和热压三种工艺制备住一3型PZT用VDF压电复合材料,通过对制备样品压电和介电性能行对比,确定制备0一3型PZT/PVDF压电复合材料的最佳合成工艺。
(2)研究PZT和PVDF不同质量配比对O一3型PZT护VDF压电复合材料性能的影响,通过对样品压电和介电性能进行对比,确定制备0一3型PZT/PVDF压电复合材料的PZT和PVDF的质量最佳配比。
(3)研究在热压工艺条件下的合成热压温度和热压压力对0一3型PZT/PvDF压电复合材料性能的影响,通过对不同条件下制备样品的压电和介电性能进行对比,确定热压工艺制备O一3型PZT/PVDF压电复合材料的最佳工艺条件。
(4)研究极化条件(极化温度、极化电场和是否保压冷却)0一3型PZT/PVDF压电复合材料性能的影响,确定0一3型PZT/PVDF压电复合材料的最佳极化条件。
一、实验目的1. 了解压电陶瓷材料的基本特性和应用领域。
2. 掌握压电陶瓷材料的制备方法及性能测试技术。
3. 分析压电陶瓷材料的性能与结构之间的关系。
二、实验原理压电陶瓷材料是一种具有压电效应的无机非金属材料,其基本原理是在外部机械力的作用下,内部产生电荷,从而实现机械能与电能之间的相互转换。
压电陶瓷材料具有高介电常数、高介电损耗、高压电系数等特性,广泛应用于声学、光电子、传感器、驱动器等领域。
三、实验材料与仪器1. 实验材料:PZT(锆钛酸铅)压电陶瓷材料。
2. 实验仪器:(1)高温烧结炉:用于压电陶瓷材料的烧结。
(2)X射线衍射仪(XRD):用于分析压电陶瓷材料的晶体结构。
(3)扫描电子显微镜(SEM):用于观察压电陶瓷材料的微观结构。
(4)压电系数测试仪:用于测试压电陶瓷材料的压电系数。
(5)介电性能测试仪:用于测试压电陶瓷材料的介电常数和介电损耗。
四、实验步骤1. 压电陶瓷材料的制备(1)将PZT粉末与适量粘结剂混合,制成浆料。
(2)将浆料涂覆在陶瓷基板上,形成压电陶瓷薄膜。
(3)将压电陶瓷薄膜放入高温烧结炉中,进行烧结,烧结温度为850℃左右,保温时间为2小时。
2. 压电陶瓷材料的性能测试(1)X射线衍射分析:对烧结后的压电陶瓷材料进行XRD分析,确定其晶体结构。
(2)扫描电子显微镜分析:对压电陶瓷材料进行SEM分析,观察其微观结构。
(3)压电系数测试:利用压电系数测试仪测试压电陶瓷材料的压电系数。
(4)介电性能测试:利用介电性能测试仪测试压电陶瓷材料的介电常数和介电损耗。
五、实验结果与分析1. X射线衍射分析(1)通过XRD分析,确定压电陶瓷材料的晶体结构为PZT相。
(2)分析压电陶瓷材料的晶体结构特点,如晶胞参数、晶粒尺寸等。
2. 扫描电子显微镜分析(1)通过SEM分析,观察压电陶瓷材料的微观结构,如晶粒尺寸、晶界、孔隙等。
(2)分析压电陶瓷材料的微观结构对性能的影响。
3. 压电系数测试(1)测试压电陶瓷材料的压电系数,确定其性能。
bnt基无铅压电陶瓷的制备及表征实验流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!BNT基无铅压电陶瓷的制备与表征实验流程研究一、引言随着环保意识的提升,传统的含铅压电陶瓷已逐渐被无铅压电陶瓷所替代。
压电陶瓷材料是具有机电转换效应的一类功能材料,这种材料能够实现机械能与电能的相互转换,在机械,电子。
医疗,通讯,精密控制,国防军工等很多领域中应用广泛。
粉末颗粒的特性包括粒度,粒度分布,颗粒形状,孔隙度,Z 电势数值和比表面积等。
对于陶瓷材料制备而言,粉体的粒度及其分布状况关系到原煤料的加工时间,坯体的致密度大小,烧成温度的高低等问题,对制品的质量和性能起着极重要的作用。
制备方法则采用:1)传统固相法:将所需元素的氧化物,碳酸盐或硝酸盐通过球磨混合均匀,经过煅烧使这些盐类发生分解与固相反应,从而生成所需化学成分和晶相的陶瓷粉体。
工艺优点:技术成熟,工艺简单,成本低廉工艺缺点:颗粒较粗,活性较差,化学均匀性较差,易团聚。
2) 水热合成法:把常温常压下溶液中不容易进行的反应,通过将物系置于高温高压条件下来加速反应的进行工艺优点:低温下即可获得较纯粉体,晶粒发育良好,粒度分布均匀。
工艺缺点:晶化时间过长,不利于连续生产。
3)溶胶-凝胶法:将易于水解的金属化合物(无机盐或金属醇盐)溶解在某种溶剂中并使之与水发生反应而逐渐胶化,凝胶经干燥和高温处理制得所需的粉体材料。
工艺优点:化学均匀性好,粉体颗粒细且尺寸分布窄,设备简单。
工艺缺点:前驱体材料价格昂贵,有机溶剂对人体有害,制粉工艺较复杂。
粉体粒度测试方法:a) 激光法:当光束照射到气体或液体里的细颗粒时,光将向各个方向散射,并在颗粒背后产生瞬间阴影。
照射光有部份被颗粒吸收,部分产生衍射。
光的散射和衍射与颗粒的粒度有一定的关系。
优点:分析速度快,操作简单方便,分析检测范围广。
缺点:不宜测量粒度分布很窄的样品,分辨率相对较低。
b) 沉降法:颗粒的沉降速度与颗粒的大小有关,大颗粒的沉降速度快,小颗粒的沉降速度慢,因此只要测量颗粒的沉降速度,就可以得到反映颗粒大小的粒度分布。
优点:原理直观,分辨率较高,价格及运行成本低。
缺点:测量速度慢,不能处理不同密度的混合物,受环境和人为因素影响较大。
压电陶瓷材料是具有机电转换效应的一类功能材料,这种材料能够实现机械能与电能的相互转换,在机械,电子。
医疗,通讯,精密控制,国防军工等很多领域中应用广泛。
粉末颗粒的特性包括粒度,粒度分布,颗粒形状,孔隙度,Z 电势数值和比表面积等。
对于陶瓷材料制备而言,粉体的粒度及其分布状况关系到原煤料的加工时间,坯体的致密度大小,烧成温度的高低等问题,对制品的质量和性能起着极重要的作用。
制备方法则采用:
1)传统固相法:将所需元素的氧化物,碳酸盐或硝酸盐通过球磨混合均匀,经过煅烧使这些盐类发生分解与固相反应,从而生成所需化学成分和晶相的陶瓷粉体。
工艺优点:技术成熟,工艺简单,成本低廉
工艺缺点:颗粒较粗,活性较差,化学均匀性较差,易团聚。
2) 水热合成法:把常温常压下溶液中不容易进行的反应,通过将物系置于高温高压条件下来加速反应的进行
工艺优点:低温下即可获得较纯粉体,晶粒发育良好,粒度分布均匀。
工艺缺点:晶化时间过长,不利于连续生产。
3)溶胶-凝胶法:将易于水解的金属化合物(无机盐或金属醇盐)溶解在某种溶剂中并使之与水发生反应而逐渐胶化,凝胶经干燥和高温处理制得所需的粉体材料。
工艺优点:化学均匀性好,粉体颗粒细且尺寸分布窄,设备简单。
工艺缺点:前驱体材料价格昂贵,有机溶剂对人体有害,制粉工艺较复杂。
粉体粒度测试方法:
a) 激光法:当光束照射到气体或液体里的细颗粒时,光将向各个方向散射,并在颗粒背后产生瞬间阴影。
照射光有部份被颗粒吸收,部分产生衍射。
光的散射和衍射与颗粒的粒度有一定的关系。
优点:分析速度快,操作简单方便,分析检测范围广。
缺点:不宜测量粒度分布很窄的样品,分辨率相对较低。
b) 沉降法:颗粒的沉降速度与颗粒的大小有关,大颗粒的沉降速度快,小颗粒的沉降速度慢,因此只要测量颗粒的沉降速度,就可以得到反映颗粒大小的粒度分布。
优点:原理直观,分辨率较高,价格及运行成本低。
缺点:测量速度慢,不能处理不同密度的混合物,受环境和人为因素影响较大。